1
|
Selby TM, Goulay F, Soorkia S, Ray A, Jasper AW, Klippenstein SJ, Morozov AN, Mebel AM, Savee JD, Taatjes CA, Osborn DL. Radical-Radical Reactions in Molecular Weight Growth: The Phenyl + Propargyl Reaction. J Phys Chem A 2023; 127:2577-2590. [PMID: 36905386 DOI: 10.1021/acs.jpca.2c08121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The mechanism for hydrocarbon ring growth in sooting environments is still the subject of considerable debate. The reaction of phenyl radical (C6H5) with propargyl radical (H2CCCH) provides an important prototype for radical-radical ring-growth pathways. We studied this reaction experimentally over the temperature range of 300-1000 K and pressure range of 4-10 Torr using time-resolved multiplexed photoionization mass spectrometry. We detect both the C9H8 and C9H7 + H product channels and report experimental isomer-resolved product branching fractions for the C9H8 product. We compare these experiments to theoretical kinetics predictions from a recently published study augmented by new calculations. These ab initio transition state theory-based master equation calculations employ high-quality potential energy surfaces, conventional transition state theory for the tight transition states, and direct CASPT2-based variable reaction coordinate transition state theory (VRC-TST) for the barrierless channels. At 300 K only the direct adducts from radical-radical addition are observed, with good agreement between experimental and theoretical branching fractions, supporting the VRC-TST calculations of the barrierless entrance channel. As the temperature is increased to 1000 K we observe two additional isomers, including indene, a two-ring polycyclic aromatic hydrocarbon, and a small amount of bimolecular products C9H7 + H. Our calculated branching fractions for the phenyl + propargyl reaction predict significantly less indene than observed experimentally. We present further calculations and experimental evidence that the most likely cause of this discrepancy is the contribution of H atom reactions, both H + indenyl (C9H7) recombination to indene and H-assisted isomerization that converts less stable C9H8 isomers into indene. Especially at low pressures typical of laboratory investigations, H-atom-assisted isomerization needs to be considered. Regardless, the experimental observation of indene demonstrates that the title reaction leads, either directly or indirectly, to the formation of the second ring in polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Talitha M Selby
- Department of Mathematics and Natural Sciences, University of Wisconsin-Milwaukee, West Bend, Wisconsin 53095, United States
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, F-91405 Orsay, France
| | - Amelia Ray
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha, Wisconsin 53144, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - John D Savee
- KLA Corporation, Milpitas, California 95035, United States
| | - Craig A Taatjes
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Volokhov VM, Zyubina TS, Volokhov AV, Amosova ES, Varlamov DA, Lempert DB, Yanovskii LS. Quantum Chemical Simulation of Hydrocarbon Compounds with High Enthalpy. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121010127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Volokhov VM, Zyubina TS, Volokhov AV, Amosova ES, Varlamov DA, Lempert DB, Yanovskii LS. Predictive Modeling of Molecules of High-Energy Heterocyclic Compounds. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zhao L, Doddipatla S, Kaiser RI, Lu W, Kostko O, Ahmed M, Tuli LB, Morozov AN, Howlader AH, Wnuk SF, Mebel AM, Azyazov VN, Mohamed RK, Fischer FR. Gas-phase synthesis of corannulene – a molecular building block of fullerenes. Phys Chem Chem Phys 2021; 23:5740-5749. [DOI: 10.1039/d0cp06537d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Corannulene can be formed through molecular mass growth processes in circumstellar envelopes.
