1
|
Fu X, Li Z, Zhao J, Yang J, Zhu G, Li G, Huo P. Coupling plasmon and catalytic-active hotspots of Au@Pt core-satellite nanoparticles for in-situ spectroscopic observation of plasmon-promoted decarboxylation. J Colloid Interface Sci 2024; 676:127-138. [PMID: 39018805 DOI: 10.1016/j.jcis.2024.07.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Plasmon-induced hot carriers are a promising "active" energy source, attracting increasing attention for their potential applications in photocatalysis and photodetection. Here, we hybridize plasmonic Au spherical nanoparticles (SNPs) with catalytically active Pt nanocrystals to form Au@Pt core-satellite nanoparticles (CSNPs), which act as both an efficient catalyst for plasmon-promoted decarboxylation reaction and a robust surface-enhanced Raman scattering (SERS) substrate for plasmon-enhanced molecular spectroscopic detection. By regulating the coverage of Pt nanocrystals on the Au SNPs, we modulated the "hotspot" structures of the Au@Pt CSNPs to optimize the SERS detecting capability and catalytic decarboxylation performance. The coupling functionalities enable us with unique opportunities to in-situ SERS monitor universal reactions catalyzed by active catalysts (e.g. Pt, Pd) in the chemical industry in real-time. The decarboxylation rate of 4-mercaptophenylacetic acid was dynamically controlled by the surface catalytic decarboxylation step, following first-order overall reaction kinetics. Moreover, the reaction rate exhibited a strong correlation with the local field enhancement |E/E0|4 of the hotspot structure. This work provides spectroscopic insights into the molecule-plasmon interface under the plasmon-promoted catalytic reactions, guiding the rational design of the plasmonic interface of nanocatalysts to achieve desired functionalities.
Collapse
Affiliation(s)
- Xiaoqi Fu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zian Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinrui Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiang Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Pengwei Huo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
2
|
Yu W, Li Q, Ren J, Feng K, Gong J, Li Z, Zhang J, Liu X, Xu Z, Yang L. A sensor platform based on SERS detection/janus textile for sweat glucose and lactate analysis toward portable monitoring of wellness status. Biosens Bioelectron 2024; 263:116612. [PMID: 39096763 DOI: 10.1016/j.bios.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Herein we report a wearable sweat sensor of a Janus fabric based on surface enhanced Raman scattering (SERS) technology, mainly detecting the two important metabolites glucose and lactate. Janus fabric is composed of electrospinning PU on a piece of medical gauze (cotton), working as the unidirectional moisture transport component (R = 1305%) to collect and transfer sweat efficiently. SERS tags with different structures act as the probe to recognize and detect the glucose and lactate in high sensitivity. Core-shell structured gold nanorods with DTNB inside (AuNRs@DTNB@Au) are used to detect lactate, while gold nanorods with MPBA (AuNRs@MPBA) are used to detect glucose. Through the characteristic SERS information, two calibration functions were established for the concentration determination of glucose and lactate. The concentrations of glucose and lactate in sweat of a 23 years volunteer during three-stage interval running are tested to be 95.5, 53.2, 30.5 μM and 4.9, 13.9, 10.8 mM, indicating the glucose (energy) consumption during exercise and the rapid accumulation of lactate at the early stage accompanied by the subsequent relief. As expected, this sensing system is able to provide a novel strategy for effective acquisition and rapid detection of essential biomarkers in sweat.
Collapse
Affiliation(s)
- Wenze Yu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China.
| | - Jianing Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Kexin Feng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Shandong, Qingdao, 266071, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Zhiwei Xu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Li Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
3
|
Lepeintre V, Camerel F, Lagrost C, Retout M, Bruylants G, Jabin I. Calixarene-coated gold nanorods as robust photothermal agents. NANOSCALE 2024; 16:19692-19703. [PMID: 39239669 DOI: 10.1039/d4nr02296c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Gold nanorods (AuNRs) hold considerable promise for their use in biomedical applications, notably in the context of photothermal therapy (PTT). Yet, their anisotropic nature presents a notable hurdle. Under laser irradiation, these structures are prone to deformation, leading to changes in their optical and photothermal properties over time. To overcome this challenge, an efficient strategy involving the use of calix[4]arene-tetradiazonium salts for stabilizing AuNRs has been implemented. These molecular platforms are capable of irreversible grafting onto surfaces through the reduction of their diazonium groups, thereby resulting in the formation of exceedingly robust organic monolayers. This innovative coating strategy not only ensures enduring stability but also facilitates conjugation of AuNRs. This study showcases the superiority of these fortified AuNRs over conventional counterparts, notably exhibiting exceptional resilience even under sustained laser exposure in the context of PTT. By bolstering the stability and reliability of AuNRs in PTT, our approach holds the potential to drive significant advancements in the field.
Collapse
Affiliation(s)
- Victor Lepeintre
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
- Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
| | - Franck Camerel
- Univ. Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Corinne Lagrost
- Univ. Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
- Univ. Rennes, CNRS, ScanMAT - UAR 2025, F-35000 Rennes, France
| | - Maurice Retout
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
| |
Collapse
|
4
|
Yu H, Guo D, Chen X, Liang X, Yang Z, Han L, Xiao W. Feasibility of biomass-based flexible and transparent AuNPs-acetylcellulose membrane for multifarious surface-enhanced Raman spectroscopy detection. Anal Chim Acta 2024; 1327:343157. [PMID: 39266062 DOI: 10.1016/j.aca.2024.343157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Lignocellulosic biomass-based derivatives coupled with surface-enhanced Raman spectroscopy (SERS) technology have emerged as an appealing and indispensable tool in food safety and environmental monitoring for rapidly detecting trace contaminants like pesticide residues. The membrane material, serving as a substrate, ensures both sampling flexibility and test accuracy by directing the diffusion-adsorption process of the molecules. However, the existing membrane substrates, critical for the practical application of SERS, suffer from issues such as costly, intricate fabrication procedures, or restricted detection capabilities. RESULTS Herein, we present a flexible, transparent, and biodegradable cellulose acetate membrane with gold nanoparticles (AuNPs) uniformly embedded, fabricated using a simple scraping method. This membrane achieved a limit of detection (LOD) of thiram pesticide in water at 10-8 g mL-1. The unique optical transparency of the substrates allowed for in-situ detection on surfaces, with an LOD of thiram reaching 30 ng cm-2. SIGNIFICANCE Furthermore, SERS substrates made from corn stover-derived cellulose acetate enable the detection of various contaminants, highlighting their cost-effectiveness and eco-friendliness because of the abundance and low environmental impact of the raw materials.
Collapse
Affiliation(s)
- Haitao Yu
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China; College of Information Engineering, Jiangsu Vocational College of Agricultural and Forestry, Zhenjiang, Jiangsu, 212400, China
| | - Dongyi Guo
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Xueli Chen
- Laboratory of Renewable Resources Engineering (LORRE) and Department of Agricultural andBiological Engineering, Purdue University, West Lafayette, IN, 47907, United States
| | - Xueyan Liang
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Zengling Yang
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China.
| |
Collapse
|
5
|
Georgeous J, AlSawaftah N, Abuwatfa WH, Husseini GA. Review of Gold Nanoparticles: Synthesis, Properties, Shapes, Cellular Uptake, Targeting, Release Mechanisms and Applications in Drug Delivery and Therapy. Pharmaceutics 2024; 16:1332. [PMID: 39458661 PMCID: PMC11510955 DOI: 10.3390/pharmaceutics16101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The remarkable versatility of gold nanoparticles (AuNPs) makes them innovative agents across various fields, including drug delivery, biosensing, catalysis, bioimaging, and vaccine development. This paper provides a detailed review of the important role of AuNPs in drug delivery and therapeutics. We begin by exploring traditional drug delivery systems (DDS), highlighting the role of nanoparticles in revolutionizing drug delivery techniques. We then describe the unique and intriguing properties of AuNPs that make them exceptional for drug delivery. Their shapes, functionalization, drug-loading bonds, targeting mechanisms, release mechanisms, therapeutic effects, and cellular uptake methods are discussed, along with relevant examples from the literature. Lastly, we present the drug delivery applications of AuNPs across various medical domains, including cancer, cardiovascular diseases, ocular diseases, and diabetes, with a focus on in vitro and in vivo cancer research.
Collapse
Affiliation(s)
- Joel Georgeous
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour AlSawaftah
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
6
|
Feng Z, Jia Y, Cui H. Engineering the surface roughness of the gold nanoparticles for the modulation of LSPR and SERS. J Colloid Interface Sci 2024; 672:1-11. [PMID: 38823218 DOI: 10.1016/j.jcis.2024.05.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
In this work, we reported that by using a strong thiol ligand as the morphology-directing reagent, a series of Au nanoparticles with plate-like surface sub-structures could be successfully obtained via a one-pot seedless synthesis. The size and the density of the plates on the surface of Au can be readily tuned with the amount of the thiol ligand, resembling different roughness of the surface. Arising from the different surface roughness, the localized surface plasmon resonance (LSPR) of these shape and morphological alike Au nanoparticles can be continuously tuned within the visible-NIR region. The broad LSPR absorptions and feasible tunability make the Au nanoparticles suitable candidate for plasmonic-related applications. Interestingly, huge SERS enhancement was simultaneously achieved based on the specific surface roughness. Our results demonstrate the great potentials for tuning the LSPR and SERS of Au nanostructures through the engineering of the surface morphologies, which would assist for the design, synthesis, and applications of Au-based plasmonic nanomaterials in various fields.
