1
|
Vidane Arachchige Chamila Samarasinghe S, Krishnan K, John Aitken R, Naidu R, Megharaj M. Multigenerational effects of TiO 2 rutile nanoparticles on earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122376. [PMID: 37586686 DOI: 10.1016/j.envpol.2023.122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoparticles have gained considerable attention as one of the pollutants released into the environment through consumer products. This study describes the sub-chronic and generational effects of TiO2 (rutile) nanoparticles on earthworms over a 252-day duration, with exposure ranging from 0.1 to 1000 mg kg-1. Results indicate that sub-chronic exposure (28 days) of TiO2 nanoparticles did not cause notable adverse effects on the weight, reproduction, and tissue accumulation in parent earthworms. However, the F1 generation displayed remarkable growth and maturity retardation during their early developmental stages, even at lower nano-TiO2 (rutile). Significant impacts on the reproduction of the F1 generation were observed solely at the highest concentration (1000 mg kg-1), which is predicted to be below the highest exposure scenario. Moreover, long-term (252 days) exposure resulted in considerable bioaccumulation of Ti metal in the F1 generation of E. fetida. This study uncovers the negative effects of TiO2 rutile nanoparticles on earthworms across two generations, with pronounced effects on the growth, maturity, and bioaccumulation in the F1 generation compared to the parent generation. These findings suggest the potential induction of toxic effects by TiO2 rutile nanoparticles, emphasizing the sensitivity of juvenile parameters over adult parameters in toxicity assessments. Furthermore, the study highlights the urgent need for comprehensive evaluations of the longer-term toxicity of nanoparticles on terrestrial organisms. Implementing multigenerational studies will contribute significantly to a better understanding of nanoparticle ecotoxicity on environmental organisms.
Collapse
Affiliation(s)
- Samarasinghe Vidane Arachchige Chamila Samarasinghe
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, NSW, 2308, Australia; Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kannan Krishnan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, NSW, 2308, Australia.
| |
Collapse
|
2
|
Hou L, Liang Q, Yang G, Gao L, Liu X. Translocation of TiO 2 nanoparticles enhances phosphorus uptake by wetland plants: Evidence from Pistia stratiotes and Alisma plantago-aquatica. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118789. [PMID: 37591090 DOI: 10.1016/j.jenvman.2023.118789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Titanium dioxide nanoparticles (nTiO2) and phosphorus (P) are widely present in sewages. To verify the hypothesis and the associated mechanisms that root-to-shoot translocation of nTiO2 can enhance plant P uptake thus P removal during sewage treatment, two wetland plants (Pistia stratiotes and Alisma plantago-aquatica) with different lateral root structures were used to examine the effect of nTiO2 (89.7% anatase and 10.3% rutile) on plant growth and P uptake in a hydroponic system. Inductively coupled plasma-optical emission spectroscopy and transmission electron microscopy-energy dispersive spectroscopy showed that P. stratiotes with well-developed lateral roots translocated 1.4-16 fold higher nTiO2 than A. plantago-aquatica with poorly developed roots, indicating P. stratiotes is efficient in nTiO2 uptake. In addition, nTiO2 root-to-shoot translocation in P. stratiotes increased with increasing nTiO2 concentration, while the opposite occurred in A. plantago-aquatica. Corresponding to the stronger nTiO2 translocation in P. stratiotes, its P uptake efficiency (Imax) and P accumulation were greater than that in A. plantago-aquatica, with Imax being increased by 35.8% and -16.4% and shoot P concentrations being increased by 16.2-64.6% and 11.4%, respectively. The strong positive correlation between Ti and P concentrations in plant tissues (r = 0.72-0.89, P < 0.01) indicated that nTiO2 translocation enhanced P uptake. Moreover, nTiO2-enhanced P uptake promoted plant growth and photosynthetic pigment synthesis. Therefore, wetland plants with well-developed lateral roots like P. stratiotes have potential to be used in P removal from nTiO2-enriched sewages.