Collapse
|
5
|
Kohse-Höinghaus K. Combustion in the future: The importance of chemistry. PROCEEDINGS OF THE COMBUSTION INSTITUTE. INTERNATIONAL SYMPOSIUM ON COMBUSTION 2020; 38:S1540-7489(20)30501-0. [PMID: 33013234 PMCID: PMC7518234 DOI: 10.1016/j.proci.2020.06.375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Collapse
Key Words
- 2M2B, 2-methyl-2-butene
- AFM, atomic force microscopy
- ALS, Advanced Light Source
- APCI, atmospheric pressure chemical ionization
- ARAS, atomic resonance absorption spectroscopy
- ATcT, Active Thermochemical Tables
- BC, black carbon
- BEV, battery electric vehicle
- BTL, biomass-to-liquid
- Biofuels
- CA, crank angle
- CCS, carbon capture and storage
- CEAS, cavity-enhanced absorption spectroscopy
- CFD, computational fluid dynamics
- CI, compression ignition
- CRDS, cavity ring-down spectroscopy
- CTL, coal-to-liquid
- Combustion
- Combustion chemistry
- Combustion diagnostics
- Combustion kinetics
- Combustion modeling
- Combustion synthesis
- DBE, di-n-butyl ether
- DCN, derived cetane number
- DEE, diethyl ether
- DFT, density functional theory
- DFWM, degenerate four-wave mixing
- DMC, dimethyl carbonate
- DME, dimethyl ether
- DMM, dimethoxy methane
- DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy
- EGR, exhaust gas recirculation
- EI, electron ionization
- Emissions
- Energy
- Energy conversion
- FC, fuel cell
- FCEV, fuel cell electric vehicle
- FRET, fluorescence resonance energy transfer
- FT, Fischer-Tropsch
- FTIR, Fourier-transform infrared
- Fuels
- GC, gas chromatography
- GHG, greenhouse gas
- GTL, gas-to-liquid
- GW, global warming
- HAB, height above the burner
- HACA, hydrogen abstraction acetylene addition
- HCCI, homogeneous charge compression ignition
- HFO, heavy fuel oil
- HRTEM, high-resolution transmission electron microscopy
- IC, internal combustion
- ICEV, internal combustion engine vehicle
- IE, ionization energy
- IPCC, Intergovernmental Panel on Climate Change
- IR, infrared
- JSR, jet-stirred reactor
- KDE, kernel density estimation
- KHP, ketohydroperoxide
- LCA, lifecycle analysis
- LH2, liquid hydrogen
- LIF, laser-induced fluorescence
- LIGS, laser-induced grating spectroscopy
- LII, laser-induced incandescence
- LNG, liquefied natural gas
- LOHC, liquid organic hydrogen carrier
- LT, low-temperature
- LTC, low-temperature combustion
- MBMS, molecular-beam MS
- MDO, marine diesel oil
- MS, mass spectrometry
- MTO, methanol-to-olefins
- MVK, methyl vinyl ketone
- NOx, nitrogen oxides
- NTC, negative temperature coefficient
- OME, oxymethylene ether
- OTMS, Orbitrap MS
- PACT, predictive automated computational thermochemistry
- PAH, polycyclic aromatic hydrocarbon
- PDF, probability density function
- PEM, polymer electrolyte membrane
- PEPICO, photoelectron photoion coincidence
- PES, photoelectron spectrum/spectra
- PFR, plug-flow reactor
- PI, photoionization
- PIE, photoionization efficiency
- PIV, particle imaging velocimetry
- PLIF, planar laser-induced fluorescence
- PM, particulate matter
- PM10 PM2,5, sampled fractions with sizes up to ∼10 and ∼2,5 µm
- PRF, primary reference fuel
- QCL, quantum cascade laser
- RCCI, reactivity-controlled compression ignition
- RCM, rapid compression machine
- REMPI, resonance-enhanced multi-photon ionization
- RMG, reaction mechanism generator
- RON, research octane number
- Reaction mechanisms
- SI, spark ignition
- SIMS, secondary ion mass spectrometry
- SNG, synthetic natural gas
- SNR, signal-to-noise ratio
- SOA, secondary organic aerosol
- SOEC, solid-oxide electrolysis cell
- SOFC, solid-oxide fuel cell
- SOx, sulfur oxides
- STM, scanning tunneling microscopy
- SVO, straight vegetable oil
- Synthetic fuels
- TDLAS, tunable diode laser absorption spectroscopy
- TOF-MS, time-of-flight MS
- TPES, threshold photoelectron spectrum/spectra
- TPRF, toluene primary reference fuel
- TSI, threshold sooting index
- TiRe-LII, time-resolved LII
- UFP, ultrafine particle
- VOC, volatile organic compound
- VUV, vacuum ultraviolet
- WLTP, Worldwide Harmonized Light Vehicle Test Procedure
- XAS, X-ray absorption spectroscopy
- YSI, yield sooting index
Collapse
|
6
|
Nucleation of soot: experimental assessment of the role of polycyclic aromatic hydrocarbon (PAH) dimers. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The irreversible dimerization of polycyclic aromatic hydrocarbons (PAHs) – typically pyrene (C16H10) dimerization – is widely used in combustion chemistry models to describe the soot particle inception step. This paper concerns itself with the detection and identification of dimers of flame-synthesized PAH radicals and closed-shell molecules and an experimental assessment of the role of these PAH dimers for the nucleation of soot. To this end, flame-generated species were extracted from an inverse co-flow flame of ethylene at atmospheric pressure and immediately diluted with excess nitrogen before the mixture was analyzed using flame-sampling tandem mass spectrometry with collision-induced fragmentation. Signal at m/z = 404.157 (C32H20) and m/z = 452.157 (C36H20) were detected and identified as dimers of closed-shell C16H10 and C18H10 monomers, respectively. A complex between a C13H9 radical and a C24H12 closed-shell PAH was observed at m/z = 465.164 (C37H21). However, a rigorous analysis of the flame-sampled mass spectra as a function of the dilution ratio, defined as the ratio of the flow rates of the diluent nitrogen to the sampled gases, indicates that the observed dimers are not flame-born, but are produced in the sampling line. In agreement with theoretical considerations, this paper provides experimental evidence that pyrene dimers cannot be a key intermediate in particle inception at elevated flame temperatures.