Collapse
Affiliation(s)
- Ziqi Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Yun Jia
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Hongyou Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
7
|
Miri A, Orouji A, Hormozi-Nezhad MR. Etched-suppressed gold nanorods providing highly distinctive plasmonic patterns: Towards multiplex analysis of neuroblastoma biomarkers. Anal Chim Acta 2024; 1325:343119. [PMID: 39244305 DOI: 10.1016/j.aca.2024.343119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND On-site monitoring of vanillylmandelic acid (VMA), homovanillic acid (HVA), and dopamine (DA) as key diagnostic biomarkers for a wide range of neurological disorders holds utmost significance in clinical settings. Numerous colorimetric sensors with mechanistic approaches based on aggregation or silver metallization have been introduced for this purpose. However, these mechanisms have drawbacks, such as sensitivity to environmental factors and probe toxicity. Therefore, there is a great demand for a robust yet non-toxic colorimetric sensor that employs a novel route to monitor these biomarkers effectively. RESULTS Here, we present a single-component multi-colorimetric probe based on the controllable etching suppression of gold nanorods (AuNRs) upon exposure to the mild etchant N-bromosuccinimide (NBS), designed to accurately detect and discriminate VMA, HVA, DA, and their corresponding mixtures, i.e. , VMA HVA, VMA:DA, HVA:DA, and VMA:HVA:DA. To enhance the sensitivity and automation capabilities of the designed multi-colorimetric sensor, two machine learning techniques were employed: linear discriminant analysis (LDA) for the qualitative classification and partial least-squares regression (PLSR) for the quantitative analysis of pure biomarkers and their mixtures. The outcomes revealed a high correlation between measured and predicted values, covering a linear range of 0.8-25, 1.2-25, and 2.7-100 μmol L-1, with remarkably low detection limits of 0.260, 0.397, and 0.913 μmol L-1 for VMA, HVA, and DA, respectively. Lastly, the performance of the probe was validated by successfully detecting the neuroblastoma biomarker VMA:HVA in human urine. SIGNIFICANCE Our designed multi-colorimetric probe introduces a rapid, cost-effective, user-friendly, non-toxic, and non-invasive approach to detecting and discriminating not only the pure biomarkers but also their corresponding binary and ternary mixtures. The distinctive response profiles produced by the probe in the presence of different mixture ratios can indicate various disease states in patients, which is highly crucial in clinical diagnostics.
Collapse
Affiliation(s)
- Amirhosein Miri
- Department of Chemistry, Sharif University of Technology, Tehran, 111559516, Iran
| | - Afsaneh Orouji
- Department of Chemistry, Sharif University of Technology, Tehran, 111559516, Iran
| | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran, 111559516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 11155-9516, Iran.
| |
Collapse
|
8
|
Zhou W, Li Y, Partridge BE, Mirkin CA. Engineering Anisotropy into Organized Nanoscale Matter. Chem Rev 2024; 124:11063-11107. [PMID: 39315621 DOI: 10.1021/acs.chemrev.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.
Collapse
Affiliation(s)
- Wenjie Zhou
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanwei Li
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin E Partridge
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Schauer DG, Bredehoeft J, Yunusa U, Pattammattel A, Wörner HJ, Sprague-Klein EA. Targeted synthesis of gold nanorods and characterization of their tailored surface properties using optical and X-ray spectroscopy. Phys Chem Chem Phys 2024; 26:25581-25589. [PMID: 39331013 DOI: 10.1039/d4cp01993h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
In recent years, nanophotonics have had a transformative impact on harnessing energy, directing chemical reactions, and enabling novel molecular dynamics for thermodynamically intensive applications. Plasmonic nanoparticles have emerged as a tool for confining light on nanometer-length scales where regions of intense electromagnetic fields can be precisely tuned for controlled surface chemistry. We demonstrate a precision pH-driven synthesis of gold nanorods with optical resonance properties widely tunable across the near-infrared spectrum. Through controlled electrostatic interactions, we can perform selective adsorbate molecule attachment and monitor the surface transitions through spectroscopic techniques that include ground-state absorption spectrophotometry, two-dimensional X-ray absorption near-edge spectroscopy, Fourier-transform infrared spectroscopy, and surface-enhanced Raman spectroscopy. We elucidate the electronic, structural, and chemical factors that contribute to plasmon-molecule dynamics at the nanoscale with broad implications for the fields of energy, photonics, and bio-inspired materials.
Collapse
Affiliation(s)
- David G Schauer
- ETH Zurich, Dept. of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2 (HCI E 241), 8093 Zürich, Switzerland
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Jona Bredehoeft
- ETH Zurich, Dept. of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2 (HCI E 241), 8093 Zürich, Switzerland
| | - Umar Yunusa
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hans Jakob Wörner
- ETH Zurich, Dept. of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2 (HCI E 241), 8093 Zürich, Switzerland
| | | |
Collapse
|
10
|
Akhondi G, Orouji A, Hormozi-Nezhad MR. Gold Nanorod Amalgamation: Machine Learning Empowered Discrimination of Biothiol and Thiol Ratios. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52080-52091. [PMID: 39299218 DOI: 10.1021/acsami.4c12126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Biothiols, characterized by thiol groups, exhibit remarkable affinity for certain metals, playing pivotal roles in intracellular and extracellular biological processes. Fluctuations in their levels profoundly impact overall physiological health. Despite the development of various probes for biothiol detection and quantification, their inability to monitor thiol-to-disulfide state transitions persists as a limitation. Given their association with pathologies, early detection remains imperative. Gold nanorod (AuNR)-based colorimetric probes have garnered attention for their utility in visual diagnostic assays. Herein, we present a cost-effective, and sensitive multicolor ratio measuring probe enabling on-site simultaneous identification, discrimination, and quantification of essential biothiols─cysteine (CYS), glutathione (GSH), cystine (CYSS), and glutathione disulfide (GSSG)─while also quantifying thiol-to-disulfide ratios. Our investigation clarifies the probe's functionality, elucidating etching and antietching mechanisms based on sulfhydryl group coordination with Hg2+. This coordination impedes gold amalgam formation, facilitating discriminative detection via AuNR size and aspect ratio modulation, validated by transmission electron microscopy. Notably, distinct rainbow-like fingerprint patterns were discernible both visually and spectroscopically for the aforementioned biothiols and their respective thiol-to-disulfide ratios. Subsequent qualitative and quantitative analyses via linear discriminant analysis (LDA) and partial least squares regression revealed linear correlations over broad concentration ranges (CYS: 1.9-40 μmol L-1, GSH: 3.2-200.0 μmol L-1, CYSS: 2.0-70.0 μmol L-1, GSSG: 3.7-100.0 μmol L-1), with detection limits of 0.66 μmol L-1 (CYS), 1.07 μmol L-1 (GSH), 0.69 μmol L-1 (CYSS), and 1.24 μmol L-1 (GSSG). Moreover, thiol-to-disulfide ratios exhibited linear patterns within 0.2-5 μmol L-1, with detection limits of 0.13 and 0.09 μmol L-1, and exceptional analytical sensitivities of 32.648 and 49.782 for (CYS/CYSS) and (GSH/GSSG), respectively. Lastly, we evaluated the probe's performance in complex matrices relative to aqueous media, both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Golara Akhondi
- Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | - Afsaneh Orouji
- Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | | |
Collapse
|
11
|
Guo Z, Jiang H, Song A, Liu X, Wang X. Progress and challenges in bacterial infection theranostics based on functional metal nanoparticles. Adv Colloid Interface Sci 2024; 332:103265. [PMID: 39121833 DOI: 10.1016/j.cis.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The rapid proliferation and infection of bacteria, especially multidrug-resistant bacteria, have become a great threat to global public health. Focusing on the emergence of "super drug-resistant bacteria" caused by the abuse of antibiotics and the insufficient and delayed early diagnosis of bacterial diseases, it is of great research significance to develop new technologies and methods for early targeted detection and treatment of bacterial infection. The exceptional effects of metal nanoparticles based on their unique physical and chemical properties make such systems ideal for the detection and treatment of bacterial infection both in vitro and in vivo. Metal nanoparticles also have admirable clinical application prospects due to their broad antibacterial spectrum, various antibacterial mechanisms and excellent biocompatibility. Herein, we summarized the research progress concerning the mechanism of metal nanoparticles in terms of antibacterial activity together with the detection of bacterial. Representative achievements are selected to illustrate the proof-of-concept in vitro and in vivo applications. Based on these observations, we also give a brief discussion on the current problems and perspective outlook of metal nanoparticles in the diagnosis and treatment of bacterial infection.
Collapse
Affiliation(s)
- Zengchao Guo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
12
|
Vernier C, Portalès H. Impact of tip curvature and edge rounding on the plasmonic properties of gold nanorods and their silver-coated counterparts. J Chem Phys 2024; 161:124711. [PMID: 39329307 DOI: 10.1063/5.0228434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Colloidal solutions of gold nanorods and silver-coated gold nanorods were prepared. The seeded growth synthesis protocols were improved by adding a flocculation purification step. The resulting populations of pure gold nanorods and Au@Ag core-shell cuboids were characterized by very low dispersion in size and shape. UV-vis-near-infrared absorption measurements were performed on several batches of well-calibrated nano-objects, supported by calculations based on the discrete dipole approximation, allowed to highlight the impact of various morphological features on the optical response. In addition to the well-known effect of the nanorod aspect ratio on the shift of the longitudinal surface plasmon resonance mode, special attention was paid to changing either the rounding of the nanorod end-caps or that of the edges of the coating silver shell. Nanorods and cuboids were modeled as superellipsoids. This approach enabled us to model precisely their complex shapes using just a few simple parameters and analyze the evolution of their extinction spectra as a function of the rounding of their tips and edges. Such nano-objects are widely used for various applications in fields such as biomedical, biosensing, or surface-enhanced Raman spectroscopy, thus making it crucial to precisely assess the impact of each morphological feature for optimizing their performance.
