1
|
Du J, Zhou T, Peng W. Functional polysaccharide-based hydrogel in bone regeneration: From fundamentals to advanced applications. Carbohydr Polym 2025; 352:123138. [PMID: 39843049 DOI: 10.1016/j.carbpol.2024.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Bone regeneration is limited and generally requires external intervention to promote effective repair. Autografts, allografts, and xenografts as traditional methods for addressing bone defects have been widely utilized, their clinical applicability is limited due to their respective disadvantages. Fortunately, functional polysaccharide hydrogels have gained significant attention in bone regeneration due to their exceptional drug-loading capacity, biocompatibility, and ease of chemical modification. They also provide an optimal microenvironment for bone repair and regeneration. This review provides an overview of various functional polysaccharide hydrogels derived from biocompatible materials, focusing on their applications in intelligent delivery systems, bone tissue regeneration, and cartilage defect repair. Particularly, the incorporation of bioactive molecules into the design of functional polysaccharide hydrogels has been shown to significantly enhance bone regeneration. Additionally, this review emphasizes the preparation methods for functional polysaccharide hydrogels and associated the bone healing mechanisms. Finally, the limitations and future prospects of functional polysaccharide hydrogels are thoroughly evaluated.
Collapse
Affiliation(s)
- Jian Du
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075000, China
| | - Tian Zhou
- Hebei North University, Zhangjiakou, 075000, China
| | - Wei Peng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
2
|
Guo C, Jiao X, Du X, Zhang T, Peng B, Xu B. Application of Self-Healing Hydrogels in the Treatment of Intervertebral Disc Degeneration. J Biomed Mater Res B Appl Biomater 2025; 113:e35532. [PMID: 39842850 DOI: 10.1002/jbm.b.35532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Intervertebral disc degeneration (IDD) is one of the leading causes of chronic pain and disability, and traditional treatment methods often struggle to restore its complex biomechanical properties. This article explores the innovative application of self-healing hydrogels in the treatment of IDD, offering new hope for disc repair due to their exceptional self-repair capabilities and adaptability. As a key support structure in the human body, intervertebral discs are often damaged by trauma or degenerative changes. Self-healing hydrogels not only mimic the mechanical properties of natural intervertebral discs but also self-repair when damaged, thereby maintaining stable functionality. This article reviews the self-healing mechanisms and design strategies of self-healing hydrogels and, for the first time, outlines their potential in the treatment of IDD. Furthermore, the article looks forward to future developments in the field, including intelligent material design, multifunctional integration, encapsulation and release of bioactive molecules, and innovative combinations with tissue engineering and stem cell therapy, offering new perspectives and strategies for IDD treatment.
Collapse
Affiliation(s)
- Cunliang Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxun Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Bing Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | |
Collapse
|
3
|
Niemeier F, Servos LM, Papadopoulos Z, Montesdeoca N, Ni K, Heinrich S, Karges J. Combinatorial Synthesis toward the Discovery of Highly Cytotoxic Fe(III) Complexes. J Med Chem 2025; 68:1316-1327. [PMID: 39680634 DOI: 10.1021/acs.jmedchem.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Cancer remains one of the deadliest diseases worldwide, with some tumors proving difficult to treat and increasingly resistant to current therapies. Capitalizing on this, there is a need for new therapeutic agents with novel mechanisms of action. Among promising candidates, Fe(III) complexes have gained significant attention as potential chemotherapeutic agents. However, research on these compounds has been limited to a small number, leading to inefficiencies in drug discovery. This study addresses these limitations by developing a combinatorial library of 495 new Fe(III) complexes synthesized from aminophenol, hydroxybenzaldehyde, and pyridine derivatives. The compounds were screened for cytotoxicity against human breast adenocarcinoma and noncancerous fibroblasts, identifying a novel class of Fe(III) complexes with modest cancer cell selectivity. The lead compound effectively eradicated breast cancer tumor spheroids at low micromolar concentrations, highlighting the potential of this approach for rapid drug discovery.
Collapse
Affiliation(s)
- Felix Niemeier
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Lisa-Marie Servos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Zisis Papadopoulos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Kaixin Ni
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Sascha Heinrich
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
4
|
Zhao Z, Liu B, Zhang Z, Fan Y, Wang Y. Anti-Mold Activities of Cationic Oligomeric Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39848698 DOI: 10.1021/acs.langmuir.4c04684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds. Four common molds are chosen as representatives: A. niger, T. viride, C. globosum, and P. funiculosum. The minimum fungicidal concentration (MFC) results indicate that the dynamic covalent surfactants in solution display stronger antimold activity than the surfactants of the same oligomerization degree without imine bonds, and the antimold activity decreases as the oligomerization degree increases. The superior fungicidal efficacy of imine-based surfactants in solution is attributed to their longer hydrophobic chains and benzene rings, which enhance the interactions with mold membranes, causing perforation and membrane disruption. Nonetheless, the higher oligomerization degree reduces antimold effectiveness due to the formation of overly stable aggregates, which lower the concentration of free molecular monomers released from aggregates and may accumulate on mold spore membranes. However, on fabric surfaces, the surfactants with a higher oligomerization degree show stronger antimold performance. The multiple hydrophobic chains and cationic headgroups result in greater surfactant adsorption and stronger antimildew activity. Moreover, the reversibility of the imine-based surfactants plays a significant role in reducing the likelihood of resistance. This work is helpful to construct antimicrobial agents with broad-spectrum activity and a weak resistance potential.
Collapse
Affiliation(s)
- Zeyu Zhao
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Liu
- Zhejiang Tsaihua Tech. Co., Ltd, Shaoxing 312080, P. R. China
| | - Ziqi Zhang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaxun Fan
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and School of Nano Science and Technology, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and School of Nano Science and Technology, University of Science and Technology of China, Suzhou 215123, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Chen H, Feng D, Wei F, Guo F, Cheetham AK. Hydrogen-Bond-Regulated Mechanochemical Synthesis of Covalent Organic Frameworks: Cocrystal Precursor Strategy for Confined Assembly. Angew Chem Int Ed Engl 2025; 64:e202415454. [PMID: 39377350 DOI: 10.1002/anie.202415454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
Two-dimensional imine covalent organic frameworks (2D imine-COFs) are crystalline porous materials with broad application prospects. Despite the efforts into their design and synthesis, the mechanisms of their formation are still not fully understood. Herein, a one-pot two-step mechanochemical cocrystal precursor synthetic strategy is developed for efficient construction of 2D imine-COFs. The mechanistic investigation demonstrated that the cocrystal precursors of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT) and p-toluenesulphonic acid (PTSA) sufficiently regulate the crystalline structure of COF. Evidenced by characterizations and theoretical studies, a helical hydrogen-bond network was constructed by the N-H⋅⋅⋅O supramolecular synthons between amino and sulfonic groups in TAPT-PTSA, demonstrating the role of cocrystals in promoting the organized stacking of interlayer π-π interactions, layer arrangement, and interlayer spacing, thus facilitating the orderly assembly of COFs. Moreover, the protonation degree of TAPT amines, which tuned nucleophilic directionality, enabled the sequential progression of intra- and interlayer imine condensation reactions, inhibiting the formation of amorphous polymers. The transformation from cocrystal precursors to COFs was achieved through comprehensive control of hydrogen bond and covalent bond sites. This work significantly advances the concept of hydrogen-bond-regulated COF assembly and its mechanochemical method in the design and synthesis of 2D imine-COFs, further elucidating the mechanistic aspects of their mechanochemical synthesis.
Collapse
Affiliation(s)
- Hongguang Chen
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Daming Feng
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Fengxia Wei
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis 08-03, Singapore, 138634, Singapore
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
6
|
Tian W, Wang J, Jin Y, Cheng Y, Yan K, Hu C, Chen C, Wang B, Wang Z, Yuan L. Initiator-Free Thiol-Aldehyde Photo Polycondensation. Angew Chem Int Ed Engl 2025:e202421231. [PMID: 39745149 DOI: 10.1002/anie.202421231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 01/15/2025]
Abstract
Traditional photopolymerizations generally require an initiator for initiating the polymerization while few cases have created degradable chemical bonds. Moreover, the migration instability and cytotoxicity of photo initiators are posing issues to human health and the environment. In this work, we discovered an initiator-free photo polycondensation system (IFPPC) between polymercaptans and aldehyde monomers, producing elastic and high strength plastic materials with exchangeable and degradable dithioacetal groups. IFPPC proceeds through a radical mechanism and is applicable in producing linear polymers and crosslinked networks. Nano-composites can also be obtained via an organic solvent-free Pickering emulsion polymerization using cellulose nanofibers as the stabilizer. The dithioacetal groups afford excellent stability under hydrolytic conditions and repeated thermal processing of cross-linked polymers, while their cleavage in aqueous solution of salts (silver nitrate, zinc iodide, copper bromide, etc.) results in fast degradation for recovering the aldehyde monomer. This is a successful demonstration of producing recyclable and degradable plastics through photo irradiation while avoiding the problematic issues of photo initiators.
