1
|
Bassareo V, Maccioni R, Talani G, Zuffa S, El Abiead Y, Lorrai I, Kawamura T, Pantis S, Puliga R, Vargiu R, Lecca D, Enrico P, Peana A, Dazzi L, Dorrestein PC, Sanna PP, Sanna E, Acquas E. Receptor and metabolic insights on the ability of caffeine to prevent alcohol-induced stimulation of mesolimbic dopamine transmission. Transl Psychiatry 2024; 14:391. [PMID: 39341817 PMCID: PMC11438888 DOI: 10.1038/s41398-024-03112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Giuseppe Talani
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sofia Pantis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta Puliga
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Daniele Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Peana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrico Sanna
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
2
|
Wang M, Guo W, Chen JF. Caffeine: a potential mechanism for anti-obesity. Purinergic Signal 2024:10.1007/s11302-024-10022-1. [PMID: 38802651 DOI: 10.1007/s11302-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.
Collapse
Affiliation(s)
- Meng Wang
- International Joint Research Center on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Kanlaya R, Subkod C, Nanthawuttiphan S, Thongboonkerd V. The protective effect of caffeine against oxalate-induced epithelial-mesenchymal transition in renal tubular cells via mitochondrial preservation. Biomed Pharmacother 2024; 171:116144. [PMID: 38198962 DOI: 10.1016/j.biopha.2024.116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Mitochondrial dysfunction is one of the key mechanisms for developing chronic kidney disease (CKD). Hyperoxaluria and nephrolithiasis are also associated with mitochondrial dysfunction. Increasing evidence has shown that caffeine, the main bioactive compound in coffee, exerts both anti-fibrotic and anti-lithogenic properties but with unclear mechanisms. Herein, we address the protective effect of caffeine against mitochondrial dysfunction during oxalate-induced epithelial-mesenchymal transition (EMT) in renal cells. Analyses revealed that oxalate successfully induced EMT in MDCK renal cells as evidenced by the increased expression of several EMT-related genes (i.e., Snai1, Fn1 and Acta2). Oxalate also suppressed cellular metabolic activity and intracellular ATP level, but increased reactive oxygen species (ROS). Additionally, oxalate reduced abundance of active mitochondria and induced mitochondrial fragmentation (fission). Furthermore, oxalate decreased mitochondrial biogenesis and content as evidenced by decreased expression of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), cytochrome c oxidase subunit 4 (COX4), and total mitochondrial proteins. Nonetheless, these oxalate-induced deteriorations in MDCK cells and their mitochondria were successfully hampered by caffeine. Knockdown of Snai1 gene by small interfering RNA (siRNA) completely abolished the effects of oxalate on suppression of cellular metabolic activity, intracellular ATP and abundance of active mitochondria, indicating that these oxalate-induced renal cell deteriorations were mediated through the Snai1 EMT-related gene. These data, at least in part, unveil the anti-fibrotic mechanism of caffeine during oxalate-induced EMT in renal cells by preserving mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chonnicha Subkod
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supanan Nanthawuttiphan
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Babylon L, Meißner J, Eckert GP. Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease. Int J Mol Sci 2023; 24:10029. [PMID: 37373177 PMCID: PMC10297858 DOI: 10.3390/ijms241210029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by excessive formation of beta-amyloid peptides (Aβ), mitochondrial dysfunction, enhanced production of reactive oxygen species (ROS), and altered glycolysis. Since the disease is currently not curable, preventive and supportive approaches are in the focus of science. Based on studies of promising single substances, the present study used a mixture (cocktail, SC) of compounds consisting of hesperetin (HstP), magnesium-orotate (MgOr), and folic acid (Fol), as well as the combination (KCC) of caffeine (Cof), kahweol (KW) and cafestol (CF). For all compounds, we showed positive results in SH-SY5Y-APP695 cells-a model of early AD. Thus, SH-SY5Y-APP695 cells were incubated with SC and the activity of the mitochondrial respiration chain complexes were measured, as well as levels of ATP, Aβ, ROS, lactate and pyruvate. Incubation of SH-SY5Y-APP695 cells with SC significantly increased the endogenous respiration of mitochondria and ATP levels, while Aβ1-40 levels were significantly decreased. Incubation with SC showed no significant effects on oxidative stress and glycolysis. In summary, this combination of compounds with proven effects on mitochondrial parameters has the potential to improve mitochondrial dysfunction in a cellular model of AD.