Collapse
Affiliation(s)
- Charles Vernier
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 75005 Paris, France
| | - Hervé Portalès
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 75005 Paris, France
| |
Collapse
|
13
|
Gao Y, Huo S, Chen C, Du S, Xia R, Liu J, Chen D, Diao Z, Han X, Yin Z. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders. J Biomed Res 2024; 38:1-17. [PMID: 39375931 DOI: 10.7555/jbr.38.20240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Rod-shaped gold nanomaterials, known as gold nanorods (GNRs), may undergo specific surface alterations, because of their straightforward surface chemistry. This feature makes them appropriate for use as functional and biocompatible nano-formulations. By optimizing the absorption of longitudinally localized surface plasmon resonance (LSPR) in the near-infrared (NIR) region, which corresponds to the NIR bio-tissue window, GNRs with appropriate modifications may improve the results of photothermal treatment (PTT). In dermatology, potential noninvasive uses of GNRs to enhance wound healing, manage infections, combat cutaneous malignancies, and remodel skin tissues via PTT have attracted research attention in recent years. In this review, the basic properties of GNRs, such as shape, size, optical performance, photothermal efficiency, and metabolism, are discussed firstly. Then, the disadvantages of using these particles in photodynamic therapy (PDT) are proposed. Next, biological applications of GNRs-based PTT are summarized in detail. Finally, the limitations and future perspectives of this research are summarized, providing a comprehensive outlook for prospective GNRs with PTT.
Collapse
Affiliation(s)
- Yamei Gao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaohu Huo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Chao Chen
- Industrialization of Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ruiyuan Xia
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dandan Chen
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ziyue Diao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Han
- Industrialization of Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhiqiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
14
|
Yu J, Li W, Li Q, Li P, Rogachev AV, Jiang X, Yang J. Highly Efficient Continuous Flow Nanocatalyst Platform Constructed with Regenerable Bacterial Cellulose Loaded with Gold Nanoparticles and a Nanoporous Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19548-19559. [PMID: 39239966 DOI: 10.1021/acs.langmuir.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
With the development of society and the growing concern about environmental issues, continuous flow catalytic reactors have gained significant interest due to their resource-efficient advantages over traditional batch devices. In this study, we employed a facile one-step in situ reduction approach to construct highly dispersed gold nanoparticles loaded on regenerable bacterial cellulose nanofiber (BCN) heterogeneous catalysts. These catalysts, in combination with a nanoceramic membrane with a pore size of 1 nm, formed a fully mixed system that was favorable for the efficient continuous flow catalysis of selective reduction reactions of nitrophenol. The reaction system demonstrated remarkable catalytic activity toward nitrophenol reduction reactions at low reductant dosages (<5 equiv), achieving over 95% conversion and 99% selectivity for the aniline product in 10 min under room temperature conditions. Furthermore, continuous flow operations maintained stable catalytic activity with minimal catalyst loss after a 120-h test and were 3 times more time-efficient than batch operations. Additionally, continuous monitoring could be conducted through ultraviolet (UV) spectroscopy. A highly efficient and environmentally friendly strategy was present for designing continuous flow reactions in future applications.
Collapse
Affiliation(s)
- Junjie Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - Wenping Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - Qingxue Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - Pingyun Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - A V Rogachev
- International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing, Jiangsu 210094, China
- Francisk Skorina Gomel State University, 104, Sovetskaya Street, Gomel, Homyel 246019, Belarus
| | - Xiaohong Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - Jiazhi Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| |
Collapse
|
15
|
Lyu Y, Zheng J, Wang S. Photoelectrochemical Lithium Extraction from Waste Batteries. CHEMSUSCHEM 2024; 17:e202301526. [PMID: 38538545 DOI: 10.1002/cssc.202301526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/25/2024] [Indexed: 04/24/2024]
Abstract
The amount of global hybrid-electric and all electric vehicle has increased dramatically in just five years and reached an all-time high of over 10 million units in 2022. A good deal of waste lithium (Li)-containing batteries from dead vehicles are invaluable unconventional resources with high usage of Li. However, the recycle of Li by green approaches is extremely inefficient and rare from waste batteries, giving rise to severe environmental pollutions and huge squandering of resources. Thus, in this mini review, we briefly summarized a green and promising route-photoelectrochemical (PEC) technology for extracting the Li from the waste lithium-containing batteries. This review first focuses on the critical factors of PEC performance, including light harvesting, charge-carrier dynamics, and surface chemical reactions. Subsequently, the conventional and PEC technologies applying in the area of Li recovery processes are analyzed and discussed in depth, and the potential challenges and future perspective for rational and healthy development of PEC Li extraction are provided positively.
Collapse
Affiliation(s)
- Yanhong Lyu
- School of Physical and Chemistry, Hunan First Normal University, Changsha, 410205, Hunan, China
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Jianyun Zheng
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| |
Collapse
|
16
|
Wang K, Zhang Z, Zhang S, Jiang H, Sun W. Enhancing Field Emission in Air via Ultrascaled Nanorod Electrodes. NANO LETTERS 2024; 24:10047-10054. [PMID: 39133099 DOI: 10.1021/acs.nanolett.4c01831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Enhancing field emission in ultrascaled electronics improves the device performance and energy efficiency. Conventional lithography defines electrodes with a few-nanometer spacing on the cost of strengthened electron scattering and the reduced field enhancement factor, thus presenting challenges to enhance field emission at a small bias. Here, we used self-assembled nanorods with sub-5 nm spacing as electrodes to overcome these challenges. Intrinsic ballistic transport through high-crystallinity solution-synthesized nanorods minimized charge scattering; meanwhile ultrascaled anisotropic morphologies concentrated local electric fields and thereby lowered the barrier height. Enabled by these structural features, we demonstrated field emission density up to 4.1 × 104 A cm-2 at 1 V in air, more than 10-fold higher than typical molecular and vacuum electronics at similar conditions, and constructed an air-operating electron source with an on/off ratio of 105 at the collector electrode. Energy-efficient high-conductance electron emission suggested the potential of using solution-synthesized nanomaterials in ultrascaled electronics.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Zhaoxuan Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Suhui Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Huiyan Jiang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
- Zhangjiang Laboratory, Shanghai, 201210, China
| |
Collapse
|
17
|
Gu W, Zhou Y, Wang W, You Q, Fan W, Zhao Y, Bian G, Wang R, Fang L, Yan N, Xia N, Liao L, Wu Z. Concomitant Near-Infrared Photothermy and Photoluminescence of Rod-Shaped Au 52(PET) 32 and Au 66(PET) 38 Synthesized Concurrently. Angew Chem Int Ed Engl 2024; 63:e202407518. [PMID: 38752452 DOI: 10.1002/anie.202407518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Gold nanoclusters exhibiting concomitant photothermy (PT) and photoluminescence (PL) under near-infrared (NIR) light irradiation are rarely reported, and some fundamental issues remain unresolved for such materials. Herein, we concurrently synthesized two novel rod-shaped Au nanoclusters, Au52(PET)32 and Au66(PET)38 (PET = 2-phenylethanethiolate), and precisely revealed that their kernels were 4 × 4 × 6 and 5 × 4 × 6 face-centered cubic (fcc) structures, respectively, based on the numbers of Au layers in the [100], [010], and [001] directions. Following the structural growth mode from Au52(PET)32 to Au66(PET)38, we predicted six more novel nanoclusters. The concurrent synthesis provides rational comparison of the two nanoclusters on the stability, absorption, emission and photothermy, and reveals the aspect ratio-related properties. An interesting finding is that the two nanoclusters exhibit concomitant PT and PL under 785 nm light irradiation, and the PT and PL are in balance, which was explained by the qualitative evaluation of the radiative and non-radiative rates. The ligand effects on PT and PL were also investigated.
Collapse
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wenying Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| |
Collapse
|
18
|
Xu F, Li Y, Zhao X, Liu G, Pang B, Liao N, Li H, Shi J. Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods. Crit Rev Biotechnol 2024; 44:924-940. [PMID: 37455417 DOI: 10.1080/07388551.2023.2225131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/21/2023] [Indexed: 07/18/2023]
Abstract
Fungi-mediated synthesis of Gold nanoparticles (AuNPs) has advantages in: high efficiency, low energy consumption, no need for extra capping and stabilizing agents, simple operation, and easy isolation and purification. Many fungi have been found to synthesize AuNPs inside cells or outside cells, providing different composition and properties of particles when different fungi species or reaction conditions are used. This is good to produce AuNPs with different properties, but may cause challenges to precisely control the particle shape, size, and activities. Besides, low concentrations of substrate and fungal biomass are needed to synthesize small-size particles, limiting the yield of AuNPs in a large scale. To find clues for the development methods to solve these challenges, the reported mechanisms of the fungi-mediated synthesis of AuNPs were summarized. The mechanisms of intracellular AuNPs synthesis are dependent on gold ions absorption by the fungal cell wall via proteins, polysaccharides, or electric absorption, and the reduction of gold ions via enzymes, proteins, and other cytoplasmic redox mediators in the cytoplasm or cell wall. The extracellular synthesis of AuNPs is mainly due to the metabolites outside fungal cells, including proteins, peptides, enzymes, and phenolic metabolites. These mechanisms cause the great diversity of the produced AuNPs in functional groups, element composition, shapes, sizes, and properties. Many methods have been developed to improve the synthesis efficiency by changing: chloroauric acid concentrations, reaction temperature, pH, fungal mass, and reaction time. However, future studies are still required to precisely control the: shape, size, composition, and properties of fungal AuNPs.
