1
|
Wang J, Dai J, Chen G, Jiang F. Role of sulfur biogeochemical cycle in mercury methylation in estuarine sediments: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126964. [PMID: 34523493 DOI: 10.1016/j.jhazmat.2021.126964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Estuaries are sinks for mercury, in which the most toxic mercury form, neurotoxic methylmercury (MeHg), is produced by mercury methylators and accumulates in estuarine sediments. In the same area, the microbial sulfur cycle is triggered by sulfate-reducing bacteria (SRB), which is considered as the main mercury methylator. In this review, we analyzed the sulfur and mercury speciation in sediments from 70 estuaries globally. Abundant mercury and sulfur species were found in the global estuarine sediments. Up to 727 μg THg/g dw and 880 ng MeHg/g dw were found in estuarine sediments, showing the serious risk of mercury to aquatic ecological systems. Significant correlations between sulfur and MeHg concentrations were discovered. Especially, the porewater sulfate concentration positively correlated to MeHg production. The sulfur cycle affects MeHg formation via activating mercury methylator activities and limiting mercury bioavailability, leading to promote or inhibit MeHg formation at different sulfur speciation concentrations. These results suggest that sulfur biogeochemical cycle plays an important role in mercury methylation in estuarine sediments, and the effect of the sulfur cycle on mercury methylation deserves to be further explored in future research.
Collapse
Affiliation(s)
- Jinting Wang
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ji Dai
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Bretier M, Dabrin A, Billon G, Mathon B, Miège C, Coquery M. To what extent can the biogeochemical cycling of mercury modulate the measurement of dissolved mercury in surface freshwaters by passive sampling? CHEMOSPHERE 2020; 248:126006. [PMID: 32000038 DOI: 10.1016/j.chemosphere.2020.126006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is a pollutant of global concern owing to its great toxicity even at very low concentrations. Its toxicity depends on its chemical forms evidencing the importance to study its speciation. Dissolved Hg (Hg(d)) and methylmercury (MeHg(d)) monitoring in surface freshwaters represents a great challenge because of their very low concentrations and substantial temporal variability at different timescales. The Hg(d) temporal variability depends on the environmental conditions such as the hydrology, water temperature, redox potential (Eh), and solar photo cycle. Passive samplers represent an alternative to improve the assessment of Hg(d) and MeHg(d) concentrations in surface freshwaters by integrating their temporal variability. An original sampling strategy was designed to assess the relevance of 3-mercaptopropyl DGT (Diffusive Gradient in Thin films) to integrate in situ the temporal variations of labile Hg (Hg(DGT)) and MeHg (MeHg(DGT)) concentrations. This strategy was implemented on two rivers to study the dynamics of Hg(d), Hg(DGT), MeHg(d) and MeHg(DGT) at diurnal and annual timescales. We evidenced that Hg(DGT) and MeHg(DGT) concentrations were generally consistent with discrete sampling measurements of Hg(d) and MeHg(d) in dynamic surface freshwaters. However, Hg(DGT) concentrations were overestimated (2-16 times higher) in case of low flow or low water depth, low suspended particulate matter (SPM) concentrations and elevated daily photoperiod. The most probable hypothesis is that such conditions promoted Hg0 production, and resulted in Hg0 uptake by DGT. Thus, attention should be paid when interpreting Hg(DGT) concentrations in surface freshwaters in environmental conditions that could promote Hg0 production.
