1
|
Wang Q, Zhao J, Li E, Merchant A, Su Z, Liu Q, Zhou X. NezhNPV, a new biocontrol agent for Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae), an emerging forest pest. PEST MANAGEMENT SCIENCE 2025; 81:1171-1185. [PMID: 39502028 PMCID: PMC11821475 DOI: 10.1002/ps.8516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Nesodiprion zhejiangensis, a multivoltine sawfly, is widely distributed in south China and has caused serious damage to forests. Historically, N. zhejiangensis management has relied heavily on synthetic chemicals. To reduce the reliance on chemical control, we previously isolated a nucleopolyhedrovirus, NezhNPV, from deceased N. zhejiangensis larvae. A subsequent pathogenicity assay confirmed its high virulence in a laboratory setting. RESULTS In order to comprehensively examine the hypothesis that NezhNPV is an effective new biocontrol agent for N. zhejiangensis, we carried out a field test in Beijing, China, and characterized NezhNPV morphologically by electron microscopy and genetically by genome sequencing. Our field trials showed that NezhNPV was effective in controlling N. zhejiangensis in a naturally infested Himalayan blue pine forest. The occlusion bodies of NezhNPV consist of irregular polyhedra that occlude rod-shaped enveloped virions with a single nucleocapsid per virion. The NezhNPV genome is 80 637 bp in length, and contains 90 open reading frames, including 38 core, eight lepidopteran baculovirus, 34 hymenopteran baculovirus and 10 unique baculovirus genes, representing the smallest known genome among baculoviruses. The combined results based on phylogenetic analyses, Kimura-2-parameter distances and biological characteristics indicate that NezhNPV is a novel gammabaculovirus and candidate for species status with the provisional name Gammabaculovirus nezhejiangensis. NezhNPV is highly collinear with other gammabaculoviruses and contains nonsyntenic regions with an inversion and rearrangement between orf3 and orf35. CONCLUSION The combined results from our field trials, coupled with morphological and genomic characterization clearly demonstrate the bioactivity of NezhNPV. This gammabaculovirus may be included in pest management practices against N. zhejiangensis as a novel biocontrol agent. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Qinghua Wang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry; Key Laboratory of Forest Protection of National Forestry and Grassland AdministrationBeijingChina
| | - Jicheng Zhao
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry; Key Laboratory of Forest Protection of National Forestry and Grassland AdministrationBeijingChina
| | - Enjie Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry; National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in BeijingBeijingChina
| | - Austin Merchant
- Department of EntomologyMartin‐Gatton College of Agriculture, Food and Environment, University of KentuckyLexingtonKYUSA
| | - Zhicheng Su
- Forestry Working Station of WulanchabuWulanchabuChina
| | - Quanquan Liu
- Department of EntomologySchool of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Xuguo Zhou
- Department of EntomologySchool of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
2
|
Wang J, Wang ZQ, Zong W. ADP-ribose hydrolases: biological functions and potential therapeutic targets. Expert Rev Mol Med 2024; 26:e21. [PMID: 39375922 PMCID: PMC11488344 DOI: 10.1017/erm.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Collapse
Affiliation(s)
- Jingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Jena 07743, Germany
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
3
|
Ariza A, Liu Q, Cowieson NP, Ahel I, Filippov DV, Rack JGM. Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains. J Biol Chem 2024; 300:107770. [PMID: 39270823 PMCID: PMC11490716 DOI: 10.1016/j.jbc.2024.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.
Collapse
Affiliation(s)
- Antonio Ariza
- School of Biosciences, University of Sheffield, Sheffield, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Qiang Liu
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Beijing, China; Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Beijing, China
| | - Nathan P Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Dmitri V Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
4
|
Petrone ME, Grove J, Mélade J, Mifsud JCO, Parry RH, Marzinelli EM, Holmes EC. A ~40-kb flavi-like virus does not encode a known error-correcting mechanism. Proc Natl Acad Sci U S A 2024; 121:e2403805121. [PMID: 39018195 PMCID: PMC11287256 DOI: 10.1073/pnas.2403805121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024] Open
Abstract
It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional "error threshold" that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order Nidovirales (such as coronaviruses) that encode error-correcting exonucleases, enabling them to reach genome lengths greater than 40 kb. The recent discovery of large-genome flavi-like viruses (Flaviviridae), which comprise genomes up to 27 kb in length yet seemingly do not encode exonuclease domains, has led to the proposal that a proofreading mechanism is required to facilitate the expansion of nonsegmented RNA virus genomes above 30 kb. Herein, we describe a ~40 kb flavi-like virus identified in a Haliclona sponge metatranscriptome that does not encode a known exonuclease. Structural analysis revealed that this virus may have instead captured cellular domains associated with nucleic acid metabolism that have not been previously found in RNA viruses. Phylogenetic inference placed this virus as a divergent pesti-like lineage, such that we have provisionally termed it "Maximus pesti-like virus." This virus represents an instance of a flavi-like virus achieving a genome size comparable to that of the Nidovirales and demonstrates that RNA viruses have evolved multiple solutions to overcome the error threshold.
Collapse
Affiliation(s)
- Mary E. Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong Special Administrative Region, China
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Julien Mélade
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW2006, Australia
| | - Jonathon C. O. Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW2006, Australia
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4067, Australia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong Special Administrative Region, China
| |
Collapse
|
5
|
Carabias A, Camara-Wilpert S, Mestre MR, Lopéz-Méndez B, Hendriks IA, Zhao R, Pape T, Fuglsang A, Luk SHC, Nielsen ML, Pinilla-Redondo R, Montoya G. Retron-Eco1 assembles NAD +-hydrolyzing filaments that provide immunity against bacteriophages. Mol Cell 2024; 84:2185-2202.e12. [PMID: 38788717 DOI: 10.1016/j.molcel.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/15/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Retrons are toxin-antitoxin systems protecting bacteria against bacteriophages via abortive infection. The Retron-Eco1 antitoxin is formed by a reverse transcriptase (RT) and a non-coding RNA (ncRNA)/multi-copy single-stranded DNA (msDNA) hybrid that neutralizes an uncharacterized toxic effector. Yet, the molecular mechanisms underlying phage defense remain unknown. Here, we show that the N-glycosidase effector, which belongs to the STIR superfamily, hydrolyzes NAD+ during infection. Cryoelectron microscopy (cryo-EM) analysis shows that the msDNA stabilizes a filament that cages the effector in a low-activity state in which ADPr, a NAD+ hydrolysis product, is covalently linked to the catalytic E106 residue. Mutations shortening the msDNA induce filament disassembly and the effector's toxicity, underscoring the msDNA role in immunity. Furthermore, we discovered a phage-encoded Retron-Eco1 inhibitor (U56) that binds ADPr, highlighting the intricate interplay between retron systems and phage evolution. Our work outlines the structural basis of Retron-Eco1 defense, uncovering ADPr's pivotal role in immunity.