Collapse
Affiliation(s)
- Fengqin Xu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Yinghui Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Xixi Zhao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Guanwen Liu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Bing Pang
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Ning Liao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Huixin Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Junling Shi
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
19
|
Skillin NP, Bauman GE, Kirkpatrick BE, McCracken JM, Park K, Vaia RA, Anseth KS, White TJ. Photothermal Actuation of Thick 3D-Printed Liquid Crystalline Elastomer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313745. [PMID: 38482935 DOI: 10.1002/adma.202313745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Liquid crystalline elastomers (LCEs) are stimuli-responsive materials that transduce an input energy into a mechanical response. LCE composites prepared with photothermal agents, such as nanoinclusions, are a means to realize wireless, remote, and local control of deformation with light. Amongst photothermal agents, gold nanorods (AuNRs) are highly efficient converters when the irradiation wavelength matches the longitudinal surface plasmon resonance (LSPR) of the AuNRs. However, AuNR aggregation broadens the LSPR which also reduces photothermal efficiency. Here, the surface chemistry of AuNRs is engineered via a well-controlled two-step ligand exchange with a monofunctional poly(ethylene glycol) (PEG) thiol that greatly improves the dispersion of AuNRs in LCEs. Accordingly, LCE-AuNR nanocomposites with very low PEG-AuNR content (0.01 wt%) prepared by 3D printing are shown to be highly efficient photothermal actuators with rapid response (>60% strain s-1) upon irradiation with near-infrared (NIR; 808 nm) light. Because of the excellent dispersion of PEG-AuNR within the LCE, unabsorbed NIR light transmits through the nanocomposites and can actuate a series of samples. Further, the dispersion also allows for the optical deformation of millimeter-thick 3D printed structures without sacrificing actuation speed. The realization of well-dispersed nanoinclusions to maximize the stimulus-response of LCEs can benefit functional implementation in soft robotics or medical devices.
Collapse
Affiliation(s)
- Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kyoungweon Park
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
- UES, Inc., Dayton, OH, 45433, USA
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
20
|
Zheng M, Liu P, Yan P, Zhou T, Lin X, Li X, Wen L, Xu Q. Heterogeneous CNF/MoO 3 nanofluidic membranes with tunable surface plasmon resonances for solar-osmotic energy conversion. MATERIALS HORIZONS 2024; 11:3375-3385. [PMID: 38686603 DOI: 10.1039/d4mh00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Two-dimensional (2D) nanofluidic membranes are competitive candidates for osmotic energy harvesting and have been greatly developed. However, the use of diverse inherent characteristics of 2D nanosheets, such as electronic or optoelectronic properties, to achieve intelligent ion transport, still lacks sufficient exploration. Here, a cellulose nanofiber/molybdenum oxide (CNF/MoO3) heterogeneous nanofluidic membrane with high performance solar-osmotic energy conversion is reported, and how surface plasmon resonances (SPR) regulate selective cation transport is revealed. The SPR of amorphous MoO3 endows the heterogeneous nanofluidic membranes with tunable surface charge and good photothermal conversion. Through DFT calculations and finite element modeling, the regulation of electronic and optoelectronic properties on the surface of materials by SPR and the influence of surface charge density and temperature gradient on ion transport in nanofluidic membranes are demonstrated. By mixing 0.01/0.5 M NaCl solutions using SPR and photothermal effects, the power density can achieve a remarkable value of ≈13.24 W m-2, outperforming state-of-the-art 2D-based nanofluidic membranes. This work first reveals the regulation and mechanism of SPR on ion transport in nanofluidic membranes and systematically studies photon-electron-ion interactions in nanofluidic membranes, which could also provide a new viewpoint for promoting osmotic energy conversion.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China.
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Pengfei Yan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Teng Zhou
- College of Mechanical and Electrical Engineering, Hainan University, Haikou, 570228, Hainan, P. R. China
| | - Xiangbin Lin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xin Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China.
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
21
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
22
|
Renzi E, Esposito A, Leone L, Chávez M, Pineda T, Lombardi A, Nastri F. Biohybrid materials comprising an artificial peroxidase and differently shaped gold nanoparticles. NANOSCALE ADVANCES 2024; 6:3533-3542. [PMID: 38989515 PMCID: PMC11232542 DOI: 10.1039/d4na00344f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
The immobilization of biocatalysts on inorganic supports allows the development of bio-nanohybrid materials with defined functional properties. Gold nanomaterials (AuNMs) are the main players in this field, due to their fascinating shape-dependent properties that account for their versatility. Even though incredible progress has been made in the preparation of AuNMs, few studies have been carried out to analyze the impact of particle morphology on the behavior of immobilized biocatalysts. Herein, the artificial peroxidase Fe(iii)-Mimochrome VI*a (FeMC6*a) was conjugated to two different anisotropic gold nanomaterials, nanorods (AuNRs) and triangular nanoprisms (AuNTs), to investigate how the properties of the nanosupport can affect the functional behavior of FeMC6*a. The conjugation of FeMC6*a to AuNMs was performed by a click-chemistry approach, using FeMC6*a modified with pegylated aza-dibenzocyclooctyne (FeMC6*a-PEG4@DBCO), which was allowed to react with azide-functionalized AuNRs and AuNTs, synthesized from citrate-capped AuNMs. To this end, a literature protocol for depleting CTAB from AuNRs was herein reported for the first time to prepare citrate-AuNTs. The overall results suggest that the nanomaterial shape influences the nanoconjugate functional properties. Besides giving new insights into the effect of the surfaces on the artificial peroxidase properties, these results open up the way for creating novel nanostructures with potential applications in the field of sensing devices.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Miriam Chávez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Teresa Pineda
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| |
Collapse
|
23
|
Hemant, Rahman A, Sharma P, Shanavas A, Neelakandan PP. BODIPY directed one-dimensional self-assembly of gold nanorods. NANOSCALE 2024; 16:12127-12133. [PMID: 38832457 DOI: 10.1039/d4nr02161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The assembly of anisotropic nanomaterials into ordered structures is challenging. Nevertheless, such self-assembled systems are known to have novel physicochemical properties and the presence of a chromophore within the nanoparticle ensemble can enhance the optical properties through plasmon-molecule electronic coupling. Here, we report the end-to-end assembly of gold nanorods into micrometer-long chains using a linear diamino BODIPY derivative. The preferential binding affinity of the amino group and the steric bulkiness of BODIPY directed the longitudinal assembly of gold nanorods. As a result of the linear assembly, the BODIPY chromophores positioned themselves in the plasmonic hotspots, which resulted in efficient plasmon-molecule coupling, thereby imparting photothermal properties to the assembled nanorods. This work thus demonstrates a new approach for the linear assembly of gold nanorods resulting in a plasmon-molecule coupled system, and the synergy between self-assembly and electronic coupling resulted in an efficient system having potential biomedical applications.
Collapse
Affiliation(s)
- Hemant
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atikur Rahman
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Priyanka Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
25
|
Jawed AS, Nassar L, Hegab HM, van der Merwe R, Al Marzooqi F, Banat F, Hasan SW. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024; 10:e31656. [PMID: 38828351 PMCID: PMC11140715 DOI: 10.1016/j.heliyon.2024.e31656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The freshwater shortage continues to be one of the greatest challenges affecting our planet. Although traditional membrane distillation (MD) can produce clean water regardless of climatic conditions, the process wastes a lot of energy. The technique of solar-powered membrane distillation (SPMD) has received a lot of interest in the past decade, thanks to the development of photothermal materials. SPMD is a promising replacement for the traditional MD based on fossil fuels, as it can prevent the harmful effects of emissions on the environment. Integrating green solar energy with MD can reduce the cost of the water purification process and secure freshwater production in remote areas. At this point, it is important to consider the most current progress of the SPMD system and highlight the challenges and prospects of this technology. Based on this, the background, recent advances, and principles of MD and SPMD, their configurations and mechanisms, fabrication methods, advantages, and current limitations are discussed. Detailed comparisons between SPMD and traditional MD, assessments of various standards for incorporating photothermal materials with desirable properties, discussions of desalination and other applications of SPMD and MD, and energy consumption rates are also covered. The final section addresses the potential of SPMD to outperform traditional desalination technology while improving water production without requiring a significant amount of electrical or high-grade thermal energy.
Collapse
Affiliation(s)
- Ahmad S. Jawed
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Lobna Nassar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M. Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Riaan van der Merwe
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
26
|
Pancaro A, Szymonik M, Perez Schmidt P, Erol G, Garcia Barrientos A, Polito L, Gobbi M, Duwé S, Hendrix J, Nelissen I. A Nanoplasmonic Assay for Point-of-Care Detection of Mannose-Binding Lectin in Human Serum. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30556-30566. [PMID: 38806166 PMCID: PMC11181273 DOI: 10.1021/acsami.4c04018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Mannose-binding lectin (MBL) activates the complement system lectin pathway and subsequent inflammatory mechanisms. The incidence and outcome of many human diseases, such as brain ischemia and infections, are associated with and influenced by the activity and serum concentrations of MBL in body fluids. To quantify MBL levels, tests based on ELISA are used, requiring several incubation and washing steps and lengthy turnaround times. Here, we aimed to develop a nanoplasmonic assay for direct MBL detection in human serum at the point of care. Our assay is based on gold nanorods (GNRs) functionalized with mannose (Man-GNRs) via an amphiphilic linker. We experimentally determined the effective amount of sugar linked to the nanorods' surface, resulting in an approximate grafting density of 4 molecules per nm2, and an average number of 11 to 13 MBL molecules binding to a single nanoparticle. The optimal Man-GNRs concentration to achieve the highest sensitivity in MBL detection was 15 μg·mL-1. The specificity of the assay for MBL detection both in simple buffer and in complex pooled human sera was confirmed. Our label-free biosensor is able to detect MBL concentrations as low as 160 ng·mL-1 within 15 min directly in human serum via a one-step reaction and by using a microplate reader. Hence, it forms the basis for a fast, noninvasive, point-of-care assay for diagnostic indications and monitoring of disease and therapy.