Collapse
Affiliation(s)
| | | | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University, Schubertstr. 81, 35392 Giessen, Germany; (L.B.); (J.M.)
| |
Collapse
|
5
|
Mistlberger-Reiner A, Sterneder S, Reipert S, Wolske S, Somoza V. Extracellular Vesicles and Particles Modulate Proton Secretion in a Model of Human Parietal Cells. ACS OMEGA 2023; 8:2213-2226. [PMID: 36687051 PMCID: PMC9850724 DOI: 10.1021/acsomega.2c06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The secretion of extracellular vesicles and particles (EVPs) is an important mechanism of cellular communication. In this work, we demonstrate a functional role of EVPs in mechanisms regulating gastric acid secretion. HGT-1 cells were used as a model system to assess proton secretion. First, in order to prove EVP secretion by HGT-1 cells, EVPs were isolated by size exclusion chromatography and characterized by nanoparticle tracking analysis, Western blot, and cryo transmission electron microscopy. For examination of the potential role of EVPs in proton secretion, HGT-1 cells were treated with pharmacological EV-inhibitors, resulting in a reduction of histamine-induced proton secretion. To demonstrate the functional role of EVPs in the mechanism of proton secretion, EVP-conditioned supernatant was collected after stimulation of HGT-1 cells with histamine, fractionated, and subjected to an activity screening. The results revealed constituents of the HGT-1-derived secretome with an MW of >100 kDa (including EVPs) to modulate proton secretion, while smaller constituents had no effect. Finally, a dose-dependent modulatory effect on proton secretion of HGT-1 cells was demonstrated by isolated HGT-1-derived EVPs. Hence, this study presents first results on the potential function of EVPs as a previously undiscovered mechanism of regulation of gastric acid secretion by parietal cells.
Collapse
Affiliation(s)
- Agnes Mistlberger-Reiner
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Sonja Sterneder
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Siegfried Reipert
- Core
Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna 1030, Austria
| | - Sara Wolske
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Veronika Somoza
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Freising 85354, Germany
- Nutritional
Systems Biology, Technical University of
Munich, Freising 85354, Germany
| |
Collapse
|
6
|
Chen Y, Ji P, Ma G, Song Z, Tang BQ, Li T. Simultaneous determination of cellular adenosine nucleotides, malondialdehyde, and uric acid using HPLC. Biomed Chromatogr 2021; 35:e5156. [PMID: 33955024 DOI: 10.1002/bmc.5156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 11/10/2022]
Abstract
Adenine nucleotides and malondialdehyde (MDA) are key components involved in energy metabolism and reactive oxygen species (ROS) production. Measuring the levels of these components at the same time would be critical in studying mitochondrial functions. We have established a HPLC method to simultaneously measure adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, MDA, and uric acid (UA). The samples were treated with perchloric acid followed by centrifugation. After neutralization, the supernatant was subjected to HPLC determination. HPLC was performed using a C18 chromatographic column, isocratic elusion, and UV detection. The detection and quantification limits for these components were determined with standard solutions. The precision, repeatability, and 24-h stability were evaluated using cellular samples, and their relative standard deviations were all within 2%. The reproducibility and efficiency were confirmed with sample recovery tests and the observed oxidative effects of H2 O2 on Jurkat cells. With this method, we discovered the dependence of energy and oxidative states on the density of Jurkat cells cultured in suspension. We also found a significant correlation between UA in serum and that in saliva. These results indicate that this method has good accuracy and applicability. It can be used in biological, pharmacological, and clinical studies, especially those involving mitochondria, ROS, and purinergic signaling.