Collapse
Affiliation(s)
- Arturo Carabias
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Sarah Camara-Wilpert
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mario Rodríguez Mestre
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Blanca Lopéz-Méndez
- Protein Purification and Characterization Facility, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Department, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ruiliang Zhao
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anders Fuglsang
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sean Hoi-Ching Luk
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Department, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Cihlova B, Lu Y, Mikoč A, Schuller M, Ahel I. Specificity of DNA ADP-Ribosylation Reversal by NADARs. Toxins (Basel) 2024; 16:208. [PMID: 38787060 PMCID: PMC11125620 DOI: 10.3390/toxins16050208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR ("NAD- and ADP-ribose"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.
Collapse
Affiliation(s)
- Bara Cihlova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Yang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| |
Collapse
|
7
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
8
|
Suskiewicz MJ, Munnur D, Strømland Ø, Yang JC, Easton L, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M, Wu WF, Elkins J, Ahel D, Sanyal S, Neuhaus D, Ahel I. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Nucleic Acids Res 2023; 51:8217-8236. [PMID: 37326024 PMCID: PMC10450202 DOI: 10.1093/nar/gkad514] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
AlphaFold2 and related computational tools have greatly aided studies of structural biology through their ability to accurately predict protein structures. In the present work, we explored AF2 structural models of the 17 canonical members of the human PARP protein family and supplemented this analysis with new experiments and an overview of recent published data. PARP proteins are typically involved in the modification of proteins and nucleic acids through mono or poly(ADP-ribosyl)ation, but this function can be modulated by the presence of various auxiliary protein domains. Our analysis provides a comprehensive view of the structured domains and long intrinsically disordered regions within human PARPs, offering a revised basis for understanding the function of these proteins. Among other functional insights, the study provides a model of PARP1 domain dynamics in the DNA-free and DNA-bound states and enhances the connection between ADP-ribosylation and RNA biology and between ADP-ribosylation and ubiquitin-like modifications by predicting putative RNA-binding domains and E2-related RWD domains in certain PARPs. In line with the bioinformatic analysis, we demonstrate for the first time PARP14's RNA-binding capability and RNA ADP-ribosylation activity in vitro. While our insights align with existing experimental data and are probably accurate, they need further validation through experiments.
Collapse
Affiliation(s)
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Laura E Easton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Wing-Fung Wu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
9
|
Schuller M, Raggiaschi R, Mikolcevic P, Rack JGM, Ariza A, Zhang Y, Ledermann R, Tang C, Mikoc A, Ahel I. Molecular basis for the reversible ADP-ribosylation of guanosine bases. Mol Cell 2023; 83:2303-2315.e6. [PMID: 37390817 PMCID: PMC11543638 DOI: 10.1016/j.molcel.2023.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/13/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
Modification of nucleic acids by ADP-ribosylation is catalyzed by various ADP-ribosyltransferases, including the DarT enzyme. The latter is part of the bacterial toxin-antitoxin (TA) system DarTG, which was shown to provide control of DNA replication and bacterial growth as well as protection against bacteriophages. Two subfamilies have been identified, DarTG1 and DarTG2, which are distinguished by their associated antitoxins. While DarTG2 catalyzes reversible ADP-ribosylation of thymidine bases employing a macrodomain as antitoxin, the DNA ADP-ribosylation activity of DarTG1 and the biochemical function of its antitoxin, a NADAR domain, are as yet unknown. Using structural and biochemical approaches, we show that DarT1-NADAR is a TA system for reversible ADP-ribosylation of guanosine bases. DarT1 evolved the ability to link ADP-ribose to the guanine amino group, which is specifically hydrolyzed by NADAR. We show that guanine de-ADP-ribosylation is also conserved among eukaryotic and non-DarT-associated NADAR members, indicating a wide distribution of reversible guanine modifications beyond DarTG systems.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Petra Mikolcevic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Antonio Ariza
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - YuGeng Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Christoph Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andreja Mikoc
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
11
|
Jurėnas D, Rey M, Byrne D, Chamot-Rooke J, Terradot L, Cascales E. Salmonella antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of EF-Tu P-loop. Nucleic Acids Res 2022; 50:13114-13127. [PMID: 36484105 PMCID: PMC9825190 DOI: 10.1093/nar/gkac1162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/11/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Rearrangement hot spot (Rhs) proteins are members of the broad family of polymorphic toxins. Polymorphic toxins are modular proteins composed of an N-terminal region that specifies their mode of secretion into the medium or into the target cell, a central delivery module, and a C-terminal domain that has toxic activity. Here, we structurally and functionally characterize the C-terminal toxic domain of the antibacterial Rhsmain protein, TreTu, which is delivered by the type VI secretion system of Salmonella enterica Typhimurium. We show that this domain adopts an ADP-ribosyltransferase fold and inhibits protein synthesis by transferring an ADP-ribose group from NAD+ to the elongation factor Tu (EF-Tu). This modification is specifically placed on the side chain of the conserved D21 residue located on the P-loop of the EF-Tu G-domain. Finally, we demonstrate that the TriTu immunity protein neutralizes TreTu activity by acting like a lid that closes the catalytic site and traps the NAD+.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Correspondence may also be addressed to Dukas Jurėnas.