Collapse
Affiliation(s)
- Alessia Pancaro
- Health
Unit, Flemish Institute for Technological
Research (VITO), Boeretang 200, Mol 2400, Belgium
- Dynamic
Bioimaging Lab, Biomedical Research Institute, Hasselt University, Agoralaan C, Diepenbeek 3590, Belgium
| | - Michal Szymonik
- Health
Unit, Flemish Institute for Technological
Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Patricia Perez Schmidt
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta”, SCITEC−CNR,
G, Fantoli 16/15, Milan 20138, Italy
| | - Gizem Erol
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Mario Negri 2 20156, Milan, Italy
| | | | - Laura Polito
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta”, SCITEC−CNR,
G, Fantoli 16/15, Milan 20138, Italy
| | - Marco Gobbi
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Mario Negri 2 20156, Milan, Italy
| | - Sam Duwé
- Advanced
Optical Microscopy Centre, Biomedical Research Institute, Hasselt University, Agoralaan C, Diepenbeek 3590, Belgium
| | - Jelle Hendrix
- Dynamic
Bioimaging Lab, Biomedical Research Institute, Hasselt University, Agoralaan C, Diepenbeek 3590, Belgium
- Advanced
Optical Microscopy Centre, Biomedical Research Institute, Hasselt University, Agoralaan C, Diepenbeek 3590, Belgium
| | - Inge Nelissen
- Health
Unit, Flemish Institute for Technological
Research (VITO), Boeretang 200, Mol 2400, Belgium
| |
Collapse
|
27
|
Zhang L, Ding S, Tang X, Gao R, Huo R, Xie G. The Improved Antineoplastic Activity of Thermophilic L-Asparaginase Tli10209 via Site-Directed Mutagenesis. Biomolecules 2024; 14:686. [PMID: 38927089 PMCID: PMC11202230 DOI: 10.3390/biom14060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Amino acid deprivation therapy (AADT) is a novel anticancer therapy, considered nontoxic and selective. Thermophilic L-asparaginase enzymes display high stability and activity at elevated temperatures. However, they are of limited use in clinical applications because of their low substrate affinity and reduced activity under physiological conditions, which may necessitate an improved dosage, leading to side effects and greater costs. Thus, in an attempt to improve the activity of L-Asn at 37 °C, with the use of a semi-rational design, eight active-site mutants of Thermococcus litoralis DSM 5473 L-asparaginase Tli10209 were developed. T70A exhibited a 5.11-fold increase compared with the wild enzyme in physiological conditions. Double-mutant enzymes were created by combining mutants with higher hydrolysis activity. T70A/F36Y, T70A/K48L, and T70A/D50G were enhanced by 5.59-, 6.38-, and 5.58-fold. The immobilized enzyme applied in MCF-7 breast cancer cells only required one-seventh of the dose of the free enzyme to achieve the same inhibition rate under near-infrared irradiation. This provides a proof of concept that it is possible to reduce the consumption of L-Asn by improving its activity, thus providing a method to manage side effects.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| | - Simeng Ding
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (S.D.); (X.T.); (R.G.)
| | - Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (S.D.); (X.T.); (R.G.)
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (S.D.); (X.T.); (R.G.)
| | - Rui Huo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| |
Collapse
|
28
|
Rodríguez‐Sevilla E, Álvarez‐Martínez JU, Castro‐Beltrán R, Morales‐Narváez E. Flexible 3D Plasmonic Web Enables Remote Surface Enhanced Raman Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402192. [PMID: 38582528 PMCID: PMC11187956 DOI: 10.1002/advs.202402192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Nanoplasmonic materials concentrate light in specific regions of dramatic electromagnetic enhancement: hot spots. Such regions can be employed to perform single molecule detection via surface-enhanced Raman spectroscopy. However, this phenomenon is challenging since hot spots are expected to be highly intense/abundant and positioning of molecules within such hot spots is crucial to manage with ultrasensitive SERS. Herein, it is discovered that a 3D plasmonic web embedded within a biohybrid (3D-POWER) exhibits plasmonic transmission, spontaneously absorbs the analyte, and meets these so much needed criteria in ultrasensitive SERS. 3D-POWER is built with nanopaper and self-assembled layers of graphene oxide and gold nanorods. According to in silico experiments, 3D-POWER captures light in a small region and performs plasmonic field transmission in a surrounding volume, thereby activating a plasmonic web throughout the simulated volume. The study also provides experimental evidence supporting the plasmonic field transport ability of 3D power, which operates as a SERS signal carrier (even beyond the apparatus field of view), and the ultrasensitive behavior of this ecofriendly and flexible material facilitating yoctomolar limit of detection. Besides, 3D-POWER is proven useful in food and biofluids analysis. It is foreseen that 3D-POWER can be employed as a valuable platform in (bio)analytical applications.
Collapse
Affiliation(s)
- Erika Rodríguez‐Sevilla
- Centro de Investigaciones en Óptica A. C.Loma del Bosque 115, Lomas del CampestreLeónGuanajuato37150México
| | - Jonathan Ulises Álvarez‐Martínez
- Departamento de Ingeniería FísicaDivisión de Ciencias e IngenieríasUniversidad de GuanajuatoLoma del Bosque 103, Lomas del CampestreLeónGuanajuato37150México
| | - Rigoberto Castro‐Beltrán
- Departamento de Ingeniería FísicaDivisión de Ciencias e IngenieríasUniversidad de GuanajuatoLoma del Bosque 103, Lomas del CampestreLeónGuanajuato37150México
| | - Eden Morales‐Narváez
- Biophotonic Nanosensors LaboratoryCentro de Física Aplicada y Tecnología Avanzada (CFATA)Universidad Nacional Autónoma de México (UNAM)Boulevard Juriquilla 3001Querétaro76230México
| |
Collapse
|
29
|
Liang T, Li Z, Bai Y, Yin Y. Dichroic switching of core-shell plasmonic nanoparticles on reflective surfaces. EXPLORATION (BEIJING, CHINA) 2024; 4:20210234. [PMID: 38939865 PMCID: PMC11189573 DOI: 10.1002/exp.20210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Plasmonic metal nanostructures can simultaneously scatter and absorb light, with resonance wavelength and strength depending on their morphology and composition. This work demonstrates that unique dichroic effects and high-contrast colour-switching can be achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. Using core/shell nanostructures comprising a metal core and a dielectric shell, we show that their spray coating on reflective substrates produces dichroic films that can display colour switching at different viewing angles. The high-contrast colour switching, high flexibility in designing multicolour patterns, and convenience for large-scale production promise their wide range of applications, including anticounterfeiting, mechanochromic sensing, colour display, and printing.
Collapse
Affiliation(s)
- Tian Liang
- Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsSchool of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianningChina
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Zhiwei Li
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Yaocai Bai
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Yadong Yin
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
30
|
Zhao C, Liu H, Huang S, Guo Y, Xu L. Metal-Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy. Molecules 2024; 29:2384. [PMID: 38792244 PMCID: PMC11124105 DOI: 10.3390/molecules29102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, nanomaterials have attracted extensive attention in cancer-targeting therapy and as drug delivery vehicles owing to their unique surface and size properties. Multifunctional combinations of nanomaterials have become a research hotspot as researchers aim to provide a full understanding of their nanomaterial characteristics. In this study, metal-organic framework-capped gold nanorod hybrids were synthesized. Our research explored their ability to kill tumor cells by locally increasing the temperature via photothermal conclusion. The specific peroxidase-like activity endows the hybrids with the ability to disrupt the oxidative balance in vitro. Simultaneously, chemotherapeutic drugs are administered and delivered by loading and transportation for effective combinatorial cancer treatment, thereby enhancing the curative effect and reducing the unpredictable toxicity and side effects of large doses of chemotherapeutic drugs. These studies can improve combinatorial cancer therapy and enhance cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| |
Collapse
|
31
|
Maniappan S, Dutta C, Cheran A, Solís DM, Kumar J. Engineering copper plasmonic chirality via ligand-induced dissolution for enantioselective recognition of amino acids. Chem Sci 2024; 15:7121-7129. [PMID: 38756802 PMCID: PMC11095368 DOI: 10.1039/d4sc00477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/24/2024] [Indexed: 05/18/2024] Open
Abstract
The formation of chiral nanosystems and their subsequent enantioselective interaction with chiral amino acids are vital steps in many biological processes. Due to their potential to mimic biological systems, the synthesis of chiral nanomaterials has garnered significant attention over the years. Despite the emergence of diverse nanomaterials showcasing strong chiral responses, the in-depth understanding of the mechanism of plasmonic chirality in copper nanoparticles and their subsequent application in various fields are least explored. Herein, we demonstrate a facile approach for the synthesis of chiral copper nanoparticles using cysteine as a chiral precursor and capping ligand. Ligand-mediated chiral induction, established through experimental findings and a theoretical model, is ascribed as the major contributor to the origin of plasmonic chirality. The enantioselective recognition of chiral copper nanoparticles towards histidine, an amino acid with vast biological functions, was meticulously investigated by leveraging the strong copper-histidine binding ability. Ligand-induced dissolution, a unique phenomenon in nanoparticle reactions, was identified as the underlying mechanism for the nanoparticle-to-complex conversion. Understanding the mechanism of chiral induction in copper nanoparticles coupled with their enantioselective recognition of biomolecules not only holds promise in biomedical research but also sheds light on their potential as catalysts for asymmetric synthesis.