Collapse
|
7
|
Zhao L, Kaiser RI, Lu W, Kostko O, Ahmed M, Evseev MM, Bashkirov EK, Oleinikov AD, Azyazov VN, Mebel AM, Howlader AH, Wnuk SF. Gas phase formation of cyclopentanaphthalene (benzindene) isomers via reactions of 5- and 6-indenyl radicals with vinylacetylene. Phys Chem Chem Phys 2020; 22:22493-22500. [DOI: 10.1039/d0cp03846f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of indenyl radicals with vinylacetylene leads to cyclopentanaphthalene at low temperature.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Wenchao Lu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | | | - Artem D. Oleinikov
- Samara National Research University
- Samara 443086
- Russian Federation
- Lebedev Physical Institute
- Samara 443011
| | - Valeriy N. Azyazov
- Samara National Research University
- Samara 443086
- Russian Federation
- Lebedev Physical Institute
- Samara 443011
| | - Alexander M. Mebel
- Samara National Research University
- Samara 443086
- Russian Federation
- Department of Chemistry and Biochemistry
- Florida International University
| | - A. Hasan Howlader
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| |
Collapse
|
8
|
He C, Thomas AM, Galimova GR, Mebel AM, Kaiser RI. Gas-Phase Formation of 1-Methylcyclopropene and 3-Methylcyclopropene via the Reaction of the Methylidyne Radical (CH; X 2Π) with Propylene (CH 3CHCH 2; X 1A'). J Phys Chem A 2019; 123:10543-10555. [PMID: 31718184 DOI: 10.1021/acs.jpca.9b09815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crossed molecular beam reactions of the methylidyne radical (CH; X2Π) with propylene (CH3CHCH2; X1A') along with (partially) substituted reactants were conducted at collision energies of 19.3 kJ mol-1. Combining our experimental data with ab initio electronic structure and statistical calculations, the methylidyne radical is revealed to add barrierlessly to the carbon-carbon double bond of propylene reactant resulting in a cyclic doublet C4H7 intermediate with a lifetime longer than its rotation period. These adducts undergo a nonstatistical unimolecular decomposition via atomic hydrogen loss through tight exit transition states forming the cyclic products 1-methylcyclopropene and 3-methylcyclopropene with overall reaction exoergicities of 168 ± 25 kJ mol-1. These C4H6 isomers are predicted to exist even in low-temperature environments such as cold molecular clouds like TMC-1, since the reaction is barrierless and exoergic, all transition states are below the energy of the separated reactants, and both the methylidyne radical (CH; X2Π) and propylene reactant were detected in cold molecular clouds such as TMC-1.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Aaron M Thomas
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States.,Samara National Research University , Samara 443086 , Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
9
|
Zhao L, Prendergast MB, Kaiser RI, Xu B, Lu W, Ablikim U, Ahmed M, Oleinikov AD, Azyazov VN, Mebel AM, Howlader AH, Wnuk SF. Reactivity of the Indenyl Radical (C 9 H 7 ) with Acetylene (C 2 H 2 ) and Vinylacetylene (C 4 H 4 ). Chemphyschem 2019; 20:1437-1447. [PMID: 30938059 DOI: 10.1002/cphc.201900052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/28/2019] [Indexed: 11/09/2022]
Abstract
The reactions of the indenyl radicals with acetylene (C2 H2 ) and vinylacetylene (C4 H4 ) is studied in a hot chemical reactor coupled to synchrotron based vacuum ultraviolet ionization mass spectrometry. These experimental results are combined with theory to reveal that the resonantly stabilized and thermodynamically most stable 1-indenyl radical (C9 H7 . ) is always formed in the pyrolysis of 1-, 2-, 6-, and 7-bromoindenes at 1500 K. The 1-indenyl radical reacts with acetylene yielding 1-ethynylindene plus atomic hydrogen, rather than adding a second acetylene molecule and leading to ring closure and formation of fluorene as observed in other