Collapse
Affiliation(s)
- Lei Hou
- College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| | - Qibin Liang
- College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Guiying Yang
- College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue Liu
- College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
3
|
Leroy M, Pey B, Jassey VEJ, Liné C, Elger A, Probst A, Flahaut E, Silvestre J, Larue C. Interactive effects of metals and carbon nanotubes in a microcosm agrosystem. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128613. [PMID: 35359102 DOI: 10.1016/j.jhazmat.2022.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Agricultural soils are exposed to multiple contaminants through the use of agrochemicals or sewage sludge, introducing metals, nanomaterials and others. Among nanomaterials, carbon nanotubes (CNTs) are known for their large surface area and adsorption capabilities, possibly modifying other element behavior. However, to date, very little is known about the impacts of such interactions in agrosystems. In this study, we aimed at understanding the transfer and toxicity of contaminants (Cd, Pb, Zn and CNTs) in microcosms including native soil bacteria, earthworms and lettuce. After a 6 week exposure, no effect of the addition of CNTs to metal contaminated soils was detected on bacterial concentration or earthworm growth. However, in lettuce, an interactive effect between CNTs and metals was highlighted: in the soil containing the highest metal concentrations the addition of 0.1 mg kg-1 CNTs led to a biomass loss (-22%) and a flavonoid concentration increase (+27%). In parallel, the addition of CNTs led to differential impacts on elemental uptake in lettuce leaves possibly related to the soil organic matter content. For earthworms, the addition of 10 mg kg-1 CNTs resulted in an increased body elemental transfer in the soil with the higher organic matter content (Pb: + 34% and Zn: + 25%).
Collapse
Affiliation(s)
- Mathieu Leroy
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Benjamin Pey
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Vincent E J Jassey
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Clarisse Liné
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Arnaud Elger
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Anne Probst
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Jérôme Silvestre
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Camille Larue
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
4
|
Bakshi M, Kumar A. Copper-based nanoparticles in the soil-plant environment: Assessing their applications, interactions, fate and toxicity. CHEMOSPHERE 2021; 281:130940. [PMID: 34289610 DOI: 10.1016/j.chemosphere.2021.130940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Copper-based nanoparticles (Cu-based NPs) have been gaining wide attention in agricultural applications due to their diverse characteristics and multipurpose properties. This includes their use in agrochemicals for efficient delivery and controlled release of pesticides and fertilizers. However, their excessive usage over a long duration of time could pose potential risks to the soil system. Further, they are known for their well-established anti-microbial effects which could be detrimental to soil health, particularly to the activities of soil microbes, which play a significant role in the functioning of terrestrial and agroecosystems. Thus, there is a great need to clearly understand these uniquely nanospecific properties of Cu-based NPs along with mode-of-action, effect on soil processes, soil organisms, and plants. This paper examines the current literature on Cu-based NPs to provide a systematic understanding of their potential impacts on the soil-plant environment. It explores their rising application and usage in agriculture along with their possible interaction with various soil components and the potential factors influencing it. It further investigates their uptake, translocation, and distribution in plants in various exposure media. It summarises that the dissolution, biotransformation, and bioavailability of Cu-based NPs in the soil are governed by several factors, like soil type, soil pH, and organic matter content. Further, environmental factors, time duration, and presence of other pollutants could also influence their biotransformation and soil toxicity. Finally, this review seeks to provide future perspectives that need attention for investigation purposes.
Collapse
Affiliation(s)
- Mansi Bakshi
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
5
|
Bellani L, Siracusa G, Giorgetti L, Di Gregorio S, Ruffini Castiglione M, Spanò C, Muccifora S, Bottega S, Pini R, Tassi E. TiO 2 nanoparticles in a biosolid-amended soil and their implication in soil nutrients, microorganisms and Pisum sativum nutrition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110095. [PMID: 31869714 DOI: 10.1016/j.ecoenv.2019.110095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
The wide use of nanoparticles (NPs), gives concern about their possible negative implications in the environment and living organisms. In particular, titanium dioxide (TiO2) NPs are accumulated in biosolids (Bs) coming from wastewater treatment plants, which in turn are used as farm soil amendments and are becoming an important way of NPs entrance in the terrestrial ecosystems. In this study, to simulate a low and cumulative load of TiO2 NPs, 80 and 800 mg TiO2per Kg of soil were spiked in the Bs prior to its addition to soil. The effects of different crystal phases of TiO2 NPs (pure anatase and pure rutile or their mixture) and their non-coated bulk counterparts (larger particles) on the availability of mineral nutrients and on the status of the bacterial communities together with the nutritional status of Pisum sativum L. plants were evaluated. Results showed the reduction, to different extents, on the availability of important soil mineral nutrients (e.g. Mn 65%, Fe 20%, P 27%, averagely), in some cases size- (e.g. P) and dose-dependent. Bacterial biodiversity was also affected by the presence of high TiO2 dose in soil. The mineral nutrition of pea plants was also altered, showing the main reduction in Mn (80% in the roots and 50% in the shoots), K, Zn, P (respectively, 80, 40, and 35% in the roots), and an increase of N in the shoots, with possible consequences on the quality of the crop. The present study gives new integrated data on the effects of TiO2 NPs in the soil-plant system, on the soil health and on the nutritional quality of crops, rising new implications for future policies and human health.