Collapse
Affiliation(s)
- Yanjie Chen
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Peng Ji
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Guangyin Ma
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Zehua Song
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Bruce Qing Tang
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Tongju Li
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| |
Collapse
|
7
|
Hoi J, Lieder B, Liebisch B, Czech C, Hans J, Ley JP, Somoza V. TRPA1 Agonist Cinnamaldehyde Decreases Adipogenesis in 3T3-L1 Cells More Potently than the Non-agonist Structural Analog Cinnamyl Isobutyrate. ACS OMEGA 2020; 5:33305-33313. [PMID: 33403292 PMCID: PMC7774270 DOI: 10.1021/acsomega.0c05083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/02/2020] [Indexed: 05/13/2023]
Abstract
The cinnamon-derived bioactive aroma compound cinnamaldehyde (CAL) has been identified as a promising antiobesity agent, inhibiting adipogenesis and decreasing lipid accumulation in vitro as well as in animal models. Here, we investigated the antiadipogenic effect of cinnamyl isobutyrate (CIB), another cinnamon-derived aroma compound, in comparison to CAL in 3T3-L1 adipocyte cells. In a concentration of 30 μM, CIB reduced triglyceride (TG) and phospholipid (PL) accumulation in 3T3-L1 pre-adipocytes by 21.4 ± 2.56 and 20.7 ± 2.05%, respectively. CAL (30 μM), in comparison, decreased TG accumulation by 37.5 ± 1.81% and PL accumulation by 28.7 ± 1.83%, revealing the aldehyde to be the more potent antiadipogenic compound. The CIB- and CAL-mediated inhibition of lipid accumulation was accompanied by downregulation of essential adipogenic transcription factors PPARγ, C/EBPα, and C/EBPβ on gene and protein levels, pointing to a compound-modulated effect on adipogenic signaling cascades. Coincubation experiments applying the TRPA-1 inhibitor AP-18 demonstrated TRPA1 dependency of the CAL, but not the CIB-induced antiadipogenic effect.
Collapse
Affiliation(s)
- Julia
K. Hoi
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1300 Vienna, Austria
| | - Barbara Lieder
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1300 Vienna, Austria
| | - Beatrix Liebisch
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1300 Vienna, Austria
| | - Christiane Czech
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1300 Vienna, Austria
| | - Joachim Hans
- Symrise
AG, Muehlenfeldstraße
1, 37603 Holzminden, Germany
| | - Jakob P. Ley
- Symrise
AG, Muehlenfeldstraße
1, 37603 Holzminden, Germany
| | - Veronika Somoza
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Chair of Nutritional Systems Biology, Technical University of Munich, Lise-Meitner-Strasse 34, 85345 Freising, Germany
| |
Collapse
|
8
|
Stoeger V, Holik AK, Hölz K, Dingjan T, Hans J, Ley JP, Krammer GE, Niv MY, Somoza MM, Somoza V. Bitter-Tasting Amino Acids l-Arginine and l-Isoleucine Differentially Regulate Proton Secretion via T2R1 Signaling in Human Parietal Cells in Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3434-3444. [PMID: 31891507 DOI: 10.1021/acs.jafc.9b06285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed at identifying whether the bitter-tasting amino acids l-arginine (l-ARG) and l-isoleucine (l-ILE) differentially regulate mechanisms of gastric acid secretion in human parietal cells (HGT-1 cells) via activation of bitter taste sensing receptors (T2Rs). In a first set of experiments, involvement of T2Rs in l-ARG and l-ILE-modulated proton secretion was demonstrated by co-treatment of HGT-1 cells with T2R antagonists. Subsequent whole genome screenings by means of cDNA arrays revealed T2R1 as a prominent target for both amino acids. Next, the functional role of T2R1 was verified by means of a T2R1 CRISPR-Cas9 knock-out approach. Here, the effect of l-ARG on proton secretion decreased by 65.7 ± 21.9% and the effect of l-ILE increased by 93.2 ± 24.1% in HGT-1 T2R1 ko versus HGT-1 wt cells (p < 0.05). Overall, our results indicate differential effects of l-ARG and l-ILE on proton secretion in HGT-1 cells and our molecular docking studies predict distinct binding for these amino acids in the binding site of T2R1. Further studies will elucidate whether the mechanism of differential effects involves structure-specific ligand-biased signaling of T2R1 or additional cellular targets.