reaction mechanisms such as the hydrogen abstraction acetylene addition or hydrogen abstraction vinylacetylene addition pathways. While this reaction mechanism is analogous to the bimolecular reaction between the phenyl radical (C6 H5 . ) and acetylene forming phenylacetylene (C6 H5 CCH), the 1-indenyl+acetylene→1-ethynylindene+hydrogen reaction is highly endoergic (114 kJ mol-1 ) and slow, contrary to the exoergic (-38 kJ mol-1 ) and faster phenyl+acetylene→phenylacetylene+hydrogen reaction. In a similar manner, no ring closure leading to fluorene formation was observed in the reaction of 1-indenyl radical with vinylacetylene. These experimental results are explained through rate constant calculations based on theoretically derived potential energy surfaces.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Matthew B Prendergast
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Utuq Ablikim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Alexander M Mebel
- Samara National Research University, Samara, 443086, Russia.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - A Hasan Howlader
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Abplanalp MJ, Góbi S, Kaiser RI. On the formation and the isomer specific detection of methylacetylene (CH 3CCH), propene (CH 3CHCH 2), cyclopropane (c-C 3H 6), vinylacetylene (CH 2CHCCH), and 1,3-butadiene (CH 2CHCHCH 2) from interstellar methane ice analogues. Phys Chem Chem Phys 2019; 21:5378-5393. [PMID: 30221272 DOI: 10.1039/c8cp03921f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure methane (CH4) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: CnH2n+2 (n = 4-8), CnH2n (n = 3-9), CnH2n-2 (n = 3-9), CnH2n-4 (n = 4-9), and CnH2n-6 (n = 6-7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C3H4, C3H6, C4H4, and C4H6 were probed. These experiments confirmed the synthesis of methylacetylene (CH3CCH), propene (CH3CHCH2), cyclopropane (c-C3H6), vinylacetylene (CH2CHCCH), 1-butyne (HCCC2H5), 2-butyne (CH3CCCH3), 1,2-butadiene (H2CCCH(CH3)), and 1,3-butadiene (CH2CHCHCH2) with yields of 2.17 ± 0.95 × 10-4, 3.7 ± 1.5 × 10-3, 1.23 ± 0.77 × 10-4, 1.28 ± 0.65 × 10-4, 4.01 ± 1.98 × 10-5, 1.97 ± 0.98 × 10-4, 1.90 ± 0.84 × 10-5, and 1.41 ± 0.72 × 10-4 molecules eV-1, respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
11
|
Jin H, Yang J, Xing L, Hao J, Zhang Y, Cao C, Pan Y, Farooq A. An experimental study of indene pyrolysis with synchrotron vacuum ultraviolet photoionization mass spectrometry. Phys Chem Chem Phys 2019; 21:5510-5520. [PMID: 30785151 DOI: 10.1039/c8cp07285j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pyrolytic kinetics of indene was studied in a flow reactor at 30 and 760 Torr. Indene and its decomposition products, as well as polycyclic aromatic hydrocarbons (PAHs), were measured with synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). Five literature models were selected to reproduce the experimental data and analyze the reaction kinetics of indene. The experimental and predicted results illustrate that an indenyl radical is the dominant decomposition intermediate and also the main contributor to the further growth of aromatic rings in the pyrolysis of indene. The indene consumption process needs further precise characterization, especially the subsequent dissociation reactions of indanyl and indenyl radicals. A self-recombination reaction of the indenyl radical and the combination reactions between indenyl and other radicals are found to be necessary for the efficient formation of large PAHs. The absence of these pathways leads to the underprediction of experimental measurements. In contrast, literature models adopting indenyl global reactions for PAH formation generally overestimate the system reactivity. Proper radical combination pathways proposed in a future model should consider not only the PAH formation efficiency but also its impact on system reactivity.