Collapse
Affiliation(s)
- Sonia Maniappan
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Camelia Dutta
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Arunima Cheran
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Diego M Solís
- Departamento de Tecnología de los Computadores y de las Comunicaciones, University of Extremadura 10003 Cáceres Spain
| | - Jatish Kumar
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| |
Collapse
|
32
|
Dziatko RA, Chintapalli SM, Song Y, Daskopoulou E, Kachman DE, Zander Z, Kuhn DL, Thon SM, Bragg AE. Tuning Optical Properties of Plasmonic Aerosols through Ligand-Solvent Interactions. J Phys Chem Lett 2024; 15:4117-4124. [PMID: 38591741 DOI: 10.1021/acs.jpclett.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Plasmonic nanoparticles are highly tunable light-harvesting materials with a wide array of applications in photonics and catalysis. More recently, there has been interest in using aerosolized plasmonic nanoparticles for cloud formation, airborne photocatalysts, and molecular sensors, all of which take advantage of the large scattering cross sections and the ability of these particles to support intense local field enhancement ("hot spots"). While extensive research has investigated properties of plasmonic particles in the solution phase, surfaces, and films, aerosolized plasmonics are relatively unexplored. Here, we demonstrate how the capping ligand, suspension solvent, and atomization conditions used for aerosol generation control the steady-state optical properties of aerosolized Silica@Au plasmonic nanoshells. Our experimental results, supported with spectral simulations, illustrate that ligand coverage and atomization conditions control the degree of solvent retention and thus the spectral characteristics and potential access to surfaces for catalysis in the aerosol phase, opening a new regime for tunable applications of plasmonic metamaterials.
Collapse
Affiliation(s)
- Rachel A Dziatko
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sreyas M Chintapalli
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yuqi Song
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eleni Daskopoulou
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dana E Kachman
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zachary Zander
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Danielle L Kuhn
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Susanna M Thon
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
33
|
Liu C, Wu T, Lalanne P, Maier SA. Enhanced Light-Matter Interaction in Metallic Nanoparticles: A Generic Strategy of Smart Void Filling. NANO LETTERS 2024; 24:4641-4648. [PMID: 38579120 PMCID: PMC11036389 DOI: 10.1021/acs.nanolett.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The intrinsic properties of materials play a substantial role in light-matter interactions, impacting both bulk metals and nanostructures. While plasmonic nanostructures exhibit strong interactions with photons via plasmon resonances, achieving efficient light absorption/scattering in other transition metals remains a challenge, impeding various applications related to optoelectronics, chemistry, and energy harvesting. Here, we propose a universal strategy to enhance light-matter interaction, through introducing voids onto the surface of metallic nanoparticles. This strategy spans nine metals including those traditionally considered optically inactive. The absorption cross section of void-filled nanoparticles surpasses the value of plasmonic (Ag/Au) counterparts with tunable resonance peaks across a broad spectral range. Notably, this enhancement is achieved under arbitrary polarizations and varied particle sizes and in the presence of geometric disorder, highlighting the universal adaptability. Our strategy holds promise for inspiring emerging devices in photocatalysis, bioimaging, optical sensing, and beyond, particularly when metals other than gold or silver are preferred.
Collapse
Affiliation(s)
- Changxu Liu
- Centre
for Metamaterial Research & Innovation, Department of Engineering, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Tong Wu
- LP2N, Institut d’Optique Graduate School, CNRS, Université
de Bordeaux, Talence 33400, France
| | - Philippe Lalanne
- LP2N, Institut d’Optique Graduate School, CNRS, Université
de Bordeaux, Talence 33400, France
| | - Stefan A. Maier
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Blackett
Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| |
Collapse
|
34
|
Kaja S, Mathews AV, Nag A. Dual-functional nano-photosensitizers: Eosin-Y decorated gold nanorods for plasmon-enhanced fluorescence and singlet oxygen generation. RSC Adv 2024; 14:12417-12427. [PMID: 38633485 PMCID: PMC11022186 DOI: 10.1039/d4ra01551g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Photosensitizer (PS) with enhanced fluorescence is attractive for image-guided photodynamic therapy (PDT) due to its dual functional role in Singlet Oxygen Generation (SOG) and producing high fluorescence signals. Here, Eosin-Y (Ey) decorated polymer coated gold nanorods (GNRs) of different aspect ratios are synthesized and introduced as novel plasmon-enhanced nano-photosensitizers for this purpose. We show, upon excitation at 519 nm, simultaneous enhancement in fluorescence and SOG was achieved for the hybrid nanostructure. The best enhancement factors of 110 and 18 for metal-enhanced fluorescence and metal-enhanced SOG, respectively, are obtained with GNRs of length 133 nm and width 45 nm, where Ey is positioned at 12.6 nm from the metal core using layer-by-layer assembly of oppositely charged polymers. The observed plasmonic effect is critically analysed by comparing the near field damping rate along with decay length, far field scattering and nonradiative energy transfer of the nanohybrids.
Collapse
Affiliation(s)
- Sravani Kaja
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India
| | - Ashin Varghese Mathews
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India
| | - Amit Nag
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India
| |
Collapse
|
35
|
Ain MU, Asma, Ullah R, Fatima Z, Illahi A, Ahmed W. Engineering gold nanoworms with tunable longitudinal plasmon peak in the near infrared and their refractive index sensing properties. RSC Adv 2024; 14:12772-12780. [PMID: 38645529 PMCID: PMC11027724 DOI: 10.1039/d4ra00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
The plasmonic properties of rod-shaped Au nanoparticles make them promising for numerous applications. The synthesis recipes for Au nanorods are well established and their longitudinal plasmon peak can be tuned over a wide wavelength range. Herein, we demonstrate that the longitudinal plasmon peak of gold NWs (NWs), which are bent nanorods, can be finely tuned in the near-infra-red region. The NWs were synthesized using a one-step reaction method. We have seen that the length and aspect ratio of NWs can be tuned by simply changing the pH of the reaction medium. Under higher pH reaction conditions, NWs with relatively smaller sizes were obtained. Similar to nanorods, NWs have a well-defined longitudinal plasmon peak, which scales linearly with their aspect ratio. Finite element analysis was used to model the optical properties of Au NWs. The simulated results matched well with the experimental spectra. The synthesized NWs have shown good refractive index sensitivities (RIS). The RIS of NWs increased with an increase in their aspect ratio. A maximum sensitivity value of 542 nm per RIU, was obtained for NWs with the plasmon peak at 1033 nm. The RIS values are comparable to that of Au nanorods and bipyramids.
Collapse
Affiliation(s)
- Misbah Ul Ain
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Asma
- Research in Modeling and Simulation (RIMS) Group, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan
| | - Rizwan Ullah
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Zanjbeel Fatima
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Ahsan Illahi
- Research in Modeling and Simulation (RIMS) Group, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan
| | - Waqqar Ahmed
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| |
Collapse
|
36
|
Yang Y, Jia H, Hu N, Zhao M, Li J, Ni W, Zhang CY. Construction of Gold/Rhodium Freestanding Superstructures as Antenna-Reactor Photocatalysts for Plasmon-Driven Nitrogen Fixation. J Am Chem Soc 2024; 146:7734-7742. [PMID: 38447042 DOI: 10.1021/jacs.3c14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Precisely controlling the architecture and spatial arrangement of plasmonic heterostructures offers unique opportunities to tailor the catalytic property, whereas the lack of a wet-chemistry synthetic approach to fabricating nanostructures with high-index facets limits their practical applications. Herein, we describe a universal synthetic strategy to construct Au/Rh freestanding superstructures (SSs) through the selective growth of ordered Rh nanoarrays on high-index-faceted Au nanobipyramids (NBPs). This synthetic strategy works on various metal nanocrystal substrates and can yield diverse Au/Rh and Pd/Rh SSs. Especially, the obtained Au NBP/Rh SSs exhibit high photocatalytic activity toward N2 fixation as a result of the spatially separated architecture, local electric field enhancement, and the antenna-reactor mechanism. Both theoretical and experimental results reveal that the Au NBPs can function as nanoantennas for light-harvesting to generate hot charge carriers for driving N2 fixation, while the Rh nanoarrays can serve as the active sites for N2 adsorption and activation to synergistically promote the overall catalytic activity in the Au NBP/Rh SSs. This work offers new avenues to rationally designing and constructing spatially separated plasmonic photocatalysts for high-efficiency catalytic applications.
Collapse
Affiliation(s)
- Yuanyuan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Henglei Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Ningneng Hu
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Mengxuan Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jingzhao Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
37
|
Medrano-Lopez JA, Villalpando I, Salazar MI, Torres-Torres C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. BIOSENSORS 2024; 14:108. [PMID: 38392027 PMCID: PMC10887370 DOI: 10.3390/bios14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Nanostructures have played a key role in the development of different techniques to attack severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Some applications include masks, vaccines, and biosensors. The latter are of great interest for detecting diseases since some of their features allowed us to find specific markers in secretion samples such as saliva, blood, and even tears. Herein, we highlight how hierarchical nanoparticles integrated into two or more low-dimensional materials present outstanding advantages that are attractive for photonic biosensing using their nanoscale functions. The potential of nanohybrids with their superlative mechanical characteristics together with their optical and optoelectronic properties is discussed. The progress in the scientific research focused on using nanoparticles for biosensing a variety of viruses has become a medical milestone in recent years, and has laid the groundwork for future disease treatments. This perspective analyzes the crucial information about the use of hierarchical nanostructures in biosensing for the prevention, treatment, and mitigation of SARS-CoV-2 effects.