Collapse
Affiliation(s)
- Wangmao Tian
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Wang
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Yu Jin
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Yaming Cheng
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Kangle Yan
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Chengcheng Hu
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Cheng Chen
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Baoxia Wang
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Zhongkai Wang
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| | - Liang Yuan
- Department of Materials and Chemistry, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
7
|
Dağlar Ö, Türel T, Pantazidis C, Tomović Ž. Chemical and Solvent-Based Recycling of DGEBA-Based Epoxy Thermoset and Carbon-Fiber Reinforced Epoxy Composite Utilizing Imine-Containing Secondary Amine Hardener. Macromol Rapid Commun 2025; 46:e2400678. [PMID: 39520299 DOI: 10.1002/marc.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Epoxy systems are essential in numerous industrial applications due to their exceptional mechanical properties, thermal stability, and chemical resistance. Yet, recycling epoxy networks and reinforcing materials in epoxy composites remains challenging, raising environmental concerns. The critical challenge is the recovery of well-defined molecules upon depolymerization. To address these issues, an innovative strategy is developed utilizing imine-containing secondary amine hardener (M1). The reaction of M1 with DGEBA produced high-performance epoxy thermoset P1, which exhibits Young's modulus of 2.18 GPa and tensile strength of 63.4 MPa, and excellent stability in neutral aqueous conditions. Upon carbon-fiber reinforcement, Young's modulus and tensile strength are significantly elevated to 10.99 GPa and 328.3 MPa, respectively. The reactive secondary amine functionalities enabled the tailored network to display a well-defined growth pattern, yielding only well-defined molecules and intact carbon fibers upon acidic depolymerization. Consequently, the recycled polymers retained properties identical to those of P1. Notably, it is discovered that despite the cross-linked nature of the epoxy networks, complete dissolution in dichloromethane facilitated straightforward solvent-based recycling, allowing the recovery of undamaged carbon fibers and an epoxy thermoset with properties matching the virgin material. Presented novel monomer design and approach showcased two important and efficient recycling options for epoxy systems.
Collapse
Affiliation(s)
- Özgün Dağlar
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Tankut Türel
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Christos Pantazidis
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Željko Tomović
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
8
|
Wang W, Li C, Wang W, Qiu Y, Liu H, Lu J, Zhan Y, Yan L, Ding Y. Modular synthesis of triphenylphosphine-derived cage ligands for rhodium-catalyzed hydroformylation applications. Dalton Trans 2024; 54:207-214. [PMID: 39529515 DOI: 10.1039/d4dt02627f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Four new triphenylphosphine-derived cage ligands were modularly synthesized via dynamic imine chemistry (DIC), and their absolute structures were characterized by single crystal X-ray diffraction (SXRD), nuclear magnetic resonance (NMR) and high resolution mass spectroscopy (HRMS). In contrast to small-molecule analogues, cage ligands demonstrate superior activity and selectivity. The Rh/Cage-L2 catalyst exhibits remarkable performance with an aldehyde selectivity of 89%, accompanied by a TOF value of 2665 h-1 and an l/b ratio of 2.60, thereby showcasing leading activity, chemical selectivity, and regioselectivity in the realm of homogeneous catalysts that rely on triphenylphosphine ligands. The reason for the formation of a higher l/b ratio, with a 3.84 kJ mol-1 difference in the energy of the rate-determining step, has been explained through density functional theory (DFT) calculations. In addition, a Janus-type PPh3-Au complex has been discovered during the study of the coordination of cage ligands, offering partial corroboration for the single coordination mechanism of these cage ligands. The large steric hindrance effect of cage ligands is believed to play a pivotal role in the hydroformylation reaction. This work highlights the potential application of cage ligands and inspires future efforts in the search of highly selective and efficient organometallic catalysts.
Collapse
Affiliation(s)
- Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Cunyao Li
- Dalian National Laboratory for Clean Energy and State Key Laboratory of catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wenhao Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Yuqin Qiu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Hongguang Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jinlong Lu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Yizhou Zhan
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Li Yan
- Dalian National Laboratory for Clean Energy and State Key Laboratory of catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy and State Key Laboratory of catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
9
|
Kroonen CCE, Hinaut A, D'Addio A, Prescimone A, Häussinger D, Navarro‐Marín G, Fuhr O, Fenske D, Meyer E, Mayor M. Toward Molecular Textiles: Synthesis and Characterization of Molecular Patches. Chemistry 2024; 30:e202402866. [PMID: 39325654 PMCID: PMC11632409 DOI: 10.1002/chem.202402866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
This works describes a new step into the assembly of molecular textiles by the use of covalent templating. To establish a well-founded base and to tackle pre-mature obstacles, expected during the fabrication of the desired 2D-material, we opted to investigate the in-solution synthesis of molecular patches e. g. cut-outs of a textile. A bi-functional cross-shaped monomer was designed, synthesized and was in-detail characterized by means of 1H-NMR and chiro-optical spectroscopy. In addition, x-ray structure crystallography was used to assess the absolute configuration. The monomer was used in an in-solution oligomerization to assemble the molecular patches via imine condensation, which revealed the formation of predominately dimeric patches. The imine-oligomer mixtures were further analyzed by reduction and cleaved to investigate the conditions required post mono-layer assembly. All reaction stages were followed by FT-IR and 1H-NMR analysis. Finally, we address the adsorption of the cross-shaped monomer onto a Au(111) surface, via high vacuum electrospray deposition. The subsequent annealing of the interface induced the on-surface imine condensation reaction, leading to unidimensional oligomers co-adsorbed with clusters of cyclic-dimers. Nc-AFM analysis revealed the tridimensional molecular structures, and together with electrospray deposition technique showed to be a promising pathway to investigate potential monomer candidates.
Collapse
Affiliation(s)
- Camiel C. E. Kroonen
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Antoine Hinaut
- Department of PhysicsUniversity of BaselKlingelbergstrasse 824056BaselSwitzerland
| | - Adriano D'Addio
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | | | - Daniel Häussinger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Gema Navarro‐Marín
- Department of PhysicsUniversity of BaselKlingelbergstrasse 824056BaselSwitzerland
| | - Olaf Fuhr
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021Karlsruhe Eggenstein-Leopoldshafen,Germany
| | - Dieter Fenske
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021Karlsruhe Eggenstein-Leopoldshafen,Germany
| | - Ernst Meyer
- Department of PhysicsUniversity of BaselKlingelbergstrasse 824056BaselSwitzerland
| | - Marcel Mayor
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021Karlsruhe Eggenstein-Leopoldshafen,Germany
- Lehn Institute of Functional Materials(LIFM)School of ChemistrySun Yat-Sen University (SYSU)Guangzhou510275P.R. of China
| |
Collapse
|
10
|
Yu Z, Liu Y, Zhou X, Fang Y, Tang Z, Zhu J, Zhang J. Closed-Loop Recyclable and Extrusion Reprocessable Thermosets Enabled by Guanylthiourea Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410773. [PMID: 39556722 DOI: 10.1002/advs.202410773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Plastic recycling is a critical step toward improving waste management and achieving economic recycling. Here, a thermoset crosslinked by guanythiourea structure (GTUH network) is reported, that addresses the recycling issue of thermosets by serial hybridization of thiourea and guanidine urea. The dual dissociative dynamic exchange reaction of guanamine urea and thiourea, combined with non-covalent hydrogen bonding interactions, endows the network with rapid relaxation ability. GTUH networks, in particular, can be recycled through continuous extrusion processing due to multiple reversible mechanisms, as opposed to hot pressing alone. Even if reprocessed by hot pressing, only 5 min at 140 °C and 10 MPa are required. The oxidation enhancement mechanism of thiourea contributes to maintaining or even improving the mechanical properties of the recycled network. Moreover, the dynamic reactions of guanythiourea structure allow for closed-loop chemical recycling of the network. Research into recyclable carbon fiber-reinforced composites indicates promising potential applications for this material in the circular economy and resources.
Collapse
Affiliation(s)
- Zhen Yu
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xiangyu Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yajin Fang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhaobin Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Junping Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Liu Q, Huang Y, Zhou X, Fernández I, Xiong Y. Visible Light-Mediated [4+2] Annulation of Silylimines with Olefins to 1-Aminotetralins Enabled by Diradical Hydrogen Atom Transfer of C-H Bonds. Angew Chem Int Ed Engl 2024:e202421464. [PMID: 39601644 DOI: 10.1002/anie.202421464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
A facile photochemical, one-pot synthesis of highly functionalized 1-aminotetralins derivatives (>70 examples) from readily accessible o-alkyl and o-formyl aryl silylimines with olefins is described. A diradical-mediated hydrogen atom transfer (DHAT) of primary, secondary, and tertiary C(sp3)-H bonds of o-alkyl arylsilylimines and C(sp2)-H bonds of o-formyl arylsilylimines enabled a [4+2] annulation with olefins in excellent diastereoselectivity. This was accomplished upon irradiation at λ = 420 nm in the presence of thioxanthen-9-one (10 mol %) as the sensitizer via energy transfer. Moreover, sulfur-substituted o-alkyl silylimines can undergo such photochemical process in the absence of an external photosensitizer. This effective protocol is compatible with a variety of functional groups and can be applied to the modification of bioactive molecules. Based on mechanistic evidences and computational studies, it is suggested that the silyl substituent enables an efficient energy transfer leading to the formation of a key C,N-diradical and subsequent [4+2]-cyclization was supported by a better molecular orbital matching between the HSOMO of the 1,4-diradical intermediate and the LUMO of the olefins. Thus, upon irradiation, the excited silylimine unlocks a carbon-to-nitrogen DHAT and subsequent [4+2] cyclization that allows the divergent functionalization of benzylic C(sp3)-H bonds and C(sp2)-H bonds.