Collapse
Affiliation(s)
- Hanfeng Jin
- Clean Combustion Research Centre, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhao L, Prendergast M, Kaiser RI, Xu B, Ablikim U, Lu W, Ahmed M, Oleinikov AD, Azyazov VN, Howlader AH, Wnuk SF, Mebel AM. How to add a five-membered ring to polycyclic aromatic hydrocarbons (PAHs) – molecular mass growth of the 2-naphthyl radical (C10H7) to benzindenes (C13H10) as a case study. Phys Chem Chem Phys 2019; 21:16737-16750. [DOI: 10.1039/c9cp02930c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of aryl radicals with allene/methylacetylene leads to five-membered ring addition in PAH growth processes.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Bo Xu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Utuq Ablikim
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Wenchao Lu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | | | - A. Hasan Howlader
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Samara National Research University
| |
Collapse
|
13
|
Zhao L, Kaiser RI, Xu B, Ablikim U, Ahmed M, Zagidullin MV, Azyazov VN, Howlader AH, Wnuk SF, Mebel AM. VUV Photoionization Study of the Formation of the Simplest Polycyclic Aromatic Hydrocarbon: Naphthalene (C 10H 8). J Phys Chem Lett 2018; 9:2620-2626. [PMID: 29717871 DOI: 10.1021/acs.jpclett.8b01020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The formation of the simplest polycyclic aromatic hydrocarbon (PAH), naphthalene (C10H8), was explored in a high-temperature chemical reactor under combustion-like conditions in the phenyl (C6H5)-vinylacetylene (C4H4) system. The products were probed utilizing tunable vacuum ultraviolet light by scanning the photoionization efficiency (PIE) curve at a mass-to-charge m/ z = 128 (C10H8+) of molecules entrained in a molecular beam. The data fitting with PIE reference curves of naphthalene, 4-phenylvinylacetylene (C6H5CCC2H3), and trans-1-phenylvinylacetylene (C6H5CHCHCCH) indicates that the isomers were generated with branching ratios of 43.5±9.0 : 6.5±1.0 : 50.0±10.0%. Kinetics simulations agree nicely with the experimental findings with naphthalene synthesized via the hydrogen abstraction-vinylacetylene addition (HAVA) pathway and through hydrogen-assisted isomerization of phenylvinylacetylenes. The HAVA route to naphthalene at elevated temperatures represents an alternative pathway to the hydrogen abstraction-acetylene addition (HACA) forming naphthalene in flames and circumstellar envelopes, whereas in cold molecular clouds, HAVA synthesizes naphthalene via a barrierless bimolecular route.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Bo Xu
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Utuq Ablikim
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Musahid Ahmed
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Marsel V Zagidullin
- Samara National Research University , Samara 443086 , Russia
- Lebedev Physical Institute , Samara 443011 , Russia
| | - Valeriy N Azyazov
- Samara National Research University , Samara 443086 , Russia
- Lebedev Physical Institute , Samara 443011 , Russia
| | - A Hasan Howlader
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
- Samara National Research University , Samara 443086 , Russia
| |
Collapse
|
14
|
Morozov AN, Mebel AM, Kaiser RI. A Theoretical Study of Pyrolysis of exo-Tetrahydrodicyclopentadiene and Its Primary and Secondary Unimolecular Decomposition Products. J Phys Chem A 2018; 122:4920-4934. [DOI: 10.1021/acs.jpca.8b02934] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander N. Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
15
|
Belisario-Lara D, Mebel AM, Kaiser RI. Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates III: Butylbenzene Isomers ( n-, s-, and t-C 14H 10). J Phys Chem A 2018; 122:3980-4001. [PMID: 29608299 DOI: 10.1021/acs.jpca.8b01836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ab initio G3(CCSD,MP2)//B3LYP/6-311G(d,p) calculations of potential energy surfaces have been carried out to unravel the mechanism of the initial stages of pyrolysis of three C10H14 isomers: n-, s-, and t-butylbenzenes. The computed energy and molecular parameters have been utilized in RRKM-master equation calculations to predict temperature- and pressure-dependent rate constants and product branching ratios for the primary unimolecular decomposition of these molecules and for the secondary decomposition of their radical fragments. The results showed that the primary dissociation of n-butylbenzene produces mostly benzyl (C7H7) + propyl (C3H7) and 1-phenyl-2-ethyl (C6H5C2H4) + ethyl (C2H5), with their relative yields strongly dependent on temperature and pressure, together with a minor amount of 1-phenyl-prop-3-yl (C9H11) + methyl (CH3). Secondary decomposition reactions that are anticipated to occur on a nanosecond scale under typical combustion conditions split propyl (C3H7) into ethylene (C2H4) + methyl (CH3), ethyl (C2H5) into ethylene (C2H4) + hydrogen (H), 1-phenyl-2-ethyl (C6H5C2H4) into mostly styrene (C8H8) + hydrogen (H) and to a lesser extent phenyl (C6H5) + ethylene (C2H4), and 1-phenyl-prop-3-yl (C9H11) into predominantly benzyl (C7H7) + ethylene (C2H4). The primary decomposition of s-butylbenzene is predicted to produce 1-phenyl-1-ethyl (C6H5CHCH3) + ethyl (C2H5) and a minor amount of 1-phenyl-prop-1-yl (C9H11) + methyl (CH3), and then 1-phenyl-1-ethyl (C6H5CHCH3) and 1-phenyl-prop-1-yl (C9H11) rapidly dissociate to styrene (C8H8) + hydrogen (H) and styrene (C8H8) + methyl (CH3), respectively. t-Butylbenzene decomposes nearly exclusively to 2-phenyl-prop-2-yl (C9H11) + methyl (CH3), and further, 2-phenyl-prop-2-yl (C9H11) rapidly eliminates a hydrogen atom to form 2-phenylpropene (C9H10). If hydrogen atoms or other reactive radicals are available to make a direct hydrogen-atom abstraction from butylbenzenes possible, the C10H13 radicals (1-phenyl-but-1-yl, 2-phenyl-but-2-yl, and t-phenyl-isobutyl) can be formed as the primary products from n-, s-, and t-butylbenzene, respectively. The secondary decomposition of 1-phenyl-but-1-yl leads to styrene (C8H8) + ethyl (C2H5), whereas 2-phenyl-but-2-yl and t-phenyl-isobutyl dissociate to 2-phenylpropene (C9H10) + methyl (CH3). Thus, the three butylbenzene isomers produce distinct but overlapping nascent pyrolysis fragments, which likely affect the successive oxidation mechanism and combustion kinetics of these JP-8 fuel components. Temperature- and pressure-dependent rate constants generated for the initial stages of pyrolysis of butylbenzenes are recommended for kinetic modeling.