Collapse
Affiliation(s)
| | | | | | - Tamir Dingjan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Joachim Hans
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Jakob P Ley
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Gerhard E Krammer
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | | | | |
Collapse
|
9
|
The Interaction between Coffee: Caffeine Consumption, UCP2 Gene Variation, and Adiposity in Adults-A Cross-Sectional Study. J Nutr Metab 2019; 2019:9606054. [PMID: 30719347 PMCID: PMC6334331 DOI: 10.1155/2019/9606054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background Coffee is suggested as an alternative option for weight loss but the relationship between coffee consumption and adiposity in population-based studies is still controversial. Therefore, this study was aimed at evaluating the relationship between coffee intake and adiposity in adults and to test whether uncoupling protein 2 (UCP2) gene variation was able to affect this relationship. Methods This was a cross-sectional study conducted in male and female adults living in the urban area of Yogyakarta, Indonesia. Adiposity was determined based on body weight, body mass index (BMI), percent body fat, and waist and hip circumference. Data on coffee consumption and other dietary components were collected using a semiquantitative food frequency questionnaire along with other caffeine-containing beverages such as tea, chocolate, and other beverages. The -866 G/A UCP2 gene variation was analyzed using polymerase chain reaction-restriction fragment length polymorphism. The correlation between coffee intake and adiposity was tested using linear regression test with adjustment for sex, age, energy intake, table sugar intake, and total caffeine intake. Results In all subjects, coffee intake was inversely correlated with body weight (β = -0.122, p=0.028), BMI (β = -0.157, p=0.005), and body fat (β = -0.135, p=0.009). In subjects with AA + GA genotypes, coffee intake was inversely correlated with body weight (β = -0.155, p=0.027), BMI (β = -0.179, p=0.010), and body fat (β = -0.148, p=0.021). By contrast, in subjects with GG genotype, coffee intake was not correlated with body weight (β = -0.017, p=0.822), BMI (β = -0.068, p=0.377), and body fat (β = -0.047, p=0.504). Conclusion We showed that coffee intake was negatively correlated with adiposity, and this was independent of total caffeine intake. Additionally, we showed that the -866 G/A UCP2 gene variation influences the relationship between coffee intake and adiposity.
Collapse
|
10
|
Machado ML, Arantes LP, Gubert P, Zamberlan DC, da Silva TC, da Silveira TL, Boligon A, Soares FAA. Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans through purinergic system (ADOR-1) and nuclear hormone receptor (NHR-49) pathways. PLoS One 2018; 13:e0204023. [PMID: 30252861 PMCID: PMC6155532 DOI: 10.1371/journal.pone.0204023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/01/2018] [Indexed: 11/30/2022] Open
Abstract
Ilex paraguariensis is a well-known plant that is widely consumed in South America, primarily as a drink called mate. Mate is described to have stimulant and medicinal properties. Considering the potential anti-lipid effects of I. paraguariensis infusion, we used an extract of this plant as a possible modulator of fat storage to control lipid metabolism in worms. Herein, the I. paraguariensis-dependent modulation of fat metabolism in Caenorhabditis elegans was investigated. C. elegans were treated with I. paraguariensis aqueous extract (1 mg/ml) from L1 larvae stage until adulthood, to simulate the primary form of consumption. Expression of adipocyte triglyceride lipase 1 (ATGL-1) and heat shock protein 16.2, lipid accumulation through C1-BODIPY-C12 (BODIPY) lipid staining, behavioral parameters, body length, total body energy expenditure and overall survival were analyzed. Total body energy expenditure was determined by the oxygen consumption rate in N2, nuclear hormone receptor knockout, nhr-49(nr2041), and adenosine receptor knockout, ador-1(ox489) strains. Ilex paraguariensis extract increased ATGL-1 expression 20.06% and decreased intestinal BODIPY fat staining 63.36%, compared with the respective control group, without affecting bacterial growth and energetic balance, while nhr-49(nr2041) and ador-1(ox489) strains blocked the worm fat loss. In addition, I. paraguariensis increased the oxygen consumption in N2 worms, but not in mutant strains, increased N2 worm survival following juglone exposure, and did not alter hsp-16.2 expression. We demonstrate for the first time that I. paraguariensis can decrease fat storage and increase body energy expenditure in worms. These effects depend on the purinergic system (ADOR-1) and NHR-49 pathways. Ilex paraguariensis upregulated the expression of ATGL-1 to modulate fat metabolism. Furthermore, our data corroborates with other studies that demonstrate that C. elegans is a useful tool for studies of fat metabolism and energy consumption.