| | - Martial Rey
- Mass Spectrometry for Biology Unit, Université Paris Cité, Institut Pasteur, CNRS, UAR 2024, 75015 Paris, France
| | - Deborah Byrne
- Protein Expression Facility, Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, 13009 Marseille, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Université Paris Cité, Institut Pasteur, CNRS, UAR 2024, 75015 Paris, France
| | - Laurent Terradot
- Laboratory of Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Université de Lyon, UMR 5086, 69367 Lyon, France
| | - Eric Cascales
- To whom correspondence should be addressed. Tel: +33 491164462; Fax: +33 491712124;
| |
Collapse
|
12
|
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022; 185:4023-4037.e18. [PMID: 36174579 DOI: 10.1016/j.cell.2022.08.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
Collapse
Affiliation(s)
- Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - I Min Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA; Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
13
|
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD +-ADPr-Dependent Systems in the Virus World. Viruses 2022; 14:1977. [PMID: 36146784 PMCID: PMC9503650 DOI: 10.3390/v14091977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
14
|
Fasimoye RY, Spencer R, Soto-Martin E, Eijlers P, Elmassoudi H, Brivio S, Mangana C, Sabele V, Rechtorikova R, Wenzel M, Connolly B, Pettitt J, Müller B. A novel, essential trans-splicing protein connects the nematode SL1 snRNP to the CBC-ARS2 complex. Nucleic Acids Res 2022; 50:7591-7607. [PMID: 35736244 PMCID: PMC9303266 DOI: 10.1093/nar/gkac534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Spliced leader trans-splicing is essential for gene expression in many eukaryotes. To elucidate the molecular mechanism of this process, we characterise the molecules associated with the Caenorhabditis elegans major spliced leader snRNP (SL1 snRNP), which donates the spliced leader that replaces the 5' untranslated region of most pre-mRNAs. Using a GFP-tagged version of the SL1 snRNP protein SNA-1 created by CRISPR-mediated genome engineering, we immunoprecipitate and identify RNAs and protein components by RIP-Seq and mass spectrometry. This reveals the composition of the SL1 snRNP and identifies associations with spliceosome components PRP-8 and PRP-19. Significantly, we identify a novel, nematode-specific protein required for SL1 trans-splicing, which we designate SNA-3. SNA-3 is an essential, nuclear protein with three NADAR domains whose function is unknown. Mutation of key residues in NADAR domains inactivates the protein, indicating that domain function is required for activity. SNA-3 interacts with the CBC-ARS2 complex and other factors involved in RNA metabolism, including SUT-1 protein, through RNA or protein-mediated contacts revealed by yeast two-hybrid assays, localisation studies and immunoprecipitations. Our data are compatible with a role for SNA-3 in coordinating trans-splicing with target pre-mRNA transcription or in the processing of the Y-branch product of the trans-splicing reaction.
Collapse
Affiliation(s)
- Rotimi Yemi Fasimoye
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Rosie Elizabeth Barker Spencer
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Eva Soto-Martin
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Peter Eijlers
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Haitem Elmassoudi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Sarah Brivio
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Carolina Mangana
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Viktorija Sabele
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Radoslava Rechtorikova
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Marius Wenzel
- Centre of Genome-Enabled Biology and Medicine, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3RY, Scotland, UK
| | - Bernadette Connolly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
15
|
LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, Doron S, Badiee M, Leung AKL, Sorek R, Laub MT. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat Microbiol 2022; 7:1028-1040. [PMID: 35725776 PMCID: PMC9250638 DOI: 10.1038/s41564-022-01153-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 01/03/2023]
Abstract
Toxin-antitoxin (TA) systems are broadly distributed, yet poorly conserved, genetic elements whose biological functions are unclear and controversial. Some TA systems may provide bacteria with immunity to infection by their ubiquitous viral predators, bacteriophages. To identify such TA systems, we searched bioinformatically for those frequently encoded near known phage defence genes in bacterial genomes. This search identified homologues of DarTG, a recently discovered family of TA systems whose biological functions and natural activating conditions were unclear. Representatives from two different subfamilies, DarTG1 and DarTG2, strongly protected E. coli MG1655 against different phages. We demonstrate that for each system, infection with either RB69 or T5 phage, respectively, triggers release of the DarT toxin, a DNA ADP-ribosyltransferase, that then modifies viral DNA and prevents replication, thereby blocking the production of mature virions. Further, we isolated phages that have evolved to overcome DarTG defence either through mutations to their DNA polymerase or to an anti-DarT factor, gp61.2, encoded by many T-even phages. Collectively, our results indicate that phage defence may be a common function for TA systems and reveal the mechanism by which DarTG systems inhibit phage infection.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Department of Genetic Medicine, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
McCutcheon JG, Lin A, Dennis JJ. Characterization of Stenotrophomonas maltophilia phage AXL1 as a member of the genus Pamexvirus encoding resistance to trimethoprim-sulfamethoxazole. Sci Rep 2022; 12:10299. [PMID: 35717537 PMCID: PMC9206674 DOI: 10.1038/s41598-022-14025-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium capable of causing disease in humans. Antibiotics are largely ineffective against this pathogen due to numerous chromosomally encoded antibiotic resistance mechanisms. An alternative treatment option is phage therapy, the use of bacteriophages to selectively kill target bacteria that are causing infection. To this aim, we isolated the Siphoviridae bacteriophage AXL1 (vB_SmaS-AXL_1) from soil and herein describe its characterization. Host range analysis on a panel of 30 clinical S. maltophilia strains reveals a moderate tropism that includes cross-species infection of Xanthomonas, with AXL1 using the type IV pilus as its host surface receptor for infection. Complete genome sequencing and analysis revealed a 63,962 bp genome encoding 83 putative proteins. Comparative genomics place AXL1 in the genus Pamexvirus, along with seven other phages that infect one of Stenotrophomonas, Pseudomonas or Xanthomonas species. Functional genomic analyses identified an AXL1-encoded dihydrofolate reductase enzyme that provides additional resistance to the antibiotic combination trimethoprim-sulfamethoxazole, the current recommended treatment option for S. maltophilia infections. This research characterizes the sixth type IV pilus-binding phage of S. maltophilia and is an example of phage-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Jaclyn G McCutcheon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Andrea Lin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
17
|
Manco G, Lacerra G, Porzio E, Catara G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022; 12:biom12030443. [PMID: 35327636 PMCID: PMC8946771 DOI: 10.3390/biom12030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3′ untranslated regions (UTRs).