Collapse
Affiliation(s)
- Daniel Belisario-Lara
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
16
|
Lucas M, Thomas AM, Kaiser RI, Bashkirov EK, Azyazov VN, Mebel AM. Combined Experimental and Computational Investigation of the Elementary Reaction of Ground State Atomic Carbon (C; 3Pj) with Pyridine (C5H5N; X1A1) via Ring Expansion and Ring Degradation Pathways. J Phys Chem A 2018. [DOI: 10.1021/acs.jpca.8b00756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Lucas
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Aaron M. Thomas
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | | | | | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Samara University, Samara, 443086, Russia
| |
Collapse
|
17
|
Bouwman J, Bodi A, Hemberger P. Nitrogen matters: the difference between PANH and PAH formation. Phys Chem Chem Phys 2018; 20:29910-29917. [DOI: 10.1039/c8cp05830j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the large stability of the nitrile group, the N-substituted aromatic molecule quinoline does not form in the phenyl + acrylonitrile reaction, in contrast to naphthalene formation in the isoelectronic phenyl + vinylacetylene reaction.
Collapse
Affiliation(s)
- Jordy Bouwman
- Sackler Laboratory for Astrophysics
- Leiden Observatory
- Leiden University
- NL 2300 RA Leiden
- The Netherlands
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| |
Collapse
|
18
|
Zhao L, Yang T, Kaiser RI, Troy TP, Ahmed M, Belisario-Lara D, Ribeiro JM, Mebel AM. Combined Experimental and Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates. I. n-Decane (n-C10H22). J Phys Chem A 2017; 121:1261-1280. [DOI: 10.1021/acs.jpca.6b11472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tyler P. Troy
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Belisario-Lara
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Joao Marcelo Ribeiro
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
19
|
Zhao L, Yang T, Kaiser RI, Troy TP, Ahmed M, Ribeiro JM, Belisario-Lara D, Mebel AM. Combined Experimental and Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates. II: n-Dodecane (n-C12H26). J Phys Chem A 2017; 121:1281-1297. [DOI: 10.1021/acs.jpca.6b11817] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tyler P. Troy
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joao Marcelo Ribeiro
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Daniel Belisario-Lara
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
20
|
Mebel AM, Landera A, Kaiser RI. Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. J Phys Chem A 2017; 121:901-926. [DOI: 10.1021/acs.jpca.6b09735] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander M. Mebel
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander Landera
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ralf I. Kaiser
- Department
of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
21
|
Zhao L, Yang T, Kaiser RI, Troy TP, Xu B, Ahmed M, Alarcon J, Belisario-Lara D, Mebel AM, Zhang Y, Cao C, Zou J. A vacuum ultraviolet photoionization study on high-temperature decomposition of JP-10 (exo-tetrahydrodicyclopentadiene). Phys Chem Chem Phys 2017; 19:15780-15807. [DOI: 10.1039/c7cp01571b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-temperature pyrolysis of JP-10 in flow reactors were performed both experimentally and theoretically. Dozens of products were detected and the decomposition pathways of JP-10 were discussed.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Tao Yang
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Tyler P. Troy
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Bo Xu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Juan Alarcon
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Yan Zhang
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chuangchuang Cao
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jiabiao Zou
- Key Laboratory for Power Machinery and Engineering of MOE
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
22
|
Kostko O, Bandyopadhyay B, Ahmed M. Vacuum Ultraviolet Photoionization of Complex Chemical Systems. Annu Rev Phys Chem 2016; 67:19-40. [DOI: 10.1146/annurev-physchem-040215-112553] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Biswajit Bandyopadhyay
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| |
Collapse
|
23
|