Collapse
Affiliation(s)
- M Bretier
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - A Dabrin
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France.
| | - G Billon
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F-59000, Lille, France
| | - B Mathon
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - C Miège
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - M Coquery
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| |
Collapse
|
3
|
Diviš P, Kadlecová M, Ouddane B. Mercury Distribution in the Deûle River (Northern France) Measured by the Diffusive Gradients in Thin Films Technique and Conventional Methods. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:700-709. [PMID: 26428003 DOI: 10.1007/s00244-015-0231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
The distribution of mercury in surface water and in sediment from Deûle River in Northern France was studied by application of conventional sampling methods and by diffusive gradients in thin films technique (DGT). Concentration of total dissolved mercury in surface water was 20.8 ± 0.8 ng l(-1). The particulate mercury concentration was 6.2 ± 0.6 µg g(-1). The particulate mercury was accumulated in sediment (9.9 ± 2.3 mg kg(-1)), and it was transformed by methylating bacteria to methylmercury, mainly in the first 2-cm layer of the sediment. Total dissolved concentration of mercury in sediment pore water obtained by application of centrifugation extraction was 17.6 ± 4.1 ng l(-1), and it was comparable with total dissolved pore water mercury concentration measured by DGT probe containing Duolite GT-73 resin gel (18.2 ± 4.3 ng l(-1)), taking the sediment heterogeneity and different principles of the applied methods into account. By application of two DGT probes with different resin gels specific for mercury, it was found that approximately 30% of total dissolved mercury in sediment pore water was present in labile forms easy available for biota. The resolution of mercury DGT depth profiles was 0.5 cm, which allows, unlike conventional techniques, to study the connection of the geochemical cycle of mercury with geochemical cycles of iron and manganese.
Collapse
Affiliation(s)
- Pavel Diviš
- Centre for Materials Research, Faculty of Chemistry, Brno University of Technology, CZ.1.05/2.1.00/01.0012 Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Milada Kadlecová
- LASIR UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Université de Lille, 1, Bât. C8 2° étage, 59655, Villeneuve d'Ascq Cedex, France
| | - Baghdad Ouddane
- LASIR UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Université de Lille, 1, Bât. C8 2° étage, 59655, Villeneuve d'Ascq Cedex, France
| |
Collapse
|
4
|
Tappin AD, Millward GE. The English Channel: Contamination status of its transitional and coastal waters. MARINE POLLUTION BULLETIN 2015; 95:529-550. [PMID: 25649837 DOI: 10.1016/j.marpolbul.2014.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
The chemical contamination (organic compounds, metals, radionuclides, microplastics, nutrients) of English Channel waters has been reviewed, focussing on the sources, concentrations and impacts. River loads were only reliable for Pb, whereas atmospheric loads appeared robust for Cd, Pb, Hg, PCB-153 and γ-HCH. Temporal trends in atmospheric inputs were decreasing. Contaminant concentrations in biota were relatively constant or decreasing, but not for Cd, Hg and HBCDD, and deleterious impacts on fish and copepods were reported. However, data on ecotoxicological effects were generally sparse for legacy and emerging contaminants. Intercomparison of activity concentrations of artificial radionuclides in sediments and biota on both Channel coasts was hindered by differences in methodological approaches. Riverine phosphate loads decreased with time, while nitrate loads remained uniform. Increased biomass of algae, attributable to terrestrial inputs of nutrients, has affected benthic production and shellfisheries. A strategic approach to the identification of contaminant impacts on marine biota is recommended.