Collapse
Affiliation(s)
- Lorenza Bellani
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100, Siena, Italy; Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giovanna Siracusa
- Department of Biology, University of Pisa, Via L. Ghini, 13, 56126, Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Simona Di Gregorio
- Department of Biology, University of Pisa, Via L. Ghini, 13, 56126, Pisa, Italy
| | | | - Carmelina Spanò
- Department of Biology, University of Pisa, Via L. Ghini, 13, 56126, Pisa, Italy
| | - Simonetta Muccifora
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, Via L. Ghini, 13, 56126, Pisa, Italy
| | - Roberto Pini
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Eliana Tassi
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via G. Moruzzi, 1, 56124, Pisa, Italy.
| |
Collapse
|
6
|
Bakshi M, Liné C, Bedolla DE, Stein RJ, Kaegi R, Sarret G, Pradas Del Real AE, Castillo-Michel H, Abhilash PC, Larue C. Assessing the impacts of sewage sludge amendment containing nano-TiO 2 on tomato plants: A life cycle study. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:191-198. [PMID: 30776602 DOI: 10.1016/j.jhazmat.2019.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Increasing evidence indicates the presence of engineered nanoparticles (ENPs) in sewage sludge derived from wastewater treatment. Land application of sewage sludge is, therefore, considered as an important pathway for ENP transfer to the environment. The aim of this work was to understand the effects of sewage sludge containing nano-TiO2 on plants (tomato) when used as an amendment in agricultural soil. We assessed developmental parameters for the entire plant life cycle along with metabolic and bio-macromolecule changes and titanium accumulation in plants. The results suggest that the sewage sludge amendment containing nano-TiO2 increased plant growth (142% leaf biomass, 102% fruit yield), without causing changes in biochemical responses, except for a 43% decrease in leaf tannin concentration. Changes in elemental concentrations (mainly Fe, B, P, Na, and Mn) of plant stem, leaves and, to a lesser extent fruits were observed. Fourier-transformed infrared analysis showed maximum changes in plant leaves (decrease in tannins and lignins and increase in carbohydrates) but no change in fruits. No significant Ti enrichment was detected in tomato fruits. In conclusion, we evidenced no acute toxicity to plants and no major implication for food safety after one plant life cycle exposure.
Collapse
Affiliation(s)
- Mansi Bakshi
- EcoLab, Université de Toulouse, CNRS, Toulouse, France; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Clarisse Liné
- EcoLab, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, UMR CNRS 5085/LCMI, Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux, Université Paul-Sabatier, F 31062, Toulouse cedex 4, France
| | - Diana E Bedolla
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza, 34149, Italy
| | - Ricardo José Stein
- Faculdade Murialdo, Marquês do Herval 701, CEP 95060-145, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Ralf Kaegi
- Eawag, Particle Laboratory, Dübendorf, 8600, Switzerland
| | - Géraldine Sarret
- ISTerre (Institut des Sciences de la Terre), Université Grenoble Alpes and CNRS, 38041, Grenoble, France
| | - Ana E Pradas Del Real
- ISTerre (Institut des Sciences de la Terre), Université Grenoble Alpes and CNRS, 38041, Grenoble, France; Beamline ID21, ESRF-The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
| | - Hiram Castillo-Michel
- Beamline ID21, ESRF-The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
| | - P C Abhilash
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Camille Larue
- EcoLab, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
7
|
Giorgetti L, Spanò C, Muccifora S, Bellani L, Tassi E, Bottega S, Di Gregorio S, Siracusa G, Sanità di Toppi L, Ruffini Castiglione M. An integrated approach to highlight biological responses of Pisum sativum root to nano-TiO 2 exposure in a biosolid-amended agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2705-2716. [PMID: 30373051 DOI: 10.1016/j.scitotenv.2018.10.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 05/11/2023]
Abstract