Collapse
Affiliation(s)
- Marina Lopes Machado
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Leticia Priscilla Arantes
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Priscila Gubert
- Centro de Ciências Biológicas e da Saúde, Campus Reitor Edgard Santos, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Daniele Coradini Zamberlan
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Thayanara Cruz da Silva
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tássia Limana da Silveira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Boligon
- Departamento da Farmácia Industrial, Laboratório de Pesquisa Fitoquímica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Hochkogler CM, Lieder B, Schachner D, Heiss E, Schröter A, Hans J, Ley JP, Krammer GE, Somoza V. Capsaicin and nonivamide similarly modulate outcome measures of mitochondrial energy metabolism in HepG2 and 3T3-L1 cells. Food Funct 2018; 9:1123-1132. [DOI: 10.1039/c7fo01626c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonivamide, a less pungent capsaicin analog, has similar effects on the outcome measures of energy metabolism to capsaicin.
Collapse
Affiliation(s)
| | - Barbara Lieder
- Christian Doppler Laboratory for Bioactive Aroma Compounds
- University of Vienna
- Vienna
- Austria
- Department of Physiological Chemistry
| | - Daniel Schachner
- Department of Pharmacognosy
- Faculty of Life Sciences
- University of Vienna
- Vienna
- Austria
| | - Elke Heiss
- Department of Pharmacognosy
- Faculty of Life Sciences
- University of Vienna
- Vienna
- Austria
| | - Annett Schröter
- Department of Physiological Chemistry
- Faculty of Chemistry
- University of Vienna
- Vienna
- Austria
| | | | | | | | - Veronika Somoza
- Christian Doppler Laboratory for Bioactive Aroma Compounds
- University of Vienna
- Vienna
- Austria
- Department of Physiological Chemistry
| |
Collapse
|
12
|
Holik A, Lieder B, Kretschy N, Somoza MM, Held S, Somoza V. N(ϵ) -Carboxymethyllysine Increases the Expression of miR-103/143 and Enhances Lipid Accumulation in 3T3-L1 Cells. J Cell Biochem 2016; 117:2413-22. [PMID: 27137869 PMCID: PMC4982050 DOI: 10.1002/jcb.25576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 01/08/2023]
Abstract
Advanced glycation endproducts, formed in vivo, but also by the Maillard reaction upon thermal treatment of foods, have been associated with the progression of pathological conditions such as diabetes mellitus. In addition to the accumulation with age, exogenous AGEs are introduced into the circulation from dietary sources. In this study, we investigated the effects of addition of free N(ϵ) -carboxymethyllysine (CML), a well-characterized product of the Maillard reaction, on adipogenesis in 3T3-L1 preadipocytes. Treatment with 5, 50, or 500 μM CML resulted in increased lipid accumulation to similar extents, by 11.5 ± 12.6%, 12.9 ± 8.6%, and 12.8 ± 8.5%, respectively. Long-term treatment with 500 μM CML during adipogenesis resulted in increases in miR-103 and miR-143 levels, two miRNAs described to be involved in impaired glucose homeostasis and increased lipid accumulation. Furthermore, the expression of genes associated with these miRNAs, consisting of Akt1, PI3k, and Cav1 was regulated by CML. Short-term treatment of mature 3T3-L1 adipocytes with CML resulted in decreased basal glucose uptake. These results, indicate that the addition of protein-free CML to 3T3-L1 cells influence parameters associated with adipogenesis and glucose homeostasis at transcriptional, and functional level; this indicates that free CML derived from exogenous sources, in addition to protein-bound CML may be relevant in this context. J. Cell. Biochem. 117: 2413-2422, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann‐Katrin Holik
- Faculty of ChemistryDepartment of Nutritional and Physiological ChemistryUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| | - Barbara Lieder
- Faculty of ChemistryChristian Doppler Laboratory for Bioactive Aroma CompoundsUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| | - Nicole Kretschy
- Faculty of ChemistryDepartment of Inorganic ChemistryUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| | - Mark M. Somoza