Collapse
Affiliation(s)
- Qian Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovacion en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yang Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
12
|
Jadhav T, Dhokale B, Saeed ZM, Hadjichristidis N, Mohamed S. Dynamic Covalent Chemistry of Enamine-Ones: Exploring Tunable Reactivity in Vitrimeric Polymers and Covalent Organic Frameworks. CHEMSUSCHEM 2024; 17:e202400356. [PMID: 38842466 PMCID: PMC11587689 DOI: 10.1002/cssc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Dynamic covalent chemistry (DCC) has revolutionized the field of polymer science by offering new opportunities for the synthesis, processability, and recyclability of polymers as well as in the development of new materials with interesting properties such as vitrimers and covalent organic frameworks (COFs). Many DCC linkages have been explored for this purpose, but recently, enamine-ones have proven to be promising dynamic linkages because of their facile reversible transamination reactions under thermodynamic control. Their high stability, stimuli-responsive properties, and tunable kinetics make them promising dynamic cross-linkers in network polymers. Given the rapid developments in the field in recent years, this review provides a critical and up-to-date overview of recent developments in enamine-one chemistry, including factors that control their dynamics. The focus of the review will be on the utility of enamine-ones in designing a variety of processable and self-healable polymers with important applications in vitrimers and recyclable closed-loop polymers. The use of enamine-one linkages in crystalline polymers, known as COFs and their applications are also summarized. Finally, we provide an outlook for future developments in this field.
Collapse
Affiliation(s)
- Thaksen Jadhav
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Bhausaheb Dhokale
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Department of ChemistryUniversity of WyomingLaramieWyoming 82071United States of America
| | - Zeinab M. Saeed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Nikos Hadjichristidis
- Chemistry ProgramKAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Sharmarke Mohamed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| |
Collapse
|
13
|
Ovalle M, Stindt CN, Feringa BL. Light, Switch, Action! The Influence of Geometrical Photoisomerization in an Adaptive Self-Assembled System. J Am Chem Soc 2024; 146:31892-31900. [PMID: 39500717 PMCID: PMC11583216 DOI: 10.1021/jacs.4c11206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The ubiquitous ability of natural dynamic nanostructures to adapt to environmental changes is a highly desirable property for chemical systems, particularly in the development of complex matter, molecular machines, and life-like materials. Designing such systems is challenging due to the generation of complex mixtures with responses that are difficult to predict, characterize, and diversify. Here, we navigate between self-assembled architectures using light by operating an intrinsic photoswitchable building block that governs the state of the system. When complementary units are present, the photoswitch determines the predominant architecture, reversibly adapting between the cage and macrocycles, including (otherwise inaccessible) higher-energy assemblies. Our study showcases this concept with seven different transformations, offering an unprecedented degree of control, diversification, and adaptation by self-selecting complementary units. These findings could enable applications of on-demand dissipative macrocycles based on dynamic bonds. We also envision different transient nanostructures, e.g., reticular and polymeric materials, being explored by fine-tuning the nature of the complementary unit.
Collapse
Affiliation(s)
- Marco Ovalle
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| |
Collapse
|
14
|
Ochonma C, Francis VS, Biswas SK, Gavvalapalli N. Advancements in π-conjugated polymers: harnessing cycloalkyl straps for high-performance π-conjugated materials. Chem Commun (Camb) 2024; 60:13653-13666. [PMID: 39492725 DOI: 10.1039/d4cc03799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Pendant alkyl chains are widely used to successfully obtain a wide variety of soluble linear 1D π-conjugated polymers. Over the past several decades, a wide variety of π-conjugated polymers have been synthesized to realize the desired properties and improve the performance of organic electronic devices. However, this strategy is not suitable for generating soluble 2D-π-conjugated materials, including ladder polymers, nanoribbons, and 2D-π-conjugated polymers, due to strong van der Waals interactions between the ribbons and sheets. The drive to synthesize higher dimensional polymers and to enhance polymers' properties has spurred the exploration of a novel direction in materials chemistry-the synthesis of unconventional monomers and polymers. The Gavvalapalli research group has developed and used cycloalkyl straps containing aryl building blocks for the synthesis of conjugated polymers. These cycloalkyl straps, positioned either above or below the π-conjugation plane, have been shown to directly control the π-π interactions between the polymer chains. We have demonstrated that π-face masking cycloalkyl straps hinder interchain π-π interactions. The first part of this review article highlights the use of cycloalkyl straps for the synthesis of higher dimensional π-conjugated polymers. In this section, we discuss the synthesis of 2D-H-mers, dispersible hyperbranched π-conjugated polymers, and conjugated porous polymers without the pendant solubilizing chains. The second part of the feature article highlights how the cycloalkyl straps can be used to gain control over polymer-acceptor interactions, including the interaction strength and the location of the acceptor along the polymer backbone. We conclude the article with the future outlook on cycloalkyl strap-containing building blocks in the world of conjugated polymers.
Collapse
Affiliation(s)
- Charles Ochonma
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Victor S Francis
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Sayan Kumar Biswas
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Nagarjuna Gavvalapalli
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| |
Collapse
|
15
|
Kurz H, Teeuwen PCP, Ronson TK, Hoffman JB, Pracht P, Wales DJ, Nitschke JR. Double-Bridging Increases the Stability of Zinc(II) Metal-Organic Cages. J Am Chem Soc 2024; 146:30958-30965. [PMID: 39496078 PMCID: PMC11565643 DOI: 10.1021/jacs.4c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024]
Abstract
A key feature of coordination cages is the dynamic nature of their coordinative bonds, which facilitates the synthesis of complex polyhedral structures and their post-assembly modification. However, this dynamic nature can limit cage stability. Increasing cage robustness is important for real-world use cases. Here we introduce a double-bridging strategy to increase cage stability, where designed pairs of bifunctional subcomponents combine to generate rectangular tetratopic ligands within pseudo-cubic Zn8L6 cages. These cages withstand transmetalation, the addition of competing ligands, and nucleophilic imines, under conditions where their single-bridged congeners decompose. Our approach not only increases the stability and robustness of the cages while maintaining their polyhedral structure, but also enables the incorporation of additional functional units in proximity to the cavity. The double-bridging strategy also facilitates the synthesis of larger cages, which are inaccessible as single-bridged congeners.
Collapse
Affiliation(s)
- Hannah Kurz
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paula C. P. Teeuwen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jack B. Hoffman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - David J. Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
16
|
Engelen S, Daelman B, Winne JM, Du Prez FE. Activated Phenyl Ester Vitrimers. Macromol Rapid Commun 2024:e2400790. [PMID: 39536338 DOI: 10.1002/marc.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Aromatic esters are amongst the oldest known chemical motifs that allow for thermal (re)processing of thermosetting polymers. Moreover, phenyl esters are generally known as activated esters that do not require a catalyst to undergo acyl transfer reactions. Even though dynamic aromatic esters find applications in commercialized thermoset formulations, all-aromatic esters have found limited use so far in the design of covalent adaptable networks (CAN) as a result of their high glass transition temperature (Tg) and specific curing process. Here, a strategy to include partly aromatic esters as dynamic cross-links inside low Tg (-40 °C) thermosetting formulations, using aliphatic esters derived from para-hydroxybenzoic acid, which serves as a highly activated phenol or as a reactive "phenylogous anhydride" is reported. A small molecule study shows that the activated phenyl ester bonds can readily exchange with free phenol moieties at 200 °C under catalyst-free conditions, while the addition of a catalyst allows for a faster exchange. Robust and hydrophobic polymer networks are conveniently prepared via rapid thiol-ene UV-curing of unsaturated phenol esters. The obtained networks show high thermal stability (350 °C), fast processability, good water resistance, and low creep up to 120 °C, thus showing good promise as a platform for CAN.
Collapse
Affiliation(s)
- Stéphanie Engelen
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Bram Daelman
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
17
|
Pu ZF, Wen QL, Wu BC, Li CH, Li RS, Ling J, Cao Q. Synthesis of shape-controlled covalent organic frameworks for light scattering detection of iron and chromium ions. Talanta 2024; 279:126682. [PMID: 39116734 DOI: 10.1016/j.talanta.2024.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Fabricating covalent organic frameworks with different morphologies based on the same structural motifs is both interesting and challenging. Here, a TTA-TFP-COF was synthesized by both solvothermal and room temperature methods, with 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (TTA) and 1,3,5-tris(4-formylphenyl)-benzene (TFP) as raw material. Using different synthesis conditions and adding aniline and benzaldehyde as regulators in the synthesis process, we found that these processes could slow down the reaction speed, increase the exchange and metathesis reactions of dynamic reversible reactions, and improve the reversibility of the reaction system. Thus, controllable synthesis of TTA-TFP-COF with different morphologies, including micro-particles, hollow tubes with controllable diameters, and micro-flowers was achieved. Our further study found that metal ions, Fe3+ and Cr3+ ions, could coordinate with N and O in TTA-TFP-COF and partially destroy the structure of TTA-TFP-COF. The particle size of the TTA-TFP-COF became smaller, thus resulting in the decrease of the light scattering intensity of the COF. An excellent linear relationship exists between the light scattering changes (ΔI) and metal ions concentration (c) from 2.0 to 350.0 μM for Fe3+ and 40.0-800.0 μM for Cr3+, respectively. Thus, rapid and selective analytical methods for detecting metal ions were developed by TTA-TFP-COF here.