This study focused on crop plant response to a simultaneous exposure to biosolid and TiO2 at micro- and nano-scale, being biosolid one of the major sink of TiO2 nanoparticles released into the soil environment. We settled an experimental design as much as possible realistic, at microcosm scale, using the crop Pisum sativum. This experimental design supported the hypotheses that the presence of biosolid in the farming soil might influence plant growth and metabolism and that, after TiO2 spiking, the different dimension and crystal forms of TiO2 might be otherwise bioavailable and differently interacting with the plant system. To test these hypotheses, we have considered different aspects of the response elicited by TiO2 and biosolid at cellular and organism level, focusing on the root system, with an integrative approach. In our experimental conditions, the presence of biosolid disturbed plant growth of P. sativum, causing cellular damages at root level, probably through mechanisms not only oxidative stress-dependent but also involving altered signalling processes. These disturbances could depend on non-humified compounds and/or on the presence of toxic elements and of nanoparticles in the biosolid-amended soil. The addition of TiO2 particles in the sludge-amended soil, further altered plant growth and induced oxidative and ultrastructural damages. Although non typical dose-effect response was detected, the most responsiveness treatments were found for the anatase crystal form, alone or mixed with rutile. Based on ultrastructural observations, we could hypothesise that the toxicity level of TiO2 nanoparticles may depend on the cell ability to isolate nanoparticles in subcellular compartments, avoiding their interaction with organelles and/or metabolic processes. The results of the present work suggest reflections on the promising practice of soil amendments and on the use of nanomaterials and their safety for food plants and living organisms.
Collapse
Affiliation(s)
- Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology, UOS Pisa, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, Via Ghini 13, 56126 Pisa, Italy
| | - Simonetta Muccifora
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Lorenza Bellani
- Institute of Agricultural Biology and Biotechnology, UOS Pisa, CNR, Via Moruzzi 1, 56124 Pisa, Italy; Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Eliana Tassi
- Institute of Ecosystem Studies, National Research Council (ISE-CNR), via Moruzzi 1, 56124 Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, Via Ghini 13, 56126 Pisa, Italy
| | - Simona Di Gregorio
- Department of Biology, University of Pisa, Via Ghini 13, 56126 Pisa, Italy
| | - Giovanna Siracusa
- Department of Biology, University of Pisa, Via Ghini 13, 56126 Pisa, Italy
| | | | | |
Collapse
|
8
|
Urbaniak M, Wyrwicka A, Tołoczko W, Serwecińska L, Zieliński M. The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:66-75. [PMID: 28199876 DOI: 10.1016/j.scitotenv.2017.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
The aim of the study was to determine the impact of sewage sludge from three wastewater treatment plants of different sizes (small, medium and large) applied in two doses (3 and 9 tons per hectare) on soil properties, determined as the content of organic carbon and humus fractions, bacterial abundance, phytotoxicity and PCDD/PCDF TEQ concentrations. The study also evaluated the impact of this sewage sludge on the biometric and physiological parameters and detoxification reaction of willow (Salix sp.) as a typical crop used for the remediation of soil following sludge application. The cultivation of willow on soil treated with sludge was found to result in a gradual increase of humus fractions, total organic carbon content and bacterial abundance as well as soil properties measured using Lepidium sativum. However, it also produced an initial increase of soil phytotoxicity, indicated by Sinapis alba and Sorghum sacharatum, and PCDD/PCDF Toxic Equivalent (TEQ) concentrations, which then fell during the course of the experiment, particularly in areas planted by willow. Although the soil phytotoxicity and PCDD/PCDF TEQ content of the sewage sludge-amended soil initially increased, sludge application was found to have a positive influence on willow, probably due to its high nutrient and carbon content. The obtained results reveal increases in willow biomass, average leaf surface area and leaf length as well as chlorophyll a+b content. Moreover, a strong decline was found in the activity of the detoxifying enzyme glutathione S-transferase (GSTs), a multifunctional enzyme involved in the metabolism of xenobiotics in plants, again demonstrating the used sludge had a positive influence on willow performance.