Collapse
Affiliation(s)
- A D Tappin
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK; Marine Institute, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| | - G E Millward
- Marine Institute, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
5
|
Daye M, Kadlecova M, Ouddane B. Biogeochemical factors affecting the distribution, speciation, and transport of Hg species in the Deûle and Lys Rivers (Northern France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2708-2720. [PMID: 25205152 DOI: 10.1007/s11356-014-3528-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
The Deûle River is a highly polluted River by heavy metals caused by the historical discharges of ore minerals from the former ore smelter "Metaleurop." The potential mercury (Hg) pollution in the Deûle River implicates the importance of Hg distribution study in the river. As well as to configure the different biogeochemical factors that control the distribution and the potential transport of Hg to distant places. Four different sites were studied as follows: D-A (Deûle River, a site located upstream the river), D-B (Deûle River, a site located near a Zn, Pb, Cu, and Ni smelter that closed in 2003), L-C (Lys River, a site located upstream the confluence of the Deûle River with Lys River), and L-D (downstream the rivers confluence). Different Hg analyses were performed including total mercury in sediment (HgTS), methylmercury (MeHg) in sediment, total mercury in pore water (HgTPW), total mercury in surface water (HgTD), and total suspended particulate Hg in water (HgTP). HgTS decreases downstream from the Deûle River sites with a mean value of 11 ± 0.34 mg/kg to Lys River site (L-D) with a mean value of 0.53 ± 0.02 mg/kg at the confluence. The unaffected side of the Lys River, localized before the confluence (L-C), is characterized by low HgTS of an average value of 0.042 ± 0.003 mg/kg and high % MeHg reaching 4.2 %. Whereas, the highly contaminated Deûle sites are designated by low % MeHg with an average value of 0.053 %. Low pristine environments like that found in L-C site with more favorable biogeochemical conditions of lower concentrations of HgTS, sulfides, and Corg host more active biotic methylation than that of the highly polluted Deûle sites with high concentrations of HgTS and sulfides concentrations. Methylation in D-B (the closet site to Metaleurop smelter) is an old and recent methylation activity that has contributed to MeHg accumulation in the sediments as opposed to the exclusive recent events of methylation in Lys sites. MeHg in all sites is produced in situ rather than exported from other potential sources confirmed by significant relations of % MeHg with %Corg and AVS. Hg pollution is transported from the Deûle River to the Lys River (L-C and L-D) through suspended particles leached or remobilized from the River catchment. The dominance of reducing conditions in the Deûle River attributed to higher sulfide concentration has contributed to higher HgTPW than the Lys sites. Diffusive fluxes of HgT from sediment to water column for the Deûle and Lys River sites (L-C and L-D) were estimated to be 224, 53, and 2 ng/cm(2) year, respectively.
Collapse
Affiliation(s)
- Mirna Daye
- Equipe Chimie Analytique et Marine, UMR-CNRS 8217, Université Lille 1, F-59655, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
6
|
Ouddane B, Monperrus M, Kadlecova M, Daye M, Amouroux D. Mercury methylation and demethylation in highly contaminated sediments from the Deûle River in Northern France using species-specific enriched stable isotopes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:145-155. [PMID: 25421488 DOI: 10.1039/c4em00398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The methylation-demethylation processes in sediments of the Deûle River were determined using well-established isotope experiments. For this purpose, species-specific isotopically enriched tracers in the form of inorganic mercury IHg ((199)Hg) and methylmercury MeHg (Me(201)Hg) were used to determine Hg dynamics in the Deûle River. Sediment cores were collected at two sampling locations chosen in the most polluted zone of the Deûle River (Northern France) in proximity of a Zn, Pb, Cu, and Ni smelter called "Metaleurop" that had closed in 2003. Site I was chosen in the vicinity of the historic smelter site and site II upstream of the Deûle River. The incubation was realized directly in the sediment cores during the 24 hour experiment under environmental conditions close to the real natural systems (the same temperature, pH, humidity, light/dark conditions, oxygen levels…). The enriched isotopes were injected by needle into different sections of the core. After incubation, the core was sliced and the concentration of Hg species was determined in each section. The highest methylation potentials were found at sediment depths away from the sediment-water-interface. At site I, the methylation potential varied between 0.02-0.9% and at site II between 0.001-0.2%. The demethylation potentials fluctuated between 0.001-60% at site I and between 4-53% at site II. In both sites, negative net methylation potentials were obtained in several sediment depths, representing a net sink for MeHg. The average net methylation potential in site I demonstrated a negative value of 1919 ng g(-1) day(-1). It seems that in site I the demethylation process predominates methylation. Whereas, in site II, the average net methylation potential was a positive value of 138 ng g(-1) day(-1), demonstrating the dominance of methylation over demethylation.