Collapse
Affiliation(s)
- Zheng-Fen Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China; School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China
| | - Bi-Chao Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Chun-Hua Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
18
|
Pantazidis C, Wang C, Tomović Ž. High-Performance Organic Aerogels Tailored for Versatile Recycling Approaches: Recycling-Reforming-Upcycling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403931. [PMID: 39128129 PMCID: PMC11579960 DOI: 10.1002/smll.202403931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Organic aerogels are emerging as promising materials due to their versatile properties, rendering them excellent candidates for a variety of applications in the fields of thermal insulation, energy storage, pharmaceuticals, chemical adsorption, and catalysis. However, current aerogel designs rely on cross-linked polymer networks, which lack efficient end-of-use solutions, thereby hindering their overall sustainability. In this study, a facile synthesis of organic aerogels with a unique combination of imine and cyanurate moieties is presented, resulting in high-performance, lightweight insulating materials. The aerogels' structure, ensures mechanical robustness, thermal resistance, and hydrophobicity without additional treatments, crucial for long-term performance. Additionally, in response to the currently unsustainable use of cross-linked polymer materials, the molecular design offers diverse avenues of chemical recycling. These include full depolymerization back into the original monomers, partial network fragmentation producing soluble oligomers that can be promptly employed to fabricate new aerogels, and upcycling of aerogel waste into useful building blocks. This work pioneers a novel approach to material design, emphasizing recyclability as a core feature while maintaining high-performance excellence.
Collapse
Affiliation(s)
- Christos Pantazidis
- Polymer Performance Materials GroupDepartment of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenMB 5600The Netherlands
| | - Chang‐lin Wang
- Polymer Performance Materials GroupDepartment of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenMB 5600The Netherlands
| | - Željko Tomović
- Polymer Performance Materials GroupDepartment of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenMB 5600The Netherlands
| |
Collapse
|
19
|
Andreica BI, Mititelu-Tartau L, Rosca I, Pelin IM, Nicol E, Marin L. Biocompatible hydrogels based on quaternary ammonium salts of chitosan with high antimicrobial activity as biocidal agents for disinfection. Carbohydr Polym 2024; 342:122389. [PMID: 39048229 DOI: 10.1016/j.carbpol.2024.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
The paper reports new hydrogels based on quaternary ammonium salts of chitosan designed as biocidal products. The chitosan derivative was crosslinked with salicylaldehyde via reversible imine bonds and supramolecular self-assemble to give dynamic hydrogels which respond to environmental stimuli. The crosslinking mechanism was demonstrated by 1H NMR and FTIR spectroscopy, and X-ray diffraction and polarized light microscopy. The hydrogel nature, self-healing and thixotropy were proved by rheological investigation and visual observation, and their morphology was assessed by scanning electron microscopy. The relevant properties for application as biocidal products, such as swelling, dissolution, bioadhesiveness, antimicrobial activity and ex-vivo hemocompatibility and in vivo local toxicity and biocompatibility on experimental mice were measured and analyzed in relationship with the imination degree and the influence of each component. It was found that the hydrogels are superabsorbent, have good adhesivity to skin and various surfaces and antimicrobial activity against relevant gram-positive and gram-negative bacteria, while being hemocompatible and biocompatible. Besides, the hydrogels are easily biodegraded in soil. All these properties recommend the studied hydrogels as ecofriendly biocidal agents for living tissues and surfaces, but also open the perspectives of their use as platform for in vivo applications in tissue engineering, wound healing, or drug delivery systems.
Collapse
Affiliation(s)
| | | | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Irina Mihaela Pelin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans, France
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| |
Collapse
|
20
|
Iftime MM, Ailiesei GL, Ailincai D. Tuning Antioxidant Function through Dynamic Design of Chitosan-Based Hydrogels. Gels 2024; 10:655. [PMID: 39451308 PMCID: PMC11507920 DOI: 10.3390/gels10100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Dynamic chitosan-based hydrogels with enhanced antioxidant activity were synthesized through the formation of reversible imine linkages with 5-methoxy-salicylaldehyde. These hydrogels exhibited a porous structure and swelling capacity, influenced by the crosslinking degree, as confirmed by SEM and POM analysis. The dynamic nature of the imine bonds was characterized through NMR, swelling studies in various media, and aldehyde release measurements. The hydrogels demonstrated significantly improved antioxidant activity compared to unmodified chitosan, as evaluated by the DPPH method. This research highlights the potential of developing pH-responsive chitosan-based hydrogels for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Manuela Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
| | - Gabriela Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
| | - Daniela Ailincai
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| |
Collapse
|
21
|
Wu D, Zhang Q, Yin S, Song C, Gu N, Wang D, Cai T, Zhang B. Room-Temperature Single-Phase Synthesis of Semiconducting Metal-Covalent Organic Frameworks With Microenvironment-Tuned Photocatalytic Efficiency. SMALL METHODS 2024:e2401284. [PMID: 39394717 DOI: 10.1002/smtd.202401284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Indexed: 10/14/2024]
Abstract
In order to improve the solubility of metallated monomers and product crystallinity, metal-covalent organic frameworks (MCOFs) are commonly prepared via high-temperature sol-vothermal synthesis. However, it hampers the direct extraction of crystallization evolution information. Exploring facile room-temperature strategies for both synthesizing MCOFs and exploiting the crystallinity mechanism is extremely desired. Herein, by a novel single-phase synthetic strategy, three MCOFs with different microstructure is rapidly prepared based on the Schiff base reaction between planarity-tunable C3v monomers and metallated monomers at room temperature. Based on detailed time-dependent experiments and theoretical calculations, it is found that there is a planarity-tuned and competitive growth relationship between disordered structures and crystal nucleus for the first time. The high planarity of monomers boosts the formation of crystal nucleus and rapid growth, suppressing the forming of amorphous structures. In addition, the microenvironment effect on selective photocatalytic coupling of benzylamine (BA) is investigated. The strong donor-acceptor (D-A) MCOF exhibits efficient photocatalytic activity with a high conversion rate of 99% and high selectivity of 99% in 5 h under the 520 nm light irradiation. This work opens a new pathway to scalable and efficient synthesis of highly crystalline MCOFs.
Collapse
Affiliation(s)
- Dongchuang Wu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Qiongshan Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiyu Yin
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Congying Song
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ning Gu
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Dong Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Cai
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
22
|
Fan X, Zheng J, Yeo JCC, Wang S, Li K, Muiruri JK, Hadjichristidis N, Li Z. Dynamic Covalent Bonds Enabled Carbon Fiber Reinforced Polymers Recyclability and Material Circularity. Angew Chem Int Ed Engl 2024; 63:e202408969. [PMID: 39032118 DOI: 10.1002/anie.202408969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/22/2024]
Abstract
Due to their remarkable features of lightweight, high strength, stiffness, high-temperature resistance, and corrosion resistance, carbon fiber reinforced polymers (CFRPs) are extensively used in sports equipment, vehicles, aircraft, windmill blades, and other sectors. The urging need to develop a resource-saving and environmentally responsible society requires the recycling of CFRPs. Traditional CFRPs, on the other hand, are difficult to recycle due to the permanent covalent crosslinking of polymer matrices. The combination of covalent adaptable networks (CANs) with carbon fibers (CFs) marks a new development path for closed-loop recyclable CFRPs and polymer resins. In this review, we summarize the most recent developments of closed-loop recyclable CFRPs from the unique paradigm of dynamic crosslinking polymers, CANs. These sophisticated materials with diverse functions, oriented towards CFs recycling and resin sustainability, are further categorized into several active domains of dynamic covalent bonds, including ester bonds, imine bonds, disulfide bonds, boronic ester bonds, and acetal linkages, etc. Finally, the possible strategies for the future design of recyclable CFPRs by combining dynamic covalent chemistry innovation with materials interface science are proposed.
Collapse
Affiliation(s)
- Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Jie Zheng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| |
Collapse
|
23
|
Shi M, Luo D, Liu R, Wei J, Guo S, Lu Z, Ni Y. Ultrafast Charge Transfer in a Core-shell CdS@Cu-TCPP-Pt Heterojunction for Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation. Inorg Chem 2024; 63:18233-18241. [PMID: 39291763 DOI: 10.1021/acs.inorgchem.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Photocatalytic selective oxidation of organic substances coupled with hydrogen production is believed to be one of the most favorable pathways to make full use of photogenerated charge carriers. However, this catalytic reaction is often discouraged due to the rapid recombination of photogenerated carriers in practical applications. In this work, a core-shell CdS@Cu-TCPP-Pt nanorod heterojunction was dexterously designed for boosting the photocatalytic dehydrogenation performance of benzylamine. The transient absorption results revealed that the photogenerated electron-holes could be effectively separated by properly matching the energy levels in CdS@Cu-TCPP. Surprisingly, Pt embedded in Cu-TCPP not only provided abundant hydrogen production active sites but also facilitated ultrafast charge transfer, which endowed CdS@Cu-TCPP-Pt with remarkable photocatalytic performances for the coproductions of N-benzylidenebenzylamine (1 mL) with a conversion of 23.48% and H2 (20.75 mmol g-1 h-1) under visible irradiation, far surpassing those of CdS and Cu-TCPP. Obviously, the present work verifies that designing and fabricating a hybrid photocatalyst with high separation efficiency of electron-hole pairs is also a significant avenue for other high-performance cooperative dual-functional photocatalytic reactions.
Collapse
Affiliation(s)
- Manman Shi
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR. China
| | - Dian Luo
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR. China
| | - Rong Liu
- School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR. China
| | - Jieding Wei
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR. China
| | - Saiya Guo
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR. China
| | - Zhou Lu
- School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR. China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, PR. China
| |
Collapse
|
24
|
Kehner RA, Huang W, Bayeh-Romero L. Direct conversion of esters to imines/enamines and applications to polyester waste upcycling. Chem Sci 2024; 15:d4sc05160b. [PMID: 39345774 PMCID: PMC11429160 DOI: 10.1039/d4sc05160b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Semi-reductive transformations of esters remain an underdeveloped but valuable class of functional group interconversions. Here, we describe the development of a highly selective method for the interconversion of esters to imines, enamines, aldehydes or amines through an amine-intercepted zirconocene hydride (ZrH)-catalyzed reduction. This protocol employs an inexpensive zirconium catalyst in combination with hydrosilanes and simple unprotected amines. A variety of aryl, benzylic, and aliphatic esters are directly transformed to imines and enamines in up to 99% yield or aldehydes in up to 84% yield, with little-to-no reduction to the corresponding alcohols. The utility of this method for the direct catalytic chemical upcycling of polyester plastic waste is demonstrated through multiple unprecedented depolymerization transformations. Further, the efficient preparation of nitrogen-containing products is also presented, including single-flask multicomponent reactions and the reductive amination of esters.