Collapse
Affiliation(s)
- Magdalena Urbaniak
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland.
| | - Anna Wyrwicka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wojciech Tołoczko
- Department of Soil Science and Geoecology, Faculty of Geography, University of Lodz, Lodz, Poland
| | - Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland
| | | |
Collapse
|
9
|
Urbaniak M, Zieliński M, Wyrwicka A. The influence of the Cucurbitaceae on mitigating the phytotoxicity and PCDD/PCDF content of soil amended with sewage sludge. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:207-213. [PMID: 27419261 DOI: 10.1080/15226514.2016.1207606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The study evaluates the impact of sewage sludge on OECD - Organization for Economic Cooperation and Development and vegetable soil phytotoxicity, measured using three test species: Lepidium sativum, Sinapis alba and Sorghum saccharatum, and total and TEQ PCDD/PCDF (toxic equivalency polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans) soil concentration, measured using HRGC/HRMS - High Resolution Gas Chromatography/High Resolution Mass Spectrometry. It also evaluates the effect of zucchini and cucumber cultivation during 5-weeks period on mitigating these parameters. The application of 3, 9 and 18 t/ha of sewage sludge gradually increases the phytotoxicity of both OECD and vegetable soil. In the case of OECD soil, the highest roots growth inhibitions were observed for S. alba (73%, 86% and 87%, respectively) and the lowest for S. saccharatum (7%, 59% and 70%), while in vegetable soil inhibitions were averagely 25% lower. Sludge application also led to a 38% (3 t/ha), 169% (9 t/ha) and 506% (18 t/ha) increase in PCDD/PCDF concentration, and the TEQs were augmented by 15%, 159% and 251%. Both soil phytotoxicity and total and TEQ PCDD/PCDF concentrations were diminished as a result of zucchini and cucumber cultivation. The maximum reduction of soil phytotoxicity (83%) was observed as an effect of cucumber cultivation, while zucchini was 11% less effective. Zucchini, in turn, was more efficient in PCDD/PCDF removal (37% reduction), followed by cucumber (24%). Such differences were not observed in the case of TEQ reductions (68% and 66% for zucchini and cucumber cultivation, respectively).
Collapse
Affiliation(s)
- Magdalena Urbaniak
- a European Regional Centre for Ecohydrology, Polish Academy of Sciences , Lodz , Poland
- b Faculty of Biology and Environmental Protection , Department of Applied Ecology , University of Lodz , Lodz , Poland
| | | | - Anna Wyrwicka
- d Faculty of Biology and Environmental Protection , Department of Plant Physiology and Biochemistry , University of Lodz , Lodz , Poland
| |
Collapse
|
10
|
Yadav T, Mungray AA, Mungray AK. Effect of TiO 2 nanoparticles on UASB biomass activity and dewatered sludge. ENVIRONMENTAL TECHNOLOGY 2017; 38:413-423. [PMID: 27283102 DOI: 10.1080/09593330.2016.1196738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The accumulation of the nanowastes in the wastewater treatment plants has raised several concerns; therefore, it is an utmost priority to study the nanoparticle (NP) toxicity in such systems. In this work, the effect of TiO2 NPs on up-flow anaerobic sludge blanket (UASB) microflora and their photocatalytic effect on dewatered sludge were studied. We observed 99.98% removal of TiO2 NPs by sludge biomass within 24 h, though negligible toxicity was found up to 100 mg/L TiO2 concentration on extracellular polymeric substances (EPS), volatile fatty acid and biogas generation. The low toxicity corresponds to the agglomeration of TiO2 NPs in UASB sludge. Alterations in dewatered sludge biochemical composition and increase in cell damage were observed upon exposure to sunlight as evidenced by FTIR and fluorescent microscopy, respectively. Results suggest the negligible toxicity of TiO2 NPs on UASB biomass activity; however, once exposed to open environment and sunlight, they may exert detrimental effects.