Mebel AM, Georgievskii Y, Jasper AW, Klippenstein SJ. Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene. Faraday Discuss 2016; 195:637-670. [DOI: 10.1039/c6fd00111d] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the mechanisms for growth of polycyclic aromatic hydrocarbons (PAHs) requires accurate temperature- and pressure-dependent rate coefficients for a great variety of feasible pathways. Even the pathways for the formation of the simplest PAHs, indene and naphthalene, are fairly complex. These pathways provide important prototypes for modeling larger PAH growth. In this work we employ the ab initio RRKM theory-based master equation approach to predict the rate constants involved in the formation of indene and its conversion to naphthalene. The reactions eventually leading to indene involve C9Hx (x = 8–11) potential energy surfaces (PESs) and include C6H5 + C3H4 (allene and propyne), C6H6 + C3H3, benzyl + C2H2, C6H5 + C3H6, C6H6 + C3H5 and C6H5 + C3H5. These predictions allow us to make a number of valuable observations on the role of various mechanisms. For instance, we demonstrate that reactions which can significantly contribute to the formation of indene include phenyl + allene and H-assisted isomerization to indene of its major product, 3-phenylpropyne, benzyl + acetylene, and the reactions of the phenyl radical with propene and the allyl radical, both proceeding via the 3-phenylpropene intermediate. 3-Phenylpropene can be activated to a 1-phenylallyl radical, which in turn rapidly decomposes to indene. Next, indene can be converted to benzofulvene or naphthalene under typical combustion conditions, via its activation by H atom abstraction and methyl substitution on the five-membered ring followed by isomerization and decomposition of the resulting 1-methylindenyl radical, C10H9 → C10H8 + H. Alternatively, the same region of the C10H9 PES can be accessed through the reaction of benzyl with propargyl, C7H7 + C3H3 → C10H10 → C10H9 + H, which therefore can also contribute to the formation of benzofulvene or naphthalene. Benzofulvene easily transforms to naphthalene by H-assisted isomerization. An analysis of the effect of pressure on the reaction outcome and relative product yields is given, and modified Arrhenius fits of the rate constants are reported for the majority of the considered reactions. Ultimately, the implementation of such expressions in detailed kinetic models will help quantify the role of these reactions for PAH growth in various environments.
Collapse
Affiliation(s)
- Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Yuri Georgievskii
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
| | - Ahren W. Jasper
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | | |
Collapse
|
24
|
Parker DSN, Yang T, Dangi BB, Kaiser RI, Bera PP, Lee TJ. LOW TEMPERATURE FORMATION OF NITROGEN-SUBSTITUTED POLYCYCLIC AROMATIC HYDROCARBONS (PANHs)—BARRIERLESS ROUTES TO DIHYDRO(iso)QUINOLINES. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/815/2/115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Parker DSN, Kaiser RI, Bandyopadhyay B, Kostko O, Troy TP, Ahmed M. Unexpected chemistry from the reaction of naphthyl and acetylene at combustion-like temperatures. Angew Chem Int Ed Engl 2015; 54:5421-4. [PMID: 25752687 DOI: 10.1002/anie.201411987] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Indexed: 11/07/2022]
Abstract
The hydrogen abstraction/acetylene addition (HACA) mechanism has long been viewed as a key route to aromatic ring growth of polycyclic aromatic hydrocarbons (PAHs) in combustion systems. However, doubt has been drawn on the ubiquity of the mechanism by recent electronic structure calculations which predict that the HACA mechanism starting from the naphthyl radical preferentially forms acenaphthylene, thereby blocking cyclization to a third six-membered ring. Here, by probing the products formed in the reaction of 1- and 2-naphthyl radicals in excess acetylene under combustion-like conditions with the help of photoionization mass spectrometry, we provide experimental evidence that this reaction produces 1- and 2-ethynylnaphthalenes (C12 H8 ), acenaphthylene (C12 H8 ) and diethynylnaphthalenes (C14 H8 ). Importantly, neither phenanthrene nor anthracene (C14 H10 ) was found, which indicates that the HACA mechanism does not lead to cyclization of the third aromatic ring as expected but rather undergoes ethynyl substitution reactions instead.