Collapse
Affiliation(s)
- Rebecca A Kehner
- Department of Chemistry and Biochemistry, Baylor University One Bear Place 97348 Waco Texas 76798 USA
| | - Weiheng Huang
- Department of Chemistry and Biochemistry, Baylor University One Bear Place 97348 Waco Texas 76798 USA
| | - Liela Bayeh-Romero
- Department of Chemistry and Biochemistry, Baylor University One Bear Place 97348 Waco Texas 76798 USA
| |
Collapse
|
25
|
Wang T, Chen Y, Chen B, Suazo MJ, Purwanto NS, Torkelson JM. Reprocessable, Self-Healing, and Creep-Resistant Covalent Adaptable Network Made from Chain-Growth Monomers with Dynamic Covalent Thionourethane and Disulfide Cross-Links. ACS Macro Lett 2024; 13:1147-1155. [PMID: 39150319 DOI: 10.1021/acsmacrolett.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We synthesized covalent adaptable networks (CANs) made from chain-growth comonomers using nonisocyanate thiourethane chemistry. We derivatized glycidyl methacrylate with cyclic dithiocarbonate (GMA-DTC), did a free-radical polymerization of n-hexyl methacrylate with GMA-DTC to obtain a statistical copolymer with 8 mol % GMA-DTC, and cross-linked it with difunctional amine. The dynamic covalent thionourethane and disulfide bonds lead to CAN reprocessability with full recovery of the cross-link density; the temperature dependence of the rubbery plateau modulus indicates that associative character dominates the dynamic response. The CAN exhibits complete self-healing at 110 °C with tensile property recovery and excellent creep resistance at 90-100 °C. Stress relaxation at 140-170 °C reveals an activation energy of 105 ± 6 kJ/mol, equal to the activation energy (Ea) of the CAN poly(n-hexyl methacrylate) backbone α-relaxation. We hypothesize that CANs with exclusively or predominantly associative dynamics have their stress-relaxation Ea defined by the α-relaxation Ea. This hypothesis is supported by stress relaxation studies on a similar poly(n-lauryl methacrylate)-based CAN.
Collapse
Affiliation(s)
- Tong Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Yixuan Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Boran Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Mathew J Suazo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Nathan S Purwanto
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 United States
| |
Collapse
|
26
|
Gahlot S, Schmitt JL, Chevalier A, Villa M, Roy M, Ceroni P, Lehn JM, Gingras M. "The Sulfur Dance" Around Arenes and Heteroarenes - the Reversible Nature of Nucleophilic Aromatic Substitutions. Chemistry 2024; 30:e202400231. [PMID: 38289151 DOI: 10.1002/chem.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 02/20/2024]
Abstract
We disclose the features of a category of reversible nucleophilic aromatic substitutions in view of their significance and generality in dynamic aromatic chemistry. Exchange of sulfur components surrounding arenes and heteroarenes may occur at 25 °C, in a process that one may call a "sulfur dance". These SNAr systems present their own features, apart from common reversible reactions utilized in dynamic covalent chemistry (DCC). By varying conditions, covalent dynamics may operate to provide libraries of thiaarenes with some selectivity, or conversion of a hexa(thio)benzene asterisk into another one. The reversible nature of SNAr is confirmed by three methods: a convergence of the products distribution in reversible SNAr systems, a related product redistribution between two per(thio)benzenes by using a thiolate promoter, and from kinetic/thermodynamic data. A four-component dynamic covalent system further illustrates the thermodynamically-driven formation of a thiacalix[2]arene[2]pyrimidine by sulfur component exchanges. This work stimulates the implementation of reversible SNAr in aromatic chemistry and in DCC.
Collapse
Affiliation(s)
- Sapna Gahlot
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| | - Jean-Louis Schmitt
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Aline Chevalier
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marco Villa
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Myriam Roy
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, 75005, Paris, France
| | - Paola Ceroni
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| |
Collapse
|
27
|
Ramimoghadam D, Eyckens DJ, Evans RA, Moad G, Holmes S, Simons R. Towards Sustainable Materials: A Review of Acylhydrazone Chemistry for Reversible Polymers. Chemistry 2024; 30:e202401728. [PMID: 38888459 DOI: 10.1002/chem.202401728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Transitioning towards a circular economy, extensive research has focused on dynamic covalent bonds (DCBs) to pave the way for more sustainable materials. These bonds enable debonding and rebonding on demand, as well as facilitating end-of-life recycling. Acylhydrazone/hydrazone chemistry offers a material with high stability under neutral and basic conditions making it a promising candidate for materials research, though the material is susceptible to acid degradation. However, this degradation under acidic conditions can be exploited, making it widely applicable in self-healing and biomedical fields, with potential for reprocessing and recycling. This review highlights studies exploring the reversibility of acylhydrazone/hydrazone bonds in various polymers, altering their properties, and utilizing them in applications such as self-healing, reprocessing, and recycling. The review also focuses on how the mechanical properties are affected by the presence of dynamic linkages, and methods to improve the mechanical performance.
Collapse
Affiliation(s)
- Donya Ramimoghadam
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Daniel J Eyckens
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Richard A Evans
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Graeme Moad
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Susan Holmes
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Ranya Simons
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| |
Collapse
|
28
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
29
|
Scholes AM, Kershaw Cook LJ, Szczypiński FT, Luzyanin KV, Egleston BD, Greenaway RL, Slater AG. Dynamic and solid-state behaviour of bromoisotrianglimine. Chem Sci 2024; 15:d4sc04207g. [PMID: 39149217 PMCID: PMC11320023 DOI: 10.1039/d4sc04207g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024] Open
Abstract
Solid-state materials formed from discrete imine macrocycles have potential in industrial separations, but dynamic behaviour during both synthesis and crystallisation makes them challenging to exploit. Here, we explore opportunities for structural control by investigating the dynamic nature of a C-5 brominated isotrianglimine in solution and under crystallisation conditions. In solution, the equilibrium between the [3 + 3] and the less reported [2 + 2] macrocycle was investigated, and both macrocycles were fully characterised. Solvent templating during crystallisation was used to form new packing motifs for the [3 + 3] macrocycle and a previously unreported [4 + 4] macrocycle. Finally, chiral self-sorting was used to demonstrate how crystallisation conditions can not only influence packing arrangements but also shift the macrocycle equilibrium to yield new structures. This work thus exemplifies three strategies for exploiting dynamic behaviour to form isotrianglimine materials, and highlights the importance of understanding the dynamic behaviour of a system when designing and crystallising functional materials formed using dynamic covalent chemistry.
Collapse
Affiliation(s)
- Abbie M Scholes
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| | - Laurence J Kershaw Cook
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| | - Filip T Szczypiński
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| | - Konstantin V Luzyanin
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| | - Benjamin D Egleston
- Department of Chemistry, Molecular Sciences Research Hub Imperial College London London UK
| | - Rebecca L Greenaway
- Department of Chemistry, Molecular Sciences Research Hub Imperial College London London UK
| | - Anna G Slater
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| |
Collapse
|
30
|
Fang W, Zhang J, Guo M, Zhao Y, Sue ACH. Triphenylamine[3]arenes: Streamlining Synthesis of a Versatile Macrocyclic Platform for Supramolecular Architectures and Functionalities. Angew Chem Int Ed Engl 2024; 63:e202409120. [PMID: 38770884 DOI: 10.1002/anie.202409120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Triphenylamine[3]arenes (TPA[3]s), featuring [16]paracyclophane backbone with alternating carbon and nitrogen bridging atoms, were synthesized through a BF3 ⋅ Et2O-catalyzed cyclization reaction using triphenylamine derivatized monomers and paraformaldehyde. This molecular design yielded a series of TPA[3] macrocycles with high efficiency, with their facile derivatizations also successfully demonstrated. On account of the strong electron-donating properties of the TPA moieties, these TPA[3]s exhibit remarkable delayed fluorescence, and possess a significant affinity for iodine. Furthermore, their inherent three-fold symmetry rendered TPA[3]s as novel building blocks for the construction of extended frameworks and molecular cages. This advancement expands the versatility of discrete macrocycles into complex architectures, enhancing their applicability across a broad spectrum of applications.