Collapse
Affiliation(s)
- Tushar Yadav
- a Chemical Engineering Department , Sardar Vallabhbhai National Institute of Technology , Surat , Gujarat , India
| | - Alka A Mungray
- a Chemical Engineering Department , Sardar Vallabhbhai National Institute of Technology , Surat , Gujarat , India
| | - Arvind K Mungray
- a Chemical Engineering Department , Sardar Vallabhbhai National Institute of Technology , Surat , Gujarat , India
| |
Collapse
|
11
|
Stefaniuk M, Bartmiński P, Różyło K, Dębicki R, Oleszczuk P. Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:195-202. [PMID: 26057443 DOI: 10.1016/j.jhazmat.2015.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Residues from biogas production (RBP) are a relatively new materials, which may be an interesting resource for the improvement of soil fertility. Nevertheless, in spite of the potential benefits from the agricultural utilization of RBP, there is a need of comprehensive estimation of their toxicity. This information is needed to exclude potential negative environmental impacts arising from the use of RBP. Samples of RBP obtained from six biogas production plants with varied biogas production methods were analysed. The samples with and without separation on solid and liquid phases were investigated. The physicochemical properties of the RBP, heavy metals content (Cr, Cu, Ni, Cd, Pb i Zn) and toxicity on bacteria (Vibrio fischeri, MARA test - 11 different strains), collembolans (Folsomia candida) and two plant species (Lepidium sativum and Sinapis alba) was investigated. Toxicity of RBP was examined using Phytotoxkit F (root growth inhibition), collembolan test (mortality, inhibition of reproduction), Microtox® (inhibition of the luminescence of V. fischeri) and MARA test (growth of microorganisms). An especially negative effect on the tested organisms whereas was noted for the liquid phase after separation. In many cases, RBP without separation also showed unfavourable effects on the tested organisms. Liquid phase after separation and non-separated materials caused inhibition of root growth of L. sativum and S. alba at the level of 17.42-100% and 30.5-100%, respectively, as well as the inhibition of reproduction of F. candida with the range from 68.89 to 100%. In most cases, no ecotoxicological effect was observed for solid phase after separation for tested organisms. The solid phase after separation presented the most favorable properties between all investigated RBP. Therefore, it can be a potential material for the improvement of soil properties and for later use in agriculture.
Collapse
Affiliation(s)
- Magdalena Stefaniuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Piotr Bartmiński
- Department of Soil Science and Soil Protection, Maria Curie-Skłodowska University, Al. Kraśnicka 2cd, 20-718 Lublin, Poland
| | - Krzysztof Różyło
- Department of Agricultural Ecology, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
| | - Ryszard Dębicki
- Department of Soil Science and Soil Protection, Maria Curie-Skłodowska University, Al. Kraśnicka 2cd, 20-718 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
12
|
Jomini S, Clivot H, Bauda P, Pagnout C. Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:196-204. [PMID: 25839943 DOI: 10.1016/j.envpol.2015.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 05/27/2023]
Abstract
In the present study, we conducted a 2 week microcosm experiment with a natural freshwater bacterial community to assess the effects of titanium dioxide nanoparticles (TiO2-NPs) at various concentrations (0, 1, 10 and 100 mg/L) on planktonic and sessile bacteria under dark conditions. Results showed an increase of planktonic bacterial abundance at the highest TiO2-NP concentration, concomitant with a decrease from that of sessile bacteria. Bacterial assemblages were most affected by the 100 mg/L TiO2-NP exposure and overall diversity was found to be lower for planktonic bacteria and higher for sessile bacteria at this concentration. In both compartments, a 100 mg/L TiO2-NPs exposure induced a decrease in the ratio between the Betaproteobacteria and Bacteroidetes. For planktonic communities, a decrease of Comamonadaceae was observed concomitant with an increase of Oxalobacteraceae and Cytophagaceae (especially Emticicia). For sessile communities, results showed a strong decrease of Betaproteobacteria and particularly of Comamonadaceae.
Collapse
Affiliation(s)
- Stéphane Jomini
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France
| | - Hugues Clivot
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France
| | - Pascale Bauda
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Europole de l'Arbois, F-13545 Aix en Provence, France
| | - Christophe Pagnout
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Europole de l'Arbois, F-13545 Aix en Provence, France.
| |
Collapse
|
13
|
Srivastava AK, Kumar RR, Singh AK. Cell cycle stage specific application of municipal landfill leachates to assess the genotoxicity in root meristem cells of barley (Hordeum vulgare). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13979-13986. [PMID: 25035053 DOI: 10.1007/s11356-014-3298-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/06/2014] [Indexed: 06/03/2023]
Abstract
Municipal solid wastes (MSW) are unavoidable sources of environmental pollution. Improper disposal of municipal waste results in the leaching of toxic metals and organic chemicals, which can contaminate the surface and ground water leading to serious health hazard. In this study, the toxic effects of the leachate prepared from municipal solid waste samples were examined in root meristem cells of barley (Hordeum vulgare L.) at various stages of cell cycle, i.e., G1, S, and G2. Seeds of barley were exposed to 2.5, 5, and 10 % of leachates in soil and aqueous media in 48 h at different cell cycle stages. The physicochemical data of the present study revealed that municipal solid waste leachate contains high amount of heavy metals, which significantly affected growth and physiological activities of barley. Significant inhibition in hypocotyl length, germination, and mitotic index were observed at all concentration of leachate treatment. Induction of chromosomal aberrations (CA's) and micronuclei (MN) formation were also observed with different concentrations of leachate treatment at 7, 17, and 27 h of presoaking durations, which falls in G1, S, and G2 phase of the cell cycle, respectively. Also, exposure of leachate at S phase of the cell cycle had significant effects in barley through chromosomal aberration and micronuclei formation.