Collapse
Affiliation(s)
- Jael Abigail Medrano-Lopez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Isaela Villalpando
- Centro de Investigación para los Recursos Naturales, Salaices 33941, Mexico
| | - Ma Isabel Salazar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
38
|
Wumaier D, Tuersun P, Li S, Li Y, Wang M, Xu D. Light Absorption Analysis and Optimization of Ag@TiO 2 Core-Shell Nanospheroid and Nanorod. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:325. [PMID: 38392698 PMCID: PMC10892335 DOI: 10.3390/nano14040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
For photothermal therapy of cancer, it is necessary to find Ag @TiO2 core-shell nanoparticles that can freely tune the resonance wavelength within the near-infrared biological window. In this paper, the finite element method and the size-dependent refractive index of metal nanoparticles were used to theoretically investigate the effects of the core material, core length, core aspect ratio, shell thickness, refractive index of the surrounding medium, and the particle orientation on the light absorption properties of Ag@TiO2 core-shell nanospheroid and nanorod. The calculations show that the position and intensity of the light absorption resonance peaks can be freely tuned within the first and second biological windows by changing the above-mentioned parameters. Two laser wavelengths commonly used in photothermal therapy, 808 nm (first biological window) and 1064 nm (second biological window), were selected to optimize the core length and aspect ratio of Ag@TiO2 core-shell nanospheroid and nanorod. It was found that the optimized Ag@TiO2 core-shell nanospheroid has a stronger light absorption capacity at the laser wavelengths of 808 nm and 1064 nm. The optimized Ag@TiO2 core-shell nanoparticles can be used as ideal therapeutic agents in photothermal therapy.
Collapse
Affiliation(s)
| | - Paerhatijiang Tuersun
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China; (D.W.); (S.L.); (Y.L.); (M.W.); (D.X.)
| | | | | | | | | |
Collapse
|
39
|
Trinh HD, Kim S, Yun S, Huynh LTM, Yoon S. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1805-1814. [PMID: 38001021 DOI: 10.1021/acsami.3c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Plasmonic nanoparticles exhibit unique properties that distinguish them from other nanomaterials, including vibrant visible colors, the generation of local electric fields, the production of hot charge carriers, and localized heat emission. These properties are particularly enhanced in the narrow nanogaps formed between nanostructures. Therefore, creating nanogaps in a controlled fashion is the key to achieving a fundamental understanding of plasmonic phenomena originating from the nanogaps and developing advanced nanomaterials with enhanced performance for diverse applications. One of the most effective approaches to creating nanogaps is to assemble individual nanoparticles into a clustered structure. In this study, we present a fast, facile, and highly efficient method for preparing core@satellite (CS) nanoassembly structures using gold nanoparticles of various shapes and sizes, including nanospheres, nanocubes (AuNCs), nanorods, and nanotriangular prisms. The sequential assembly of these building blocks on glass substrates allows us to obtain CS nanostructures with a 100% yield within 4 h. Using 9 different building blocks, we successfully produce 16 distinct CS nanoassemblies and systematically investigate the combinations to search for the highest Raman enhancement. We find that the surface-enhanced Raman scattering (SERS) intensity of AuNC@AuNC CS nanoassemblies is 2 orders of magnitude larger than that of other CS nanoassemblies. Theoretical analyses reveal that the intensity and distribution of the electric field induced in the nanogaps by plasmon excitation, as well as the number of molecules in the interfacial region, collectively contribute to the unprecedentedly large SERS enhancement observed for AuNC@AuNC. This study not only presents a novel assembly method that can be extended to produce many other nanoassemblies but also identifies a highly promising SERS material for sensing and diagnostics through a systematic search process.
Collapse
Affiliation(s)
- Hoa Duc Trinh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Seokheon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Seokhyun Yun
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Ly Thi Minh Huynh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| |
Collapse
|
40
|
Yi T, Hongjiao C, Minling Z, Xin Y, Qingfu Q, Zhixin C, Jing Y, Zhikui C. Biodistribution and Targeted Antitumor Effects of Trastuzumab-Modified Gold Nanorods in Mice with Gastric Cancer. Curr Drug Deliv 2024; 21:421-430. [PMID: 36515037 DOI: 10.2174/1567201820666221212125325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Targeted drug is often engulfed and cleared by the reticuloendothelial system in vivo, resulting in reduced treatment efficacy. This study aimed to explore the biodistribution and HER-2-targeted antitumor effects of trastuzumab-modified gold nanorods (Tra-AuNRs) in a gastric cancer animal model. METHODS Gold nanorods were synthesized using a seed-mediated growth method, and then subjected to trastuzumab-targeted modification. Elemental analysis, Fourier transform infrared spectroscopy, and Xray photoelectron spectroscopy were performed; UV-visible absorption peak, photothermal effects, morphology, and size distribution of Tra-AuNRs were characterized. The targeted killing effect of Tra- AuNRs on gastric cancer cells was assessed in vitro. Tra-AuNRs were injected intravenously and intratumorally into gastric cancer-bearing nude mice in vivo and their distribution was detected. Tumor growth inhibition rate and tumor apoptosis-related protein expression were compared between groups. RESULTS Tra-AuNRs presented a relatively uniform morphology with an average particle size of 59.9 nm and a longitudinal plasmon resonance absorption peak of 790 nm. The targeted killing rate of gastric cancer cells in vitro by Tra-AuNRs was 87.9%. After intravenous injection, Tra-AuNRs were mainly distributed in the liver, tumor, spleen, and lungs. Comparatively, Tra-AuNRs were mainly distributed in the tumor when intratumorally injected, with a tumor concentration of 6.42 μg/g after 24 h. The tumor growth inhibition rate reached 78.3% in the intratumoral injection group, with significantly higher BAX, BAD, and CASPASE-3 expression than that in the intravenous injection group. CONCLUSION The findings suggest that Tra-AuNRs can be used for HER-2-positive gastric cancer treatment. Intratumoral injection of Tra-AuNRs significantly increased the local tumor drug concentration and improved the molecular targeted antitumor growth effect in gastric cancer-bearing nude mice.
Collapse
Affiliation(s)
- Tang Yi
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Cai Hongjiao
- Fisheries College of Jimei University, Xiamen, China
| | - Zhuo Minling
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Xin
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Qian Qingfu
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Chen Zhixin
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou, China
| | - Yang Jing
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Chen Zhikui
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
41
|
Hilal H, Haddadnezhad M, Oh MJ, Jung I, Park S. Plasmonic Dodecahedral-Walled Elongated Nanoframes for Surface-Enhanced Raman Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304567. [PMID: 37688300 DOI: 10.1002/smll.202304567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Indexed: 09/10/2023]
Abstract
Here, elongated pseudohollow nanoframes composed of four rectangular plates enclosing the sides and two open-frame ends with four ridges pointing at the tips for near-field focusing are reported. The side facets act as light-collecting domains and transfer the collected light to the sharp tips for near-field focusing. The nanoframes are hollow inside, allowing the gaseous analyte to penetrate through the entire architecture and enabling efficient detection of gaseous analytes when combined with Raman spectroscopy. The resulting nanostructures are named Au dodecahedral-walled nanoframes. Synthesis of the nanoframes involves shape transformation of Au nanorods with round tips to produce Au-elongated dodecahedra, followed by facet-selective Pt growth, etching of the inner Au, and regrowth steps. The close-packed assembly of Au dodecahedral-walled nanoframes exhibits an attomolar limit of detection toward benzenethiol. This significant enhancement in SERS is attributed to the presence of a flat solid terrace for a large surface area, sharp edges and vertices for strong electromagnetic near-field collection, and open frames for effective analyte transport and capture. Moreover, nanoframes are applied to detect chemical warfare agents, specifically mustard gas simulants, and 20 times higher sensitivity is achieved compared to their solid counterparts.
Collapse
Affiliation(s)
- Hajir Hilal
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | | | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
42
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
43
|
Zhu J, Dai J, Xu Y, Liu X, Wang Z, Liu H, Li G. Photo-enhanced dehydrogenation of formic acid on Pd-based hybrid plasmonic nanostructures. NANOSCALE ADVANCES 2023; 5:6819-6829. [PMID: 38059022 PMCID: PMC10696931 DOI: 10.1039/d3na00663h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Coupling visible light with Pd-based hybrid plasmonic nanostructures has effectively enhanced formic acid (FA) dehydrogenation at room temperature. Unlike conventional heating to achieve higher product yield, the plasmonic effect supplies a unique surface environment through the local electromagnetic field and hot charge carriers, avoiding unfavorable energy consumption and attenuated selectivity. In this minireview, we summarized the latest advances in plasmon-enhanced FA dehydrogenation, including geometry/size-dependent dehydrogenation activities, and further catalytic enhancement by coupling local surface plasmon resonance (LSPR) with Fermi level engineering or alloying effect. Furthermore, some representative cases were taken to interpret the mechanisms of hot charge carriers and the local electromagnetic field on molecular adsorption/activation. Finally, a summary of current limitations and future directions was outlined from the perspectives of mechanism and materials design for the field of plasmon-enhanced FA decomposition.
Collapse
Affiliation(s)
- Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Jiawei Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - You Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Xiaoling Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 PR China
| |
Collapse
|
44
|
Gupta R, Gupta P, Wang S, Melnykov A, Jiang Q, Seth A, Wang Z, Morrissey JJ, George I, Gandra S, Sinha P, Storch GA, Parikh BA, Genin GM, Singamaneni S. Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nat Biomed Eng 2023; 7:1556-1570. [PMID: 36732621 DOI: 10.1038/s41551-022-01001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
Lateral-flow assays (LFAs) are rapid and inexpensive, yet they are nearly 1,000-fold less sensitive than laboratory-based tests. Here we show that plasmonically active antibody-conjugated fluorescent gold nanorods can make conventional LFAs ultrasensitive. With sample-to-answer times within 20 min, plasmonically enhanced LFAs read out via a standard benchtop fluorescence scanner attained about 30-fold improvements in dynamic range and in detection limits over 4-h-long gold-standard enzyme-linked immunosorbent assays, and achieved 95% clinical sensitivity and 100% specificity for antibodies in plasma and for antigens in nasopharyngeal swabs from individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Comparable improvements in the assay's performance can also be achieved via an inexpensive portable scanner, as we show for the detection of interleukin-6 in human serum samples and of the nucleocapsid protein of SARS-CoV-2 in nasopharyngeal samples. Plasmonically enhanced LFAs outperform standard laboratory tests in sensitivity, speed, dynamic range, ease of use and cost, and may provide advantages in point-of-care diagnostics.