Collapse
Affiliation(s)
- Wangjian Fang
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian Province, 361005, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jianyu Zhang
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian Province, 361005, P. R. China
| |
Collapse
|
31
|
Shreeraj G, Tiwari M, Dugyala VR, Patra A. Unraveling Early-Stage Dynamics of Cage-to-Covalent Organic Framework Transformation at Liquid-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16419-16429. [PMID: 39042836 DOI: 10.1021/acs.langmuir.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Postsynthetic linker exchange (PLE) has emerged as an emerging synthetic strategy for constructing high-quality covalent organic frameworks (COFs) from preassembled entities such as linear polymers, amorphous networks, COFs, and porous organic cages by using the principles of dynamic covalent chemistry. The PLE strategy has recently been extended at the liquid-liquid interface to fabricate highly crystalline two-dimensional (2D)-COF membranes at a faster time scale (24 h). Examining the early stages of the interfacial PLE dynamics becomes essential to understanding the expedited COF growth process. In this regard, pendant drop tensiometry has been employed to probe the initial reaction dynamics of the imine cage-to-COF transformation through dynamic interfacial tension (IFT) measurements. The contrasting trends in IFT profiles between PLE-mediated (from cage) and direct COF synthesis (from parent monomers) are in qualitative agreement with the kinetics of bulk-scale interfacial polymerizations. Further, the distinct early-stage interfacial behaviors between the diverse synthetic routes have been experimentally demonstrated using tensiometry, optical microscopy, electron microscopy, and powder X-ray diffraction (PXRD) analysis. The pivotal role of in situ generated imine intermediates (ImIs) and the phenomenon of spontaneous emulsification toward accelerated interfacial COF growth process was delineated. The current study on deploying the pendant drop tensiometric technique to examine early-stage interfacial polymerization dynamics opens up a gripping avenue for mechanistic exploration in PLE-based COF synthesis. The generality of the developed methodology to study the initial COF growth kinetics was extended to a new interfacial PLE-mediated cage-to-COF transformation.
Collapse
Affiliation(s)
- G Shreeraj
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Madhvi Tiwari
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Venkateshwar Rao Dugyala
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
32
|
Yu Z, Li Q, Liu Y, Tian S, Chen W, Han Y, Tang Z, Zhang J. Malleable, Ultrastrong Antibacterial Thermosets Enabled by Guanidine Urea Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402891. [PMID: 38868926 PMCID: PMC11321644 DOI: 10.1002/advs.202402891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Dynamic covalent polymers (DCPs) that strike a balance between high performance and rapid reconfiguration have been a challenging task. For this purpose, a solution is proposed in the form of a new dynamic covalent supramolecular motif-guanidine urea structure (GUAs). GUAs contain complex and diverse chemical structures as well as unique bonding characteristics, allowing guanidine urea supramolecular polymers to demonstrate advanced physical properties. Noncovalent interaction aggregates (NIAs) have been confirmed to form in GUA-DCPs through multistage H-bonding and π-π stacking, resulting in an extremely high Young's modulus of 14 GPa, suggesting remarkable mechanical strength. Additionally, guanamine urea linkages in GUAs, a new type of dynamic covalent bond, provide resins with excellent malleability and reprocessability. Guanamine urea metathesis is validated using small molecule model compounds, and the temperature dependent infrared and rheological behavior of GUA-DCPs following the dissociative exchange mechanism. Moreover, the inherent photodynamic antibacterial properties are extensively verified by antibacterial experiments. Even after undergoing three reprocessing cycles, the antibacterial rate of GUA-DCPs remains above 99% after 24 h, highlighting their long-lasting antibacterial effectiveness. GUA-DCPs with dynamic nature, tuneable composition, and unique combination of properties make them promising candidates for various technological advancements.
Collapse
Affiliation(s)
- Zhen Yu
- Center of Eco‐Material and Green ChemistryLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qiong Li
- Department of ChemistryThe University of Hong KongHong Kong999077P. R. China
| | - Yanlin Liu
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Shu Tian
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Wanding Chen
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Yingying Han
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Zhaobin Tang
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Junping Zhang
- Center of Eco‐Material and Green ChemistryLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
33
|
Xu J, Feng G, Ao D, Li X, Li M, Lei S, Wang Y. Functional Covalent Organic Frameworks' Microspheres Synthesized by Self-Limited Dynamic Linker Exchange for Stationary Phases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406256. [PMID: 38897184 DOI: 10.1002/adma.202406256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Synthesizing uniform functional covalent organic framework (COF) microspheres is the prerequisite of applying COFs as novel stationary phases for liquid chromatography. However, the synthesis of functionalized COF microspheres is challenging due to the difficulty in maintaining microspheric morphology when conferring functions. Here, a facile and universal "self-limited dynamic linker exchange" strategy is developed to achieve surface functionalization of uniform COF microspheres. Six different types of COF microspheres are constructed, showing the universality and superiority of the strategy. The library of COF microspheres' stationary phases can be further enriched on demand by varying different functional building blocks. The "self-limited dynamic linker exchange" is attributed to the result of a delicate balance of reaction thermodynamics and molecular diffusion energy barrier. As a demonstration, the chiral functional COF microspheres are used as stationary phases of chiral chromatography and realized effective enantioseparation.
Collapse
Affiliation(s)
- Jiabi Xu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Guangyuan Feng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Dana Ao
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Xiaojuan Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Mengqian Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Shengbin Lei
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yong Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
34
|
Zhang S, Yi J, Chen J, Li Y, Liu B, Lu Z. Weldable, Reprocessable, and Water-resistant Polybenzoxazine Vitrimer Crosslinked by Dynamic Imine Bonds. CHEMSUSCHEM 2024; 17:e202301708. [PMID: 38436577 DOI: 10.1002/cssc.202301708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Traditional polybenzoxazine thermosets cannot be reprocessed or recycled due to the permanent crosslinked networks. The dynamic exchangeable characteristics of imine bonds can impart the networks with reprocessabilities and recyclabilities. This study reported a weldable, reprocessable, and water-resistant polybenzoxazine vitrimer (C-ABZ) crosslinked by dynamic imine bonds. It was synthesized through a condensation reaction between an aldehyde-containing benzoxazine oligomer (O-ABZ) and 1,12-dodecanediamine. The resulting C-ABZ was able to be welded and reprocessed due to the dynamic exchange of imine bonds. The tensile strengths of the welded C-ABZ and the reprocessed C-ABZ after three cycles of hot-pressing were 76.7, 81.3, 70.8, and 58.1 Mpa, with corresponding tensile strength recovery ratios of 74.1 %, 78.6 %, 68.4 %, and 56.1 %, respectively. Furthermore, the polybenzoxazine backbone significantly improved the water resistance of the imine bonds. After immersing in water for 30 days at room temperature, the weight gain of C-ABZ was less than 1 % with corresponding tensile strength and tensile strength retention ratio of 59.5 Mpa and 57.5 %, respectively. Although the heat resistance of C-ABZ decreased slightly with increased hot-pressing cycles, a glass transition temperature (Tg, tanδ) of 150 °C was retained after the third hot-pressing. Overall, these findings demonstrate that the C-ABZ possesses excellent comprehensive performances.
Collapse
Affiliation(s)
- Sujuan Zhang
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jianjun Yi
- Institute of Lanzhou Petrochemical Company PetroChina, Lanzhou, 730060, P. R. China
| | - Jiming Chen
- Institute of Lanzhou Petrochemical Company PetroChina, Lanzhou, 730060, P. R. China
| | - Yong Li
- Institute of Lanzhou Petrochemical Company PetroChina, Lanzhou, 730060, P. R. China
| | - Baoliang Liu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zaijun Lu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
35
|
Mahmoudi C, Tahraoui Douma N, Mahmoudi H, Iurciuc (Tincu) CE, Popa M. Hydrogels Based on Proteins Cross-Linked with Carbonyl Derivatives of Polysaccharides, with Biomedical Applications. Int J Mol Sci 2024; 25:7839. [PMID: 39063081 PMCID: PMC11277554 DOI: 10.3390/ijms25147839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adding carbonyl groups into the hydrogel matrix improves the stability and biocompatibility of the hydrogels, making them suitable for different biomedical applications. In this review article, we will discuss the use of hydrogels based on polysaccharides modified by oxidation, with particular attention paid to the introduction of carbonyl groups. These hydrogels have been developed for several applications in tissue engineering, drug delivery, and wound healing. The review article discusses the mechanism by which oxidized polysaccharides can introduce carbonyl groups, leading to the development of hydrogels through cross-linking with proteins. These hydrogels have tunable mechanical properties and improved biocompatibility. Hydrogels have dynamic properties that make them promising biomaterials for various biomedical applications. This paper comprehensively analyzes hydrogels based on cross-linked proteins with carbonyl groups derived from oxidized polysaccharides, including microparticles, nanoparticles, and films. The applications of these hydrogels in tissue engineering, drug delivery, and wound healing are also discussed.
Collapse
Affiliation(s)
- Chahrazed Mahmoudi
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Naïma Tahraoui Douma
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
| | - Hacene Mahmoudi
- National Higher School of Nanosciences and Nanotechnologies, Algiers 16000, Algeria;
| | - Camelia Elena Iurciuc (Tincu)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| |
Collapse
|
36
|
Dhar M, Sarkar D, Das A, Rahaman SKA, Ghosh D, Manna U. 'Rewritable' and 'liquid-specific' recognizable wettability pattern. Nat Commun 2024; 15:5838. [PMID: 38992010 PMCID: PMC11239882 DOI: 10.1038/s41467-024-49807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Bio-inspired surfaces with wettability patterns display a unique ability for liquid manipulations. Sacrificing anti-wetting property for confining liquids irrespective of their surface tension (γLV), remains a widely accepted basis for developing wettability patterns. In contrast, we introduce a 'liquid-specific' wettability pattern through selectively sacrificing the slippery property against only low γLV (<30 mN m-1) liquids. This design includes a chemically reactive crystalline network of phase-transitioning polymer, which displays an effortless sliding of both low and high γLV liquids. Upon its strategic chemical modification, droplets of low γLV liquids fail to slide, rather spill arbitrarily on the tilted interface. In contrast, droplets of high γLV liquids continue to slide on the same modified interface. Interestingly, the phase-transition driven rearrangement of crystalline network allows to revert the slippery property against low γLV liquids. Here, we report a 'rewritable' and 'liquid-specific' wettability pattern for high throughput screening, separating, and remoulding non-aqueous liquids.