Collapse
Affiliation(s)
- Anjil Kumar Srivastava
- Vidya Pratisthan's School of Biotechnology, College of Agricultural Biotechnology, Baramati, Pune, 413133, Maharastra, India,
| | | | | |
Collapse
|
14
|
García-Gómez C, Fernández MD, Babin M. Ecotoxicological evaluation of sewage sludge contaminated with zinc oxide nanoparticles. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:494-506. [PMID: 25185842 DOI: 10.1007/s00244-014-0070-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/08/2014] [Indexed: 05/20/2023]
Abstract
The objective of this work was to evaluate the ecotoxicological qualitative risk associated with the use of sewage sludge containing Zn oxide nanoparticles (ZnO-NPs) as soil amendment. A sludge-untreated soil and two sludge-treated soils were spiked with ZnO-NPs (0-1,000 mg/kg soil). Soil ecotoxicity was assessed with Eisenia fetida (acute and sublethal end points), and the unfilterable and filterable (0.02 μm) soil leachates were tested with a battery of biomarkers using Chlorella vulgaris, Daphnia magna, and the fish cell line RTG-2 (Oncorhynchus mykiss). The production of E. fetida cocoons in sludge-treated soils was lower than that in sludge-untreated soils. The highest effect in the algal growth inhibition test was detected in sludge-untreated soil, most likely caused by the loss of organic matter in these samples. The D. magna results were always negative. Toxic effects (lysosomal cell function and production of reactive oxygen species) in RTG-2 cells were only observed in sludge-treated soils. In general, the toxicity of ZnO-NPs in sludge-treated soils was similar to that of sludge-untreated soil, and the filterable leachate fraction [Zn salt (Zn(2+))] did not produce greater effects than the unfilterable fraction (ZnO-NPs). Thus, after the addition of ZnO-NP--enriched sewage sludge to agricultural soil, the risk of toxic effects for soil and aquatic organisms was shown to be low. These findings are important because repeated use of organic amendments such as sewage sludge may cause more and more increased concentrations of ZnO-NPs in soils over the long-term.
Collapse
Affiliation(s)
- Concepción García-Gómez
- Department of Environment, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta de La Coruña Km 7, 28040, Madrid, Spain,
| | | | | |
Collapse
|
15
|
Jośko I, Oleszczuk P. Phytotoxicity of nanoparticles--problems with bioassay choosing and sample preparation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10215-24. [PMID: 24756677 PMCID: PMC4138438 DOI: 10.1007/s11356-014-2865-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/01/2014] [Indexed: 05/08/2023]
Abstract
For a full estimation of the risk related with the presence of engineered nanoparticles (ENPs) in the environment, the use of the current ecotoxicological methods may prove insufficient. In the study presented herein, various methods of assessment of ecotoxicity were applied to compare the phytotoxicity of three ENPs: nano-ZnO, nano-TiO2 and nano-Ni. The toxicity was assayed both for aqueous solutions of the ENPs (the germination/elongation test and Phytotestkit F(TM)) and for ENPs added to soil (Phytotoxkit F(TM) and modified Phytotoxkit F(TM)). Lepidium sativum was used as a test plant. The scope of the study also included the assessment of the effect of the method of ENP application to the soil (as powder and aqueous suspension) on their phytotoxicity. In the course of the study, no effect of the studied ENPs and their bulk counterparts on the germination of seeds was observed. The root growth inhibition of L. sativum depended on the kind of test applied. The trend between concentration of ENPs and effect depended on the method used and kind of ENPs. For most nanoparticles (despite of the method used), the differences in phytotoxicity between nano and bulk particles were observed. Depending on the kind of ENPs, their phytotoxicity differs between water and soil. ZnO (nano and bulk) and nano-Ni were more toxic in soil than in water. For TiO2 and bulk-Ni, reverse trend was observed. A different method of ENP application to soil differently affects the phytotoxicity.
Collapse
Affiliation(s)
- Izabela Jośko
- Department of Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| |
Collapse
|