Collapse
Affiliation(s)
- Dorian S N Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, (USA) http://www.chem.hawaii.edu/Bil301/welcome.html
| | | | | | | | | | | |
Collapse
|
26
|
Parker DSN, Kaiser RI, Bandyopadhyay B, Kostko O, Troy TP, Ahmed M. Unexpected Chemistry from the Reaction of Naphthyl and Acetylene at Combustion-Like Temperatures. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Yang T, Parker DSN, Dangi BB, Kaiser RI, Mebel AM. Formation of 5- and 6-methyl-1H-indene (C10H10) via the reactions of the para-tolyl radical (C6H4CH3) with allene (H2CCCH2) and methylacetylene (HCCCH3) under single collision conditions. Phys Chem Chem Phys 2015; 17:10510-9. [DOI: 10.1039/c4cp04288c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flux contour map for the reactions of the p-tolyl radical with allene-d4 and methylacetylene-d4 at collision energies of around 48 kJ mol−1.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | - Beni B. Dangi
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| |
Collapse
|
28
|
Yang T, Muzangwa L, Kaiser RI, Jamal A, Morokuma K. A combined crossed molecular beam and theoretical investigation of the reaction of the meta-tolyl radical with vinylacetylene – toward the formation of methylnaphthalenes. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp03285g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flux contour map for the reactive scattering channel of meta-tolyl radical with vinylacetylene.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Lloyd Muzangwa
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Adeel Jamal
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Sakyo
- Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Sakyo
- Japan
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation
| |
Collapse
|
29
|
Constantinidis P, Schmitt HC, Fischer I, Yan B, Rijs AM. Formation of polycyclic aromatic hydrocarbons from bimolecular reactions of phenyl radicals at high temperatures. Phys Chem Chem Phys 2015; 17:29064-71. [DOI: 10.1039/c5cp05354d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-reaction of the phenyl radical is one of the key reactions in combustion chemistry.
Collapse
Affiliation(s)
- P. Constantinidis
- Institute of Physical and Theoretical Chemistry
- University of Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - H.-C. Schmitt
- Institute of Physical and Theoretical Chemistry
- University of Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - I. Fischer
- Institute of Physical and Theoretical Chemistry
- University of Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - B. Yan
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- Toernooiveld 7-c
- 6525 ED Nijmegen
| | - A. M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- Toernooiveld 7-c
- 6525 ED Nijmegen
| |
Collapse
|
30
|
Parker DSN, Kaiser RI, Kostko O, Troy TP, Ahmed M, Sun BJ, Chen SH, Chang AHH. On the formation of pyridine in the interstellar medium. Phys Chem Chem Phys 2015; 17:32000-8. [DOI: 10.1039/c5cp02960k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nitrogen bearing aromatic molecule pyridine (C5H5N) is revealed to form in high temperature environments simulating conditions in carbon-rich circumstellar envelopes via the reaction of the cyano vinyl radical with vinyl cyanide.
Collapse
Affiliation(s)
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Tyler P. Troy
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Bing-Jian Sun
- Department of Chemistry
- National Dong Hwa University
- Shoufeng
- Taiwan
| | - Shih-Hua Chen
- Department of Chemistry
- National Dong Hwa University
- Shoufeng
- Taiwan
| | - A. H. H. Chang
- Department of Chemistry
- National Dong Hwa University
- Shoufeng
- Taiwan
| |
Collapse
|
31
|
Martinez O, Crabtree KN, Gottlieb CA, Stanton JF, McCarthy MC. An Accurate Molecular Structure of Phenyl, the Simplest Aryl Radical. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Martinez O, Crabtree KN, Gottlieb CA, Stanton JF, McCarthy MC. An Accurate Molecular Structure of Phenyl, the Simplest Aryl Radical. Angew Chem Int Ed Engl 2014; 54:1808-11. [DOI: 10.1002/anie.201409896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Indexed: 11/11/2022]
|
33
|
Parker DSN, Kaiser RI, Troy TP, Kostko O, Ahmed M, Mebel AM. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems. J Phys Chem A 2014; 119:7145-54. [DOI: 10.1021/jp509170x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dorian S. N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tyler P. Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
34
|
Yang T, Parker DSN, Dangi BB, Kaiser RI, Kislov VV, Mebel AM. Crossed Beam Reactions of the Phenyl (C6H5; X2A1) and Phenyl-d5 Radical (C6D5; X2A1) with 1,2-Butadiene (H2CCCHCH3; X1A′). J Phys Chem A 2014; 118:4372-81. [DOI: 10.1021/jp411642w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Yang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Dorian S. N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Beni B. Dangi
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Vadim V. Kislov
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33174, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
35
|
Trevitt AJ, Prendergast MB, Goulay F, Savee JD, Osborn DL, Taatjes CA, Leone SR. Product Branching Fractions of the CH + Propene Reaction from Synchrotron Photoionization Mass Spectrometry. J Phys Chem A 2013; 117:6450-7. [DOI: 10.1021/jp404965k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adam J. Trevitt
- School of
Chemistry, University of Wollongong, NSW
2522 Australia
| | | | - Fabien Goulay
- Department
of Chemistry, West Virginia University,
Morgantown, West Virginia
26506, United States
| | - John D. Savee
- Combustion
Research Facility,
Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - David L. Osborn
- Combustion
Research Facility,
Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Craig A. Taatjes
- Combustion
Research Facility,
Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Stephen R. Leone
- Departments of Chemistry and Physics,
and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|