Collapse
Affiliation(s)
- Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| |
Collapse
|
18
|
Cardamone MD, Gao Y, Kwan J, Hayashi V, Sheeran M, Xu J, English J, Orofino J, Emili A, Perissi V. Neuralized-like protein 4 (NEURL4) mediates ADP-ribosylation of mitochondrial proteins. J Cell Biol 2022; 221:213006. [PMID: 35157000 PMCID: PMC8932523 DOI: 10.1083/jcb.202101021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/07/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification where an ADP-ribose moiety is covalently attached to target proteins by ADP-ribosyltransferases (ARTs). Although best known for its nuclear roles, ADP-ribosylation is increasingly recognized as a key regulatory strategy across cellular compartments. ADP-ribosylation of mitochondrial proteins has been widely reported, but the exact nature of mitochondrial ART enzymes is debated. We have identified neuralized-like protein 4 (NEURL4) as a mitochondrial ART enzyme and show that most ART activity associated with mitochondria is lost in the absence of NEURL4. The NEURL4-dependent ADP-ribosylome in mitochondrial extracts from HeLa cells includes numerous mitochondrial proteins previously shown to be ADP-ribosylated. In particular, we show that NEURL4 is required for the regulation of mtDNA integrity via poly-ADP-ribosylation of mtLIG3, the rate-limiting enzyme for base excision repair (BER). Collectively, our studies reveal that NEURL4 acts as the main mitochondrial ART enzyme under physiological conditions and provide novel insights in the regulation of mitochondria homeostasis through ADP-ribosylation.
Collapse
Affiliation(s)
| | - Yuan Gao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Julian Kwan
- Department of Biochemistry, Boston University School of Medicine, Boston, MA.,Center for Network Systems Biology, Boston University, Boston, MA
| | - Vanessa Hayashi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Megan Sheeran
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Junxiang Xu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Justin English
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Joseph Orofino
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA.,Center for Network Systems Biology, Boston University, Boston, MA
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
19
|
The Characterization of a Novel Phage, pPa_SNUABM_DT01, Infecting Pseudomonas aeruginosa. Microorganisms 2021; 9:microorganisms9102040. [PMID: 34683360 PMCID: PMC8541153 DOI: 10.3390/microorganisms9102040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
The bacterial genus Pseudomonas is a common causative agent of infections in veterinary medicine. In this study, we focused on Pseudomonas aeruginosa canine otitis externa isolates. Due to prolonged antibiotic treatment of otitis externa, antibiotic resistance is common and has become a major complication. Many alternatives to antibiotics have been studied, with bacteriophages emerging as the most promising alternatives. Here, we isolated and characterized a novel phage, pPa_SNUABM_DT01, by investigating its morphology, growth, lysis kinetics, and genomic characteristics. Phages have a vigorous capacity to eliminate bacterial cells through bacterial lysis. This capacity is dependent on the multiplicity of infection (MOI), but even at low MOIs, the phage successfully inhibited bacterial regrowth. The phage genome was 265,520 bp in size and comprised 312 putative open reading frames (ORFs). Comparative genome analysis demonstrated that the phage is a novel species in Myoviridae. The nucleotide similarity was moderately high compared with the Pseudomonas virus, Noxifer. However, a phylogenetic analysis and a dot plot indicated that pPa_SNUABM_DT01 is not closely related to the Phikzvirus or Noxifervirus genus but, instead, belongs to a novel one. The genome comparisons also indicate that the phage, pPa_SNUABM_DT01, could be a novel genus.
Collapse
|
20
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
21
|
Wyżewski Z, Gradowski M, Krysińska M, Dudkiewicz M, Pawłowski K. A novel predicted ADP-ribosyltransferase-like family conserved in eukaryotic evolution. PeerJ 2021; 9:e11051. [PMID: 33854844 PMCID: PMC7955679 DOI: 10.7717/peerj.11051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
The presence of many completely uncharacterized proteins, even in well-studied organisms such as humans, seriously hampers full understanding of the functioning of the living cells. ADP-ribosylation is a common post-translational modification of proteins; also nucleic acids and small molecules can be modified by the covalent attachment of ADP-ribose. This modification, important in cellular signalling and infection processes, is usually executed by enzymes from the large superfamily of ADP-ribosyltransferases (ARTs). Here, using bioinformatics approaches, we identify a novel putative ADP-ribosyltransferase family, conserved in eukaryotic evolution, with a divergent active site. The hallmark of these proteins is the ART domain nestled between flanking leucine-rich repeat (LRR) domains. LRRs are typically involved in innate immune surveillance. The novel family appears as putative novel ADP-ribosylation-related actors, most likely pseudoenzymes. Sequence divergence and lack of clearly detectable “classical” ART active site suggests the novel domains are pseudoARTs, yet atypical ART activity, or alternative enzymatic activity cannot be excluded. We propose that this family, including its human member LRRC9, may be involved in an ancient defense mechanism, with analogies to the innate immune system, and coupling pathogen detection to ADP-ribosyltransfer or other signalling mechanisms.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warszawa, Poland
| | - Marcin Gradowski
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Marianna Krysińska
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Małgorzata Dudkiewicz
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
22
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
23
|
Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. J Bacteriol 2020; 202:JB.00365-20. [PMID: 32868406 DOI: 10.1128/jb.00365-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-activated effector deployment, prototyped by interferon-dependent immunity, is a common mechanistic theme shared by immune systems of several animals and prokaryotes. Prokaryotic versions include CRISPR-Cas with the CRISPR polymerase domain, their minimal variants, and systems with second messenger oligonucleotide or dinucleotide synthetase (SMODS). Cyclic or linear oligonucleotide signals in these systems help set a threshold for the activation of potentially deleterious downstream effectors in response to invader detection. We establish such a regulatory mechanism to be a more general principle of immune systems, which can also operate independently of such messengers. Using sensitive sequence analysis and comparative genomics, we identify 12 new prokaryotic immune systems, which we unify by this principle of threshold-dependent effector activation. These display regulatory mechanisms paralleling physiological signaling based on 3'-5' cyclic mononucleotides, NAD+-derived messengers, two- and one-component signaling that includes histidine kinase-based signaling, and proteolytic activation. Furthermore, these systems allowed the identification of multiple new sensory signal sensory components, such as a tetratricopeptide repeat (TPR) scaffold predicted to recognize NAD+-derived signals, unreported versions of the STING domain, prokaryotic YEATS domains, and a predicted nucleotide sensor related to receiver domains. We also identify previously unrecognized invader detection components and effector components, such as prokaryotic versions of the Wnt domain. Finally, we show that there have been multiple acquisitions of unidentified STING domains in eukaryotes, while the TPR scaffold was incorporated into the animal immunity/apoptosis signal-regulating kinase (ASK) signalosome.IMPORTANCE Both prokaryotic and eukaryotic immune systems face the dangers of premature activation of effectors and degradation of self-molecules in the absence of an invader. To mitigate this, they have evolved threshold-setting regulatory mechanisms for the triggering of effectors only upon the detection of a sufficiently strong invader signal. This work defines general templates for such regulation in effector-based immune systems. Using this, we identify several previously uncharacterized prokaryotic immune mechanisms that accomplish the regulation of downstream effector deployment by using nucleotide, NAD+-derived, two-component, and one-component signals paralleling physiological homeostasis. This study has also helped identify several previously unknown sensor and effector modules in these systems. Our findings also augment the growing evidence for the emergence of key animal immunity and chromatin regulatory components from prokaryotic progenitors.