Collapse
Affiliation(s)
- Manideepa Dhar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Debasmita Sarkar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - S K Asif Rahaman
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Dibyendu Ghosh
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
- Jyoti and Bhupat Mehta School of Health Science & Technology, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
37
|
Roh S, Nam Y, Nguyen MTN, Han JH, Lee JS. Dynamic Covalent Bond-Based Polymer Chains Operating Reversibly with Temperature Changes. Molecules 2024; 29:3261. [PMID: 39064840 PMCID: PMC11279090 DOI: 10.3390/molecules29143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Dynamic bonds can facilitate reversible formation and dissociation of connections in response to external stimuli, endowing materials with shape memory and self-healing capabilities. Temperature is an external stimulus that can be easily controlled through heat. Dynamic covalent bonds in response to temperature can reversibly connect, exchange, and convert chains in the polymer. In this review, we introduce dynamic covalent bonds that operate without catalysts in various temperature ranges. The basic bonding mechanism and the kinetics are examined to understand dynamic covalent chemistry reversibly performed by equilibrium control. Furthermore, a recent synthesis method that implements dynamic covalent coupling based on various polymers is introduced. Dynamic covalent bonds that operate depending on temperature can be applied and expand the use of polymers, providing predictions for the development of future smart materials.
Collapse
Affiliation(s)
| | | | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.R.); (Y.N.); (M.T.N.N.); (J.-H.H.)
| |
Collapse
|
38
|
Esteve F, Rieu T, Lehn JM. Key structural features to favour imines over hydrates in water: pyridoxal phosphate as a muse. Chem Sci 2024; 15:10408-10415. [PMID: 38994419 PMCID: PMC11234862 DOI: 10.1039/d4sc02206h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Imination reactions in water represent a challenge not only because of the high propensity of imines to be hydrolysed but also as a result of the competing hydrate formation through H2O addition to the aldehyde. In the present work we report a successful approach that allows for favouring imitation reactions while silencing hydrate formation. Such remarkable reactivity and selectivity can be attained by fine-tuning the electronic and steric structural features of the ortho-substituents of the carbonyl groups. It resulted from studying the structure-reactivity relationships in a series of condensation reactions between different amines and aldehydes, comparing the results to the ones obtained in the presence of the biologically-relevant pyridoxal phosphate (PLP). The key role of negatively-charged and sterically-crowding units (i.e., sulfonate groups) in disfavouring hydrate formation was corroborated by DFT and steric-hindrance calculations. Furthermore, the best-performing aldehyde leads to higher imine yields, selectivity and stability than those of PLP itself, allowing for the inhibition of a PLP-dependent enzyme (transaminase) through dynamic aldimine exchange. These results will increase the applicability of imine-based dynamic covalent chemistry (DCvC) under physiological conditions and will pave the way for the design of new carbonyl derivatives that might be used in the dynamic modification of biomolecules.
Collapse
Affiliation(s)
- Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| | - Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| |
Collapse
|
39
|
Charland-Martin A, Collier GS. Understanding Degradation Dynamics of Azomethine-containing Conjugated Polymers. Macromolecules 2024; 57:6146-6155. [PMID: 39005947 PMCID: PMC11238594 DOI: 10.1021/acs.macromol.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Understanding the influence of chemical environments on the degradation properties of conjugated polymers is an important task for the continued development of sustainable materials with potential utility in biomedical and optoelectronic applications. Azomethine-containing polymers were synthesized via palladium-catalyzed direct arylation polymerization (DArP) and used to study fundamental degradation trends upon exposure to acid. Shifts in the UV-vis absorbance spectra and the appearance/disappearance of aldehyde and imine diagnostic peaks within the 1H NMR spectra indicate that the polymers will degrade in the presence of acid. After degradation, the aldehyde starting material was recovered in high yields and was shown to maintain structural integrity when compared with commercial starting materials. Solution-degradation studies found that rates of degradation vary from 5 h to 90 s depending on the choice of solvent or acid used for hydrolysis. Additionally, the polymer was shown to degrade in the presence of perfluoroalkyl substances (PFASs), which makes them potentially useful as PFAS-sensitive sensors. Ultimately, this research provides strategies to control the degradation kinetics of azomethine-containing polymers through the manipulation of environmental factors and guides the continued development of azomethine-based materials.
Collapse
Affiliation(s)
- Ariane Charland-Martin
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| | - Graham S. Collier
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
- School
of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
40
|
Bourda L, Bhandary S, Ito S, Göb CR, Van Der Voort P, Van Hecke K. Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure. IUCRJ 2024; 11:510-518. [PMID: 38727171 PMCID: PMC11220877 DOI: 10.1107/s2052252524003713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024]
Abstract
Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials.
Collapse
Affiliation(s)
- Laurens Bourda
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
- COMOC – Center for Ordered Materials, Organometallics and Catalysis – Department of ChemistryGhent UniversityKrijgslaan 281–S39000GhentBelgium
| | - Subhrajyoti Bhandary
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
| | - Sho Ito
- Rigaku Corporation, Haijima, Tokyo, Japan
| | | | - Pascal Van Der Voort
- COMOC – Center for Ordered Materials, Organometallics and Catalysis – Department of ChemistryGhent UniversityKrijgslaan 281–S39000GhentBelgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
| |
Collapse
|
41
|
Tageldin A, Omolo CA, Nyandoro VO, Elhassan E, Kassam SZF, Peters XQ, Govender T. Engineering dynamic covalent bond-based nanosystems for delivery of antimicrobials against bacterial infections. J Control Release 2024; 371:237-257. [PMID: 38815705 DOI: 10.1016/j.jconrel.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Nanodrug delivery systems (NDDS) continue to be explored as novel strategies enhance therapy outcomes and combat microbial resistance. The need for the formulation of smart drug delivery systems for targeting infection sites calls for the engineering of responsive chemical designs such as dynamic covalent bonds (DCBs). Stimuli response due to DCBs incorporated into nanosystems are emerging as an alternative way to target infection sites, thus enhancing the delivery of antibacterial agents. This leads to the eradication of bacterial infections and the reduction of antimicrobial resistance. Incorporating DCBs on the backbone of the nanoparticles endows the systems with several properties, including self-healing, controlled disassembly, and stimuli responsiveness, which are beneficial in the delivery and release of the antimicrobial at the infection site. This review provides a comprehensive and current overview of conventional DCBs-based nanosystems, stimuli-responsive DCBs-based nanosystems, and targeted DCBs-based nanosystems that have been reported in the literature for antibacterial delivery. The review emphasizes the DCBs used in their design, the nanomaterials constructed, the drug release-triggering stimuli, and the antibacterial efficacy of the reported DCBs-based nanosystems. Additionally, the review underlines future strategies that can be used to improve the potential of DCBs-based nanosystems to treat bacterial infections and overcome antibacterial resistance.
Collapse
Affiliation(s)
- Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Sania Z F Kassam
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
42
|
Martínez D, Schlossarek T, Würthner F, Soberats B. Isothermal Phase Transitions in Liquid Crystals Driven by Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2024; 63:e202403910. [PMID: 38635375 DOI: 10.1002/anie.202403910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The dynamic nature of calamitic liquid crystals is exploited to perform isothermal phase transitions driven by dynamic covalent chemistry. For this purpose, nematic (N) arrays based on aldehyde 1 were treated with different amines (A-E) in an on-surface process, which resulted in different isothermal phase transitions. These phase transformations were caused by in situ imination reactions and are dependent on the nature of the added amine. Transitions from the N to crystal (1A, 1E), isotropic (1B), and smectic (Sm) (1C, 1D) phases were achieved, while the resulting materials feature thermotropic liquid crystal behavior. A sequential transformation from the N 1 to the Sm 1C and then to the N 1B was achieved by coupling an imination to a transimination processes and adjusting the temperature. All of these processes were well characterized by microscopic, spectroscopic, and X-ray techniques, unlocking not only the constitutional but also the structural aspects of the phase transitions. This work provides new insights into designing constitutionally and structurally adaptable liquid crystal systems, paving the way toward the conception of programable evolutive pathways and adaptive materials.
Collapse
Affiliation(s)
- Daniel Martínez
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Tim Schlossarek
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
43
|
Dong S, Han Y, Tong Z, Wang J, Zhang Y, Li A, Gopalakrishna TY, Tian H, Chi C. Facile synthesis and characterization of aza-bridged all-benzenoid quinoidal figure-eight and cage molecules. Chem Sci 2024; 15:9087-9095. [PMID: 38903229 PMCID: PMC11186326 DOI: 10.1039/d3sc02707d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/27/2024] [Indexed: 06/22/2024] Open
Abstract
Synthesis of conjugated compounds with unusual shape-persistent structures remains a challenge. Herein, utilizing thermodynamically reversible intermolecular Friedel-Crafts alkylation, a dynamic covalent chemistry (DCC) reaction, we facilely synthesized a figure-eight shaped macrocycle FEM and cage molecules CATPA/CACz. X-ray crystallographic analysis confirmed the chemical geometries of tetracation FEM4+(PF6 -)4 and hexacation CACz6+(SbF6 -)6. FEM and CATPA displayed higher photoluminescence quantum yield in solid states compared to that in solution, whereas CACz gave the reverse result. DFT calculations showed that fluorescence-related frontier molecular orbital profiles are mainly localized on their arms consisting of a p-quinodimethane (p-QDM) unit and two benzene rings of triphenylamine or carbazole. Owing to their space-confined structures, variable-temperature 1H NMR measurements showed that FEM, CATPA and FEM4+ have intramolecular restricted motion of phenyl rings on their chromophore arms. Accordingly, FEM and CATPA with flexible triphenylamine subunits displayed aggregation-induced emission behavior (AIE), whereas CACz with a rigid carbazole subunits structure showed no AIE behavior.