Collapse
Affiliation(s)
- Baghdad Ouddane
- Université, Lille 1, Equipe de Physico-Chimie de l'Environnement, UMR CNRS LASIR 8516, Bat. C8 2°étage, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
7
|
Kadlecova M, Daye M, Ouddane B. Improvement in Determination of Methylmercury in Sediments by Headspace Trap Gas Chromatography and Atomic Fluorescence Spectrometry after Organic Extraction and Aqueous Phase Ethylation. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.848364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Croes K, De Coster S, De Galan S, Morrens B, Loots I, Van de Mieroop E, Nelen V, Sioen I, Bruckers L, Nawrot T, Colles A, Den Hond E, Schoeters G, van Larebeke N, Baeyens W, Gao Y. Health effects in the Flemish population in relation to low levels of mercury exposure: from organ to transcriptome level. Int J Hyg Environ Health 2013; 217:239-47. [PMID: 23920476 DOI: 10.1016/j.ijheh.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 11/30/2022]
Abstract
Due to possible health risks, quantification of mercury accumulation in humans was included in the Flemish biomonitoring programmes FLEHS I (2002-2006) and FLEHS II (2007-2011). The general objective of FLEHS I was to assess regional exposure levels in order to link possible differences in these internal exposure levels to different types of local environmental pressure. Therefore, Hg and MMHg (methylmercury) were only measured in pooled blood samples per region and per age class. In FLEHS II, mercury concentrations were measured in hair of each participant. About 200 adolescents and 250 mothers (reference group) and two times 200 adolescents (2 hotspots) were screened. The main objectives of the FLEHS II study were: (1) to determine reference levels of mercury in hair for Flanders; (2) to assess relations between mercury exposure and possible sources like fish consumption; (3) to assess dose-effect relations between mercury exposure and health effect markers. The results showed that mercury concentrations in the Flemish population were rather low compared to other studies. Mercury levels in the Flemish populations were strongly related to the age of the participants and consumption of fish. Significant negative associations were observed between mercury in hair and asthma, having received breast feeding as a newborn, age at menarche in girls, allergy for animals and free testosterone levels. Significant correlations were also observed between mercury in hair and genes JAK2, ARID4A, Hist1HA4L (boys) and HLAdrb5, PIAS2, MANN1B1, GIT and ABCA1 (girls).
Collapse
Affiliation(s)
- Kim Croes
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| | - Sam De Coster
- Ghent University Hospital, Study Centre for Carcinogenesis and Primary Prevention of Cancer, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sandra De Galan
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| | - Bert Morrens
- University of Antwerp, Faculty of Political and Social Sciences, Department of Sociology, Sint Jacobstraat 2, 2000 Antwerp, Belgium
| | - Ilse Loots
- University of Antwerp, Faculty of Political and Social Sciences, Department of Sociology, Sint Jacobstraat 2, 2000 Antwerp, Belgium
| | - Els Van de Mieroop
- Provincial Institute for Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute for Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Isabelle Sioen
- Ghent University, Department of Public Health, UZ-2 Blok A, De Pintelaan 185, 9000 Ghent, Belgium; Research Foundation - Flanders, Egmontstraat 5, 1000 Brussels, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Tim Nawrot
- School of Public Health, Occupational & Environmental Medicine, K.U. Leuven, Herestraat 49 (O&N 706), 3000 Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Ann Colles
- Flemish Institute for Technological Research (VITO), Environmental Health and Risk, Boeretang 200, 2400 Mol, Belgium
| | - Elly Den Hond
- Flemish Institute for Technological Research (VITO), Environmental Health and Risk, Boeretang 200, 2400 Mol, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Environmental Health and Risk, Boeretang 200, 2400 Mol, Belgium
| | - Nicolas van Larebeke
- Ghent University Hospital, Study Centre for Carcinogenesis and Primary Prevention of Cancer, De Pintelaan 185, 9000 Ghent, Belgium
| | - Willy Baeyens
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| | - Yue Gao
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|