Collapse
|
24
|
Gulyaeva AA, Gorbalenya AE. A nidovirus perspective on SARS-CoV-2. Biochem Biophys Res Commun 2020; 538:24-34. [PMID: 33413979 PMCID: PMC7664520 DOI: 10.1016/j.bbrc.2020.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Two pandemics of respiratory distress diseases associated with zoonotic introductions of the species Severe acute respiratory syndrome-related coronavirus in the human population during 21st century raised unprecedented interest in coronavirus research and assigned it unseen urgency. The two viruses responsible for the outbreaks, SARS-CoV and SARS-CoV-2, respectively, are in the spotlight, and SARS-CoV-2 is the focus of the current fast-paced research. Its foundation was laid down by studies of many corona- and related viruses that collectively form the vast order Nidovirales. Comparative genomics of nidoviruses played a key role in this advancement over more than 30 years. It facilitated the transfer of knowledge from characterized to newly identified viruses, including SARS-CoV and SARS-CoV-2, as well as contributed to the dissection of the nidovirus proteome and identification of patterns of variations between different taxonomic groups, from species to families. This review revisits selected cases of protein conservation and variation that define nidoviruses, illustrates the remarkable plasticity of the proteome during nidovirus adaptation, and asks questions at the interface of the proteome and processes that are vital for nidovirus reproduction and could inform the ongoing research of SARS-CoV-2.
Collapse
Affiliation(s)
- Anastasia A Gulyaeva
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899, Moscow, Russia.
| |
Collapse
|
25
|
Yang S, Qu G, Fu B, Yang F, Zeng W, Cai Y, Ye T, Yang Y, Deng X, Xiang W, Peng D, Zhou B. The function of KptA/Tpt1 gene - a minor review. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:577-591. [PMID: 32438974 DOI: 10.1071/fp19159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
Rapid response of uni- and multicellular organisms to environmental changes and their own growth is achieved through a series of molecular mechanisms, often involving modification of macromolecules, including nucleic acids, proteins and lipids. The ADP-ribosylation process has ability to modify these different macromolecules in cells, and is closely related to the biological processes, such as DNA replication, transcription, signal transduction, cell division, stress, microbial aging and pathogenesis. In addition, tRNA plays an essential role in the regulation of gene expression, as effector molecules, no-load tRNA affects the overall gene expression level of cells under some nutritional stress. KptA/Tpt1 is an essential phosphotransferase in the process of pre-tRNA splicing, releasing mature tRNA and participating in ADP-ribose. The objective of this review is concluding the gene structure, the evolution history and the function of KptA/Tpt1 from prokaryote to eukaryote organisms. At the same time, the results of promoter elements analysis were also shown in the present study. Moreover, the problems in the function of KptA/Tpt1 that have not been clarified at the present time are summarised, and some suggestions to solve those problems are given. This review presents no only a summary of clear function of KptA/Tpt1 in the process of tRNA splicing and ADP-ribosylation of organisms, but also gives some proposals to clarify unclear problems of it in the future.
Collapse
Affiliation(s)
- Shiquan Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Gaoyi Qu
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Bixia Fu
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Feng Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Weixian Zeng
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Yunzhang Cai
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Tao Ye
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | | | - Xiangwen Deng
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China
| | - Wenhua Xiang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China
| | - Dan Peng
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and Forestry Biotechnology Hunan Key Laboratories, Changsha, Hunan, 410004, China
| | - Bo Zhou
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China; and Forestry Biotechnology Hunan Key Laboratories, Changsha, Hunan, 410004, China; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; and Corresponding author.
| |
Collapse
|
26
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
27
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
28
|
Dai D, Tong H, Cheng L, Peng F, Zhang T, Qi W, Song R. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5173-5187. [PMID: 31173102 PMCID: PMC6793443 DOI: 10.1093/jxb/erz268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
The maize (Zea mays) defective kernel 33 (dek33) mutant produces defective and occasionally viviparous kernel phenotypes. In this study, we cloned Dek33 by positional cloning and found that it encodes a pyrimidine reductase in riboflavin biosynthesis. In dek33, a single-base mutation (G to A) in the C-terminal COG3236 domain caused a premature stop codon (TGA), producing a weak mutant allele with only a truncated form of the DEK33 protein that occurred at much lower levels that the completed WT form, and with a reduced riboflavin content. The dek33 mutation significantly affected oil-body formation and suppressed endoreduplication. It also disrupted ABA biosynthesis, resulting in lower ABA content that might be responsible for the viviparous embryo. In addition, our results indicated that the COG3236 domain is important for the protein stability of DEK33. Yeast two-hybrid experiments identified several proteins that interacted with DEK33, including RGLG2 and SnRK1, suggesting possible post-translational regulation of DEK33 stability. The interaction between DEK33 and these proteins was further confirmed by luciferase complementation image assays. This study provides a weak mutant allele that can be utilized to explore cellular responses to impaired riboflavin biosynthesis during seed development. Our findings indicate that the COG3236 domain might be an essential regulatory structure for DEK33 stability in maize.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyang Tong
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lijun Cheng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei Peng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingting Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
29
|
Munnur D, Bartlett E, Mikolčević P, Kirby IT, Matthias Rack JG, Mikoč A, Cohen MS, Ahel I. Reversible ADP-ribosylation of RNA. Nucleic Acids Res 2019; 47:5658-5669. [PMID: 31216043 PMCID: PMC6582358 DOI: 10.1093/nar/gkz305] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling.