- Faculty of ChemistryDepartment of Inorganic ChemistryUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| | - Sandra Held
- Department of Food ScienceUniversity of WisconsinMadisonWisconsin
| | - Veronika Somoza
- Faculty of ChemistryDepartment of Nutritional and Physiological ChemistryUniversity of ViennaAlthanstraße 14Vienna 1090Austria
- Faculty of ChemistryChristian Doppler Laboratory for Bioactive Aroma CompoundsUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| |
Collapse
|
13
|
Rohm B, Holik AK, Kretschy N, Somoza MM, Ley JP, Widder S, Krammer GE, Marko D, Somoza V. Nonivamide enhances miRNA let-7d expression and decreases adipogenesis PPARγ expression in 3T3-L1 cells. J Cell Biochem 2016; 116:1153-63. [PMID: 25704235 PMCID: PMC4949678 DOI: 10.1002/jcb.25052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023]
Abstract
Red pepper and its major pungent principle, capsaicin (CAP), have been shown to be effective anti‐obesity agents by reducing energy intake, enhancing energy metabolism, decreasing serum triacylglycerol content, and inhibiting adipogenesis via activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1). However, the binding of CAP to the TRPV1 receptor is also responsible for its pungent sensation, strongly limiting its dietary intake. Here, the effects of a less pungent structural CAP‐analog, nonivamide, on adipogenesis and underlying mechanisms in 3T3‐L1 cells were studied. Nonivamide was found to reduce mean lipid accumulation, a marker of adipogenesis, to a similar extent as CAP, up to 10.4% (P < 0.001). Blockage of the TRPV1 receptor with the specific inhibitor trans‐tert‐butylcyclohexanol revealed that the anti‐adipogenic activity of nonivamide depends, as with CAP, on TRPV1 receptor activation. In addition, in cells treated with nonivamide during adipogenesis, protein levels of the pro‐adipogenic transcription factor peroxisome‐proliferator activated receptor γ (PPARγ) decreased. Results from miRNA microarrays and digital droplet PCR analysis demonstrated an increase in the expression of the miRNA mmu‐let‐7d‐5p, which has been associated with decreased PPARγ levels. J. Cell. Biochem. 116: 1153–1163, 2015. © 2015 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Althanstraße 14, 1090, Vienna, Austria; Department of Nutritional and Physiological Chemistry, Althanstraße 14, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cha SY, Cheon YP. Suppressive Effects of an Ishige okamurae extract on 3T3-L1 Preadipocyte Differentiation. Dev Reprod 2015; 17:451-9. [PMID: 25949162 PMCID: PMC4382942 DOI: 10.12717/dr.2013.17.4.451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/16/2013] [Accepted: 12/21/2013] [Indexed: 01/30/2023]
Abstract
The biological activity of tissue specific stem cell is under the control of their specific microenvironment and the exogenous chemicals derived from digestive tract can be one of the constructing factors of that. It is suggested that the extract of brown algae Ishige okamurae has antioxidant-, apoptosis induction-, and antiinflammatory- effects. On the other hand, a few studies have shown that antioxidant assist inhibition of accumulation of fat. So we studied the effect of the extract of I. okamura on the cellular activity and differentiation of 3T3-L1 preadipocyte to adipose cell. The viability of cell was analyzed using 3-[4,5-dimethylthiazo-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Adipogenesis of 3T3-L1 cell was analyzed after induction in the induction medium containing the I. okamurae extract. The cellular activity was high compared with the vehicle and 0.05 mM caffeine in all groups of I. okamurae extract treated cells. The extract of I. okamura inhibited accumulation of lipids in 10 and 50 μg/ml. The expression of the marker genes for adipocyte differentiation coincided with cytochemical results. These results suggest that the extract of I. okamurae increases the cellular viability of adipose precursor cells. On the other hand, it suppresses the differentiation of preadipocyte to adipocyte and accumulation of lipids in concentration-dependent manners. It may be possible that the major component of the extract can be applied in the control of adipose tissuegenesis.