Collapse
Affiliation(s)
- Shaoqiang Dong
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Zekun Tong
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Jinfeng Wang
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Yishan Zhang
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Aisen Li
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | | | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| |
Collapse
|
44
|
Chen Y, Chen B, Dong J, Yang D, Tang H, Wen L, Li J, Huang L, Zhou J. A tough and bioadhesive injectable hydrogel formed with maleimidyl alginate and pristine gelatin. Carbohydr Polym 2024; 334:122011. [PMID: 38553212 DOI: 10.1016/j.carbpol.2024.122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
Injectable hydrogels have wide applications in clinical practice. However, the development of tough and bioadhesive ones based on biopolymers, along with biofriendly and robust crosslinking strategies, still represents a great challenge. Herein, we report an injectable hydrogel composed of maleimidyl alginate and pristine gelatin, for which the precursor solutions could self-crosslink via mild Michael-type addition without any catalyst or external energy upon mixing. This hydrogel is tough and bioadhesive, which can maintain intactness as well as adherence to the defect of porcine skin under fierce bending and twisting, warm water bath, and boiling water shower. Besides, it is biocompatible, bioactive and biodegradable, which could support the growth and remodeling of cells by affording an extracellular matrix-like environment. As a proof of application, we demonstrate that this hydrogel could significantly accelerate diabetic skin wound healing, thereby holding great potential in healthcare.
Collapse
Affiliation(s)
- Yin Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Baiqi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Deyu Yang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Tang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China; College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lu Huang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
45
|
Blanco-Gómez A, Díaz-Abellás M, Montes de Oca I, Peinador C, Pazos E, García MD. Host-Guest Stimuli-Responsive Click Chemistry. Chemistry 2024; 30:e202400743. [PMID: 38597381 DOI: 10.1002/chem.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Click chemistry has reached its maturity as the weapon of choice for the irreversible ligation of molecular fragments, with over 20 years of research resulting in the development or improvement of highly efficient kinetically controlled conjugation reactions. Nevertheless, traditional click reactions can be disadvantageous not only in terms of efficiency (side products, slow kinetics, air/water tolerance, etc.), but also because they completely avoid the possibility to reversibly produce and control bound/unbound states. Recently, non-covalent click chemistry has appeared as a more efficient alternative, in particular by using host-guest self-assembled systems of high thermodynamic stability and kinetic lability. This review discusses the implementation of molecular switches in the development of such non-covalent ligation processes, resulting in what we have termed stimuli-responsive click chemistry, in which the bound/unbound constitutional states of the system can be favored by external stimulation, in particular using host-guest complexes. As we exemplify with handpicked selected examples, these supramolecular systems are well suited for the development of human-controlled molecular conjugation, by coupling thermodynamically regulated processes with appropriate temporally resolved extrinsic control mechanisms, thus mimicking nature and advancing our efforts to develop a more function-oriented chemical synthesis.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Mauro Díaz-Abellás
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Iván Montes de Oca
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Marcos D García
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
46
|
Li B, Sun B, Fang S, Chen Y, Li H. Guest-induced narcissistic self-sorting in water via imine formation. Chem Commun (Camb) 2024; 60:5743-5746. [PMID: 38743417 DOI: 10.1039/d4cc01239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Two anionic tetrahedral cages were self-assembled as the only observable products in weakly basic water via imine condensation. The success of the high-yielding formation of the cages in water relies on (i) multivalency enhancing the stability of the imine bond and affording these cages water compatibility and (ii) a guest template with a complementary size and geometry that provides a hydrophobic driving force by occupying the corresponding cage cavity. When all four precursors, namely two trisaldehydes and two trisamines, were combined in water, narcissistic self-sorting occurred when both guest templates were present. In organic media where the hydrophobic effect is absent, narcissistic self-sorting did not occur in the analogous cage systems, confirming the importance of guest templates.
Collapse
Affiliation(s)
- Bingda Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Bin Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Shuai Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
47
|
Kumar S, Arora A, Maikhuri VK, Chaudhary A, Kumar R, Parmar VS, Singh BK, Mathur D. Advances in chromone-based copper(ii) Schiff base complexes: synthesis, characterization, and versatile applications in pharmacology and biomimetic catalysis. RSC Adv 2024; 14:17102-17139. [PMID: 38808245 PMCID: PMC11130647 DOI: 10.1039/d4ra00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Chromones are well known as fundamental structural elements found in numerous natural compounds and medicinal substances. The Schiff bases of chromones have a much wider range of pharmacological applications such as antitumor, antioxidant, anti-HIV, antifungal, anti-inflammatory, and antimicrobial properties. A lot of research has been carried out on chromone-based copper(ii) Schiff-base complexes owing to their role in the organometallic domain and promise as potential bioactive cores. This review article is centered on copper(ii) Schiff-base complexes derived from chromones, highlighting their diverse range of pharmacological applications documented in the past decade, as well as the future research opportunities they offer.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
| | - Aditi Arora
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Vipin K Maikhuri
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi Delhi India
| | - Rajesh Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur India
| | - Virinder S Parmar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
- Amity Institute of Click Chemistry and Research Studies, Amity University Sector 125 Noida 201313 Uttar Pradesh India
| | - Brajendra K Singh
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Divya Mathur
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, Daulat Ram College, University of Delhi Delhi India
| |
Collapse
|
48
|
Pomázi Á, Poór DI, Geier N, Toldy A. Optimising Recycling Processes for Polyimine-Based Vitrimer Carbon Fibre-Reinforced Composites: A Comparative Study on Reinforcement Recovery and Material Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2372. [PMID: 38793442 PMCID: PMC11123295 DOI: 10.3390/ma17102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
We investigated the recycling process of carbon fibre-reinforced polyimine vitrimer composites and compared composites made from virgin and recycled fibres. The vitrimer matrix consisted of a two-component polyimine-type vitrimer system, and as reinforcing materials, we used nonwoven felt and unidirectional carbon fibre. Various diethylenetriamine (DETA) and xylene solvent ratios were examined to find the optimal dissolution conditions. The 20:80 DETA-xylene ratio provided efficient dissolution, and the elevated temperature (80 °C) significantly accelerated the process. Scaling up to larger composite structures was demonstrated. Scanning electron microscopy (SEM) confirmed effective matrix removal, with minimal residue on carbon fibre surfaces and good adhesion in recycled composites. The recycled nonwoven composite exhibited a decreased glass transition temperature due to the residual solvents in the matrix, while the UD composite showed a slight increase. Dynamic mechanical analysis on the recycled composite showed an increased storage modulus for nonwoven composites at room temperature and greater resistance to deformation at elevated temperatures for the UD composites. Interlaminar shear tests indicated slightly reduced adhesion strength in the reprocessed composites. Overall, this study demonstrates the feasibility of recycling vitrimer composites, emphasising the need for further optimisation to ensure environmental and economic sustainability while mitigating residual solvent and matrix effects.
Collapse
Affiliation(s)
- Ákos Pomázi
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
- MTA-BME Lendület Sustainable Polymers Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
- HUN-REN–BME Research Group for Composite Science and Technology, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Dániel István Poór
- MTA-BME Lendület Sustainable Polymers Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
- Department of Manufacturing Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
| | - Norbert Geier
- Department of Manufacturing Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
| | - Andrea Toldy
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
- MTA-BME Lendület Sustainable Polymers Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
| |
Collapse
|
49
|
Lin X, Jia S, Ye H, He P, You L. Neighboring Effects of Sulfur Oxidation State on Dynamic Covalent Bonds and Assemblies. Org Lett 2024; 26:3640-3645. [PMID: 38635892 DOI: 10.1021/acs.orglett.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The impact of a varied sulfur oxidation state (sulfide, sulfoxide, and sulfone) on imine dynamic covalent chemistry is presented. The role of noncovalent interactions, including chalcogen bonds and CH hydrogen bonds, on aldehyde/imine structures and imine exchange reactions was elucidated through experimental and computational evidence. The change in the sulfur oxidation state and diamine linkage further allowed the regulation of imine macrocycles, providing a platform for controlling molecular assemblies.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Peng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Min F, Dreiss CA, Chu Z. Dynamic covalent surfactants and their uses in the development of smart materials. Adv Colloid Interface Sci 2024; 327:103159. [PMID: 38640843 DOI: 10.1016/j.cis.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/08/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Dynamic covalent chemistry, which leverages the dynamic nature of reversible covalent bonds controlled by the conditions of reaction equilibrium, has demonstrated great potential in diverse applications related to both the stability of covalent bonds and the possibility of exchanging building blocks, imparting to the systems the possibility of "error checking" and "proof-reading". By incorporating dynamic covalent bonds into surfactant molecular architectures, combinatorial libraries of surfactants with bespoke functionalities can be readily fabricated through a facile strategy, with minimum effort in organic synthesis. Consequently, a multidisciplinary field of research involving the creation and application of dynamic covalent surfactants has recently emerged, which has aroused great attention in surfactant and colloid science, supramolecular chemistry, self-assembly, smart materials, drug delivery, and nanotechnology. This review reports results in this field published over recent years, discusses the possibilities presented by dynamic covalent surfactants and their applications in developing smart self-assembled materials, and outlines some future perspectives.
Collapse
Affiliation(s)
- Fan Min
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Zonglin Chu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| |
Collapse
|