Collapse
Affiliation(s)
- Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ilsa T Kirby
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Michael S Cohen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
30
|
Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 2019; 14:236-243. [PMID: 29443986 DOI: 10.1038/nchembio.2568] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022]
Abstract
ADP-ribosylation-the transfer of ADP-ribose (ADPr) from NAD+ onto target molecules-is catalyzed by members of the ADP-ribosyltransferase (ART) superfamily of proteins, found in all kingdoms of life. Modification of amino acids in protein targets by ADPr regulates critical cellular pathways in eukaryotes and underlies the pathogenicity of certain bacteria. Several members of the ART superfamily are highly relevant for disease; these include the poly(ADP-ribose) polymerases (PARPs), recently shown to be important cancer targets, and the bacterial toxins diphtheria toxin and cholera toxin, long known to be responsible for the symptoms of diphtheria and cholera that result in morbidity. In this Review, we discuss the functions of amino acid ADPr modifications and the ART proteins that make them, the nature of the chemical linkage between ADPr and its targets and how this impacts function and stability, and the way that ARTs select specific amino acids in targets to modify.
Collapse
|
31
|
Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit Rev Biochem Mol Biol 2018; 53:64-82. [PMID: 29098880 DOI: 10.1080/10409238.2017.1394265] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023]
Abstract
Proper and timely regulation of cellular processes is fundamental to the overall health and viability of organisms across all kingdoms of life. Thus, organisms have evolved multiple highly dynamic and complex biochemical signaling cascades in order to adapt and survive diverse challenges. One such method of conferring rapid adaptation is the addition or removal of reversible modifications of different chemical groups onto macromolecules which in turn induce the appropriate downstream outcome. ADP-ribosylation, the addition of ADP-ribose (ADPr) groups, represents one of these highly conserved signaling chemicals. Herein we outline the writers, erasers and readers of ADP-ribosylation and dip into the multitude of cellular processes they have been implicated in. We also review what we currently know on how specificity of activity is ensured for this important modification.
Collapse
Affiliation(s)
- Kerryanne Crawford
- a Sir William Dunn School of Pathology , University of Oxford , Oxford , UK
| | | | - Andreja Mikoč
- c Division of Molecular Biology , Ruđer Bošković Institute , Zagreb , Croatia
| | - Ivan Matic
- b Max Planck Institute for Biology of Ageing , Cologne , Germany
| | - Ivan Ahel
- a Sir William Dunn School of Pathology , University of Oxford , Oxford , UK
| |
Collapse
|
32
|
Posavec Marjanovic M, Jankevicius G, Ahel I. Hydrolysis of ADP-Ribosylation by Macrodomains. Methods Mol Biol 2018; 1813:215-223. [PMID: 30097870 DOI: 10.1007/978-1-4939-8588-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ADP-ribosylation is the process of transferring the ADP-ribose moiety from NAD+ to a substrate. While a number of proteins represent well described substrates accepting ADP-ribose modification, a recent report demonstrated biological role for DNA ADP-ribosylation as well. The conserved macrodomain fold of several known hydrolyses was found to possess de-ADP-ribosylating activity and the ability to hydrolyze (reverse) ADP-ribosylation. Here we summarize the methods that can be employed to study mono-ADP-ribosylation hydrolysis by macrodomains.
Collapse
Affiliation(s)
| | - Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
34
|
Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. J Bacteriol 2017; 199:JB.00245-17. [PMID: 28559295 PMCID: PMC5512222 DOI: 10.1128/jb.00245-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Intense biological conflicts between prokaryotic genomes and their genomic parasites have resulted in an arms race in terms of the molecular “weaponry” deployed on both sides. Using a recursive computational approach, we uncovered a remarkable class of multidomain proteins with 2 to 15 domains in the same polypeptide deployed by viruses and plasmids in such conflicts. Domain architectures and genomic contexts indicate that they are part of a widespread conflict strategy involving proteins injected into the host cell along with parasite DNA during the earliest phase of infection. Their unique feature is the combination of domains with highly disparate biochemical activities in the same polypeptide; accordingly, we term them polyvalent proteins. Of the 131 domains in polyvalent proteins, a large fraction are enzymatic domains predicted to modify proteins, target nucleic acids, alter nucleotide signaling/metabolism, and attack peptidoglycan or cytoskeletal components. They further contain nucleic acid-binding domains, virion structural domains, and 40 novel uncharacterized domains. Analysis of their architectural network reveals both pervasive common themes and specialized strategies for conjugative elements and plasmids or (pro)phages. The themes include likely processing of multidomain polypeptides by zincin-like metallopeptidases and mechanisms to counter restriction or CRISPR/Cas systems and jump-start transcription or replication. DNA-binding domains acquired by eukaryotes from such systems have been reused in XPC/RAD4-dependent DNA repair and mitochondrial genome replication in kinetoplastids. Characterization of the novel domains discovered here, such as RNases and peptidases, are likely to aid in the development of new reagents and elucidation of the spread of antibiotic resistance. IMPORTANCE This is the first report of the widespread presence of large proteins, termed polyvalent proteins, predicted to be transmitted by genomic parasites such as conjugative elements, plasmids, and phages during the initial phase of infection along with their DNA. They are typified by the presence of multiple domains with disparate activities combined in the same protein. While some of these domains are predicted to assist the invasive element in replication, transcription, or protection of their DNA, several are likely to target various host defense systems or modify the host to favor the parasite's life cycle. Notably, DNA-binding domains from these systems have been transferred to eukaryotes, where they have been incorporated into DNA repair and mitochondrial genome replication systems.
Collapse
|
35
|
Jankevicius G, Ariza A, Ahel M, Ahel I. The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA. Mol Cell 2016; 64:1109-1116. [PMID: 27939941 PMCID: PMC5179494 DOI: 10.1016/j.molcel.2016.11.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 11/04/2016] [Indexed: 11/28/2022]
Abstract
The discovery and study of toxin-antitoxin (TA) systems helps us advance our understanding of the strategies prokaryotes employ to regulate cellular processes related to the general stress response, such as defense against phages, growth control, biofilm formation, persistence, and programmed cell death. Here we identify and characterize a TA system found in various bacteria, including the global pathogen Mycobacterium tuberculosis. The toxin of the system (DarT) is a domain of unknown function (DUF) 4433, and the antitoxin (DarG) a macrodomain protein. We demonstrate that DarT is an enzyme that specifically modifies thymidines on single-stranded DNA in a sequence-specific manner by a nucleotide-type modification called ADP-ribosylation. We also show that this modification can be removed by DarG. Our results provide an example of reversible DNA ADP-ribosylation, and we anticipate potential therapeutic benefits by targeting this enzyme-enzyme TA system in bacterial pathogens such as M. tuberculosis.