Collapse
Affiliation(s)
- Sun-Yeong Cha
- Division of Developmental Biology and Physiology, School of Biosciences and Chemistry, Sungshin Women's University, Seoul 142-742, Republic of Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, School of Biosciences and Chemistry, Sungshin Women's University, Seoul 142-742, Republic of Korea
| |
Collapse
|
15
|
Cho JH, Cho YH, Kim HY, Cha SH, Ryu H, Jang W, Shin KH. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration. Neuropeptides 2015; 50:1-7. [PMID: 25820086 DOI: 10.1016/j.npep.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/12/2022]
Abstract
Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration.
Collapse
Affiliation(s)
- Jin Hee Cho
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Yun Ha Cho
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Hyo Young Kim
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Seung Ha Cha
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Hyun Ryu
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Riedel A, Hochkogler CM, Lang R, Bytof G, Lantz I, Hofmann T, Somoza V. N-methylpyridinium, a degradation product of trigonelline upon coffee roasting, stimulates respiratory activity and promotes glucose utilization in HepG2 cells. Food Funct 2014; 5:454-62. [PMID: 24448391 DOI: 10.1039/c3fo60320b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
N-Methylpyridinium (NMP) is a thermal degradation product of trigonelline formed upon coffee roasting and hypothesized to exert several health benefits in humans. Since for trigonelline evidence for hypoglycemic effects exists, we examined whether NMP also affects mechanisms of glucose utilization and cellular energy formation. For this purpose, the impact of trigonelline and NMP on respiratory activity, extracellular acidification, cellular adenosine nucleotides, energy supply from fatty acids and glucose as well as thermogenesis in HepG2 cells was analyzed. A 24 hour incubation with nanomolar concentrations of NMP enhanced oxygen consumption rates, resulting in increased ATP levels. Glucose was identified as the prevalent energy substrate as its uptake was augmented up to 18.1% ± 7.44% by NMP at 0.09 μM, whereas the uptake of fatty acids decreased upon NMP treatment. Cellular glucose uptake was also stimulated by trigonelline administration; however, a shift to the anaerobic energy production pathway was monitored. Both pyridine derivatives induced thermogenesis, although trigonelline presumably promoted proton leaks, while NMP increased the concentration of the uncoupling protein-2. We provide evidence that both compounds appear to stimulate cellular energy metabolism in HepG2 cells. Human intervention studies are warranted to ensure these effects in vivo.
Collapse
Affiliation(s)
- Annett Riedel
- Department of Nutritional and Physiological Chemistry, University of Vienna, Althanstrasse 14 (UZAII) Room 2B578, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
17
|
A 4-week consumption of medium roast and dark roast coffees affects parameters of energy status in healthy subjects. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br J Nutr 2014; 112:1034-40. [DOI: 10.1017/s0007114514001652] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Obesity has become a public health concern due to its positive association with the incidence of many diseases, and coffee components including chlorogenic acid (CGA) and caffeine have been demonstrated to play roles in the suppression of fat accumulation. To investigate the mechanism by which CGA and caffeine regulate lipid metabolism, in the present study, forty mice were randomly assigned to four groups and fed diets containing no CGA or caffeine, CGA, caffeine, or CGA+caffeine for 24 weeks. Body weight, intraperitoneal adipose tissue (IPAT) weight, and serum biochemical parameters were measured, and the activities and mRNA and protein expression of lipid metabolism-related enzymes were analysed. There was a decrease in the body weight and IPAT weight of mice fed the CGA+caffeine diet. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, TAG and leptin of mice fed the CGA+caffeine diet. The activities of carnitine acyltransferase (CAT) and acyl-CoA oxidase (ACO) were increased in mice fed the caffeine and CGA+caffeine diets, while the activity of fatty acid synthase (FAS) was suppressed in those fed the CGA+caffeine diet. The mRNA expression levels of AMP-activated protein kinase (AMPK),CATandACOwere considerably up-regulated in mice fed the CGA+caffeine diet, while those ofPPARγ2were down-regulated. The protein expression levels of AMPK were increased and those of FAS were decreased in mice fed the CGA+caffeine diet. These results indicate that CGA+caffeine suppresses fat accumulation and body weight gain by regulating the activities and mRNA and protein expression levels of hepatic lipid metabolism-related enzymes and that these effects are stronger than those exerted by CGA and caffeine individually.
Collapse
|