Collapse
Affiliation(s)
- Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sean Wang
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremiah J Morrissey
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ige George
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumanth Gandra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Pratik Sinha
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory A Storch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
45
|
Kincanon M, Murphy CJ. Nanoparticle Size Influences the Self-Assembly of Gold Nanorods Using Flexible Streptavidin-Biotin Linkages. ACS NANO 2023. [PMID: 38010073 DOI: 10.1021/acsnano.3c09096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The self-assembly of colloidal nanocrystals remains of robust interest due to its potential in creating hierarchical nanomaterials that have advanced function. For gold nanocrystals, junctions between nanoparticles yield large enhancements in local electric fields under resonant illumination, which is suitable for surface-enhanced spectroscopies for molecular sensors. Gold nanorods can provide such plasmonic fields at near-infrared wavelengths of light for longitudinal excitation. Through the use of careful concentration and stoichiometric control, a method is reported herein for selective biotinylation of the ends of gold nanorods for simple, consistent, and high-yielding self-assembly upon addition of the biotin-binding protein streptavidin. This method was applied to four different sized nanorods of similar aspect ratio and analyzed through UV-vis spectroscopy for qualitative confirmation of self-assembly and transmission electron microscopy to determine the degree of self-assembly in end-linked nanorods. The yield of end-linked assemblies approaches 90% for the largest nanorods and approaches 0% for the smallest nanorods. The number of nanorods linked in one chain also increases with an increased nanoparticle size. The results support the notion that the lower ligand density at the ends of the larger nanorods yields preferential substitution reactions at those ends and hence preferential end-to-end assembly, while the smallest nanorods have a relatively uniform ligand density across their surfaces, leading to spatially random substitution reactions.
Collapse
Affiliation(s)
- Maegen Kincanon
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Nonappa. Precision nanoengineering for functional self-assemblies across length scales. Chem Commun (Camb) 2023; 59:13800-13819. [PMID: 37902292 DOI: 10.1039/d3cc02205f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
As nanotechnology continues to push the boundaries across disciplines, there is an increasing need for engineering nanomaterials with atomic-level precision for self-assembly across length scales, i.e., from the nanoscale to the macroscale. Although molecular self-assembly allows atomic precision, extending it beyond certain length scales presents a challenge. Therefore, the attention has turned to size and shape-controlled metal nanoparticles as building blocks for multifunctional colloidal self-assemblies. However, traditionally, metal nanoparticles suffer from polydispersity, uncontrolled aggregation, and inhomogeneous ligand distribution, resulting in heterogeneous end products. In this feature article, I will discuss how virus capsids provide clues for designing subunit-based, precise, efficient, and error-free self-assembly of colloidal molecules. The atomically precise nanoscale proteinic subunits of capsids display rigidity (conformational and structural) and patchy distribution of interacting sites. Recent experimental evidence suggests that atomically precise noble metal nanoclusters display an anisotropic distribution of ligands and patchy ligand bundles. This enables symmetry breaking, consequently offering a facile route for two-dimensional colloidal crystals, bilayers, and elastic monolayer membranes. Furthermore, inter-nanocluster interactions mediated via the ligand functional groups are versatile, offering routes for discrete supracolloidal capsids, composite cages, toroids, and macroscopic hierarchically porous frameworks. Therefore, engineered nanoparticles with atomically precise structures have the potential to overcome the limitations of molecular self-assembly and large colloidal particles. Self-assembly allows the emergence of new optical properties, mechanical strength, photothermal stability, catalytic efficiency, quantum yield, and biological properties. The self-assembled structures allow reproducible optoelectronic properties, mechanical performance, and accurate sensing. More importantly, the intrinsic properties of individual nanoclusters are retained across length scales. The atomically precise nanoparticles offer enormous potential for next-generation functional materials, optoelectronics, precision sensors, and photonic devices.
Collapse
Affiliation(s)
- Nonappa
- Facutly of Engineering and Natural Sciences, Tampere University, FI-33720, Tampere, Finland.
| |
Collapse
|
47
|
Yun S, Yoon S. Mode-Selective Plasmon Coupling between Au Nanorods and Au Nanospheres. J Phys Chem Lett 2023; 14:10225-10232. [PMID: 37931252 DOI: 10.1021/acs.jpclett.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Plasmons play a central role in the properties of gold nanoparticles (AuNPs). Plasmons in a AuNP are influenced by neighboring ones, resulting in hybridized bonding dipole modes and red-shifted resonance peaks in the extinction spectra. Previous studies have mainly focused on plasmon coupling among spherical AuNPs (AuNSs). Here, we explore plasmonic interactions between AuNSs and anisotropic gold nanorods (AuNRs), which have longitudinal (LO) and transverse (TR) plasmon modes. We successfully assemble AuNSs around AuNRs ("AuNR@AuNS"), observing shifts in both the LO and TR modes in the extinction spectra due to directional coupling. Selectively binding AuNSs to the ends of AuNRs ("AuNR═AuNS") leads to predominant plasmon coupling along the LO direction. Our simulation studies reveal that exclusive LO or TR coupling occurs only when AuNSs attach to the center of either the end or the side of AuNRs. This study provides a valuable guideline for selectively exciting plasmons in desired nanogaps when multiple nanogaps are present.
Collapse
Affiliation(s)
- Seokhyun Yun
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea
| |
Collapse
|
48
|
Urban M, Rosati G, Maroli G, Pelle FD, Bonini A, Sajti L, Fedel M, Merkoçi A. Nanostructure Tuning of Gold Nanoparticles Films via Click Sintering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306167. [PMID: 37963854 DOI: 10.1002/smll.202306167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Colloidal metal nanoparticles dispersions are commonly used to create functional printed electronic devices and they typically require time-, energy- and equipment-consuming post-treatments to improve their electrical and mechanical properties. Traditional methods, e.g. thermal, UV/IR, and microwave treatments, limit the substrate options and may require expensive equipment, not available in all the laboratories. Moreover, these processes also cause the collapse of the film (nano)pores and interstices, limiting or impeding its nanostructuration. Finding a simple approach to obtain complex nanostructured materials with minimal post-treatments remains a challenge. In this study, a new sintering method for gold nanoparticle inks that called as "click sintering" has been reported. The method uses a catalytic reaction to enhance and tune the nanostructuration of the film while sintering the metallic nanoparticles, without requiring any cumbersome post-treatment. This results in a conductive and electroactive nanoporous thin film, whose properties can be tuned by the conditions of the reaction, i.e., concentration of the reagent and time. Therefore, this study presents a novel and innovative one-step approach to simultaneously sinter gold nanoparticles films and create functional nanostructures, directly and easily, introducing a new concept of real-time treatment with possible applications in the fields of flexible electronics, biosensing, energy, and catalysis.
Collapse
Affiliation(s)
- Massimo Urban
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Doctorado en Biotecnología, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Gabriel Maroli
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavio Della Pelle
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, Teramo, 64100, Italy
| | - Andrea Bonini
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Laszlo Sajti
- Nano-Engineering Group, RHP Technology GmbH, Seibersdorf, 2444, Austria
| | - Mariangela Fedel
- Nano-Engineering Group, RHP Technology GmbH, Seibersdorf, 2444, Austria
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| |
Collapse
|
49
|
Yoshida S, Tomizaki KY, Usui K. Shape control of Au nanostructures using peptides for biotechnological applications. Chem Commun (Camb) 2023; 59:13239-13244. [PMID: 37855705 DOI: 10.1039/d3cc04331b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Metallic gold (Au) nanostructures have attracted attentions in various fields of materials science and electrical science in terms of catalysts, sensing systems, photonic devices, and drug delivery systems because of their characteristic physical, chemical, and biocompatible properties. Recently, Au nanostructures with near-infrared light absorbing properties have shown potential for applications such as biological imaging and thermotherapy in biotechnological fields. However, fabrication of Au nanostructures with complex shapes often requires the use of highly biotoxic substances such as surfactants and reducing agents. Peptides are promising compounds for controlling the shape of Au nanostructures by mineralization with several advantages for this purpose. In this highlight, we focus on the shapes with respect to the fabrication of Au nanostructures using biocompatible peptides. We classify the peptides that form Au nanostructures into three broad categories: those that bind Au ions, those that reduce Au ions, and those that control the direction of Au crystal growth. Then, we briefly summarize the correlations between peptide sequences and their roles, and propose future strategies for fabricating Au nanostructures using peptides for biotechnological applications.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, Hyogo, 6500047, Japan.
| | - Kin-Ya Tomizaki
- Department of Materials Chemistry and Innovative Materials and Processing Research Center, Ryukoku University, Seta-Oe, Otsu, Shiga, 5202194, Japan
| | - Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
50
|
He MQ, Ai Y, Hu W, Guan L, Ding M, Liang Q. Recent Advances of Seed-Mediated Growth of Metal Nanoparticles: from Growth to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211915. [PMID: 36920232 DOI: 10.1002/adma.202211915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.
Collapse
Affiliation(s)
- Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Liandi Guan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|