Collapse
Affiliation(s)
- Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Marijan Ahel
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK.
| |
Collapse
|
36
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
37
|
Wang JL, Wu B, Qin H, You Y, Liu S, Shui ZX, Tan FR, Wang YW, Zhu QL, Li YB, Ruan ZY, Ma KD, Dai LC, Hu GQ, He MX. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Microb Cell Fact 2016; 15:101. [PMID: 27287016 PMCID: PMC4901475 DOI: 10.1186/s12934-016-0503-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cell growth and ethanol yield of Zymomonas mobilis may be detrimentally affected by salt stress frequently present in some biomass-based fermentation systems, leading to a decrease in the rate of sugar conversion to ethanol or other bioproducts. To address this problem, improving the salt tolerance of Z. mobilis is a desirable way. However, limited progress has been made in development of Z. mobilis with higher salt tolerance for some technical challenges in the past decades. Recently, transposon insertion mutant system has been widely used as a novel genetic tool in many organisms to develop mutant strains. In this study, Tn5-based transposon insertion mutagenesis system firstly used for construction of higher salt tolerance strain in Z. mobilis. RESULTS Approximately 200 Z. mobilis ZM4 mutants were generated by using Tn5-based transposon mutagenesis system. The mutant strain ZMT2 with improved salt tolerance phenotype was obtained by screening on RM agar plates with additional 1 % NaCl. Strain ZMT2 was confirmed to exhibit better fermentation performance under NaCl stress than wild type of strain ZM4. The transposon insertion was located in ZMO1122 (himA) by genome walking. Discruption of himA gene showed that himA may play an important role in response to salt tolerance in Z. mobils. CONCLUSIONS The mutant strain ZMT2 with a transposon insertion in himA gene of the genome showed obviously higher sugar conversion rate to ethonal under up to 2 % NaCl stress than did the wild ZM4 strain. Besides, ZMT2 exhibited shared fermentative capabilities with wild ZM4 strain under no or low NaCl stress. This report firstly showed that himA played a role in responding to NaCl stress. Furthermore, the result indicated that Tn5-based transposon mutagenesis system was a feasible tool not only for genetic engineering in Z. mobilis strain improvement, but also in tapping resistent genes.
Collapse
Affiliation(s)
- Jing-Li Wang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Han Qin
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Yang You
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Song Liu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Zong-Xia Shui
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Fu-Rong Tan
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Yan-Wei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Qi-Li Zhu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Yan-Bin Li
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, College of Life Sciences, Tarim University, Tarim Basin, Alaer City, 843300, People's Republic of China
| | - Zhi-Yong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China
| | - Ke-Dong Ma
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, People's Republic of China
| | - Li-Chun Dai
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Guo-Quan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China
| | - Ming-Xiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nanlu, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
38
|
Hanson AD, Henry CS, Fiehn O, de Crécy-Lagard V. Metabolite Damage and Metabolite Damage Control in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:131-52. [PMID: 26667673 DOI: 10.1146/annurev-arplant-043015-111648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.
Collapse
Affiliation(s)
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439;
- Computation Institute, University of Chicago, Chicago, Illinois 60637
| | - Oliver Fiehn
- Genome Center, University of California, Davis, California 95616;
| | - Valérie de Crécy-Lagard
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611; ,
| |
Collapse
|
39
|
Padiadpu J, Mishra M, Sharma E, Mala U, Somasundaram K, Chandra N. Probing the Druggability Limits for Enzymes of the NAD Biosynthetic Network in Glioma. J Chem Inf Model 2016; 56:843-53. [PMID: 26958865 DOI: 10.1021/acs.jcim.5b00733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The biosynthesis of NAD constitutes an important metabolic module in the cell, since NAD is an essential cofactor involved in several metabolic reactions. NAD concentrations are known to be significantly increased in several cancers, particularly in glioma, consistent with the observation of up-regulation of several enzymes of the network. Modulating NAD biosynthesis in glioma is therefore an attractive therapeutic strategy. Here we report reconstruction of a biochemical network of NAD biosynthesis consisting of 22 proteins, 36 metabolites, and 86 parameters, tuned to mimic the conditions in glioma. Kinetic simulations of the network provide comprehensive insights about the role of individual enzymes. Further, quantitative changes in the same network between different states of health and disease enable identification of drug targets, based on specific alterations in the given disease. Through simulations of enzyme inhibition titrations, we identify NMPRTase as a potential drug target, while eliminating other possible candidates NMNAT, NAPRTase, and NRK. We have also simulated titrations of both binding affinities as well as inhibitor concentrations, which provide insights into the druggability limits of the target, a novel aspect that can provide useful guidelines for designing inhibitors with optimal affinities. Our simulations suggest that an inhibitor affinity of 10 nM used in a concentration range of 0.1 to 10 μM achieves a near maximal inhibition response for NMPRTase and that increasing the affinity any further is not likely to have a significant advantage. Thus, the quantitative appreciation defines a maximal extent of inhibition possible for a chosen enzyme in the context of its network. Knowledge of this type enables an upper affinity threshold to be defined as a goal in lead screening and refinement stages in drug discovery.
Collapse
Affiliation(s)
- Jyothi Padiadpu
- Department of Biochemistry, IISc, Bangalore 560012, India.,Supercomputer Education and Research Centre, IISc, Bangalore 560012, India
| | | | - Eshita Sharma
- Department of Biochemistry, IISc, Bangalore 560012, India.,Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford OX37BN, United Kingdom
| | - Uchurappa Mala
- Department of Microbiology, IISc, Bangalore 560012, India
| | | | | |
Collapse
|
40
|
Rack JGM, Perina D, Ahel I. Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Annu Rev Biochem 2016; 85:431-54. [PMID: 26844395 DOI: 10.1146/annurev-biochem-060815-014935] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Dragutin Perina
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb 10002, Croatia;
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; ,
| |
Collapse
|
41
|
Burroughs AM, Zhang D, Schäffer DE, Iyer LM, Aravind L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 2015; 43:10633-54. [PMID: 26590262 PMCID: PMC4678834 DOI: 10.1093/nar/gkv1267] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/04/2015] [Indexed: 02/04/2023] Open
Abstract
Cyclic di- and linear oligo-nucleotide signals activate defenses against invasive nucleic acids in animal immunity; however, their evolutionary antecedents are poorly understood. Using comparative genomics, sequence and structure analysis, we uncovered a vast network of systems defined by conserved prokaryotic gene-neighborhoods, which encode enzymes generating such nucleotides or alternatively processing them to yield potential signaling molecules. The nucleotide-generating enzymes include several clades of the DNA-polymerase β-like superfamily (including Vibrio cholerae DncV), a minimal version of the CRISPR polymerase and DisA-like cyclic-di-AMP synthetases. Nucleotide-binding/processing domains include TIR domains and members of a superfamily prototyped by Smf/DprA proteins and base (cytokinin)-releasing LOG enzymes. They are combined in conserved gene-neighborhoods with genes for a plethora of protein superfamilies, which we predict to function as nucleotide-sensors and effectors targeting nucleic acids, proteins or membranes (pore-forming agents). These systems are sometimes combined with other biological conflict-systems such as restriction-modification and CRISPR/Cas. Interestingly, several are coupled in mutually exclusive neighborhoods with either a prokaryotic ubiquitin-system or a HORMA domain-PCH2-like AAA+ ATPase dyad. The latter are potential precursors of equivalent proteins in eukaryotic chromosome dynamics. Further, components from these nucleotide-centric systems have been utilized in several other systems including a novel diversity-generating system with a reverse transcriptase. We also found the Smf/DprA/LOG domain from these systems to be recruited as a predicted nucleotide-binding domain in eukaryotic TRPM channels. These findings point to evolutionary and mechanistic links, which bring together CRISPR/Cas, animal interferon-induced immunity, and several other systems that combine nucleic-acid-sensing and nucleotide-dependent signaling.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Daniel E Schäffer
- Montgomery Blair High School, Magnet Program, Silver Spring, MD 20901, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
42
|
Abstract
Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multi-step pathway. The early intermediates of this pathway are notoriously reactive and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. In the present paper, we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA respectively). We present cheminformatic, biochemical, genetic and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis, yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multi-enzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites.
Collapse
|
43
|
Nakano T, Takahashi-Nakaguchi A, Yamamoto M, Watanabe M. Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish. Curr Top Microbiol Immunol 2015; 384:127-49. [PMID: 25033755 DOI: 10.1007/82_2014_416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cabbage butterfly, Pieris rapae, and related species possess a previously unknown ADP-ribosylating toxin, guanine specific ADP-ribosyltransferase. This enzyme toxin, known as pierisin, consists of enzymatic N-terminal domain and receptor-binding C-terminal domain, or typical AB-toxin structure. Pierisin efficiently transfers an ADP-ribosyl moiety to the N(2) position of the guanine base of dsDNA. Receptors for pierisin are suggested to be the neutral glycosphingolipids, globotriaosylceramide (Gb3), and globotetraosylceramide (Gb4). This DNA-modifying toxin exhibits strong cytotoxicity and induces apoptosis in various human cell lines, which can be blocked by Bcl-2. Pierisin also produces detrimental effects on the eggs and larvae of the non-habitual parasitoids. In contrast, a natural parasitoid of the cabbage butterfly, Cotesia glomerata, was resistant to this toxin. The physiological role of pierisin in the butterfly is suggested to be a defense factor against parasitization by wasps. Other type of DNA ADP-ribosyltransferase is present in certain kinds of edible clams. For example, the CARP-1 protein found in Meretrix lamarckii consists of an enzymatic domain without a possible receptor-binding domain. Pierisin and CARP-1 are almost fully non-homologous at the amino acid sequence level, but other ADP-ribosyltransferases homologous to pierisin are present in different biological species such as eubacterium Streptomyces. Possible diverse physiological roles of the DNA ADP-ribosyltransferases are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Nakano
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan,
| | | | | | | |
Collapse
|
44
|
The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr Top Microbiol Immunol 2015; 384:3-32. [PMID: 25027823 DOI: 10.1007/82_2014_414] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Catalysis of NAD(+)-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin-antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems.
Collapse
|
45
|
Moure VR, Costa FF, Cruz LM, Pedrosa FO, Souza EM, Li XD, Winkler F, Huergo LF. Regulation of nitrogenase by reversible mono-ADP-ribosylation. Curr Top Microbiol Immunol 2015; 384:89-106. [PMID: 24934999 DOI: 10.1007/82_2014_380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Posttranslational modification of proteins plays a key role in the regulation of a plethora of metabolic functions. Protein modification by mono-ADP-ribosylation was first described as a mechanism of action of bacterial toxins. Since these pioneering studies, the number of pathways regulated by ADP-ribosylation in organisms from all domains of life expanded significantly. However, in only a few cases the full regulatory ADP-ribosylation circuit is known. Here, we review the system where mono-ADP-ribosylation regulates the activity of an enzyme: the regulation of nitrogenase in bacteria. When the nitrogenase product, ammonium, becomes available, the ADP-ribosyltransferase (DraT) covalently links an ADP-ribose moiety to a specific arginine residue on nitrogenase switching-off nitrogenase activity. After ammonium exhaustion, the ADP-ribosylhydrolase (DraG) removes the modifying group, restoring nitrogenase activity. DraT and DraG activities are reversibly regulated through interaction with PII signaling proteins . Bioinformatics analysis showed that DraT homologs are restricted to a few nitrogen-fixing bacteria while DraG homologs are widespread in Nature. Structural comparisons indicated that bacterial DraG is closely related to Archaea and mammalian ADP-ribosylhydrolases (ARH). In all available structures, the ARH active site consists of a hydrophilic cleft carrying a binuclear Mg(2+) or Mn(2+) cluster, which is critical for catalysis.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sorci L, Ruggieri S, Raffaelli N. NAD homeostasis in the bacterial response to DNA/RNA damage. DNA Repair (Amst) 2014; 23:17-26. [PMID: 25127744 DOI: 10.1016/j.dnarep.2014.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022]
Abstract
In mammals, NAD represents a nodal point for metabolic regulation, and its availability is critical to genome stability. Several NAD-consuming enzymes are induced in various stress conditions and the consequent NAD decline is generally accompanied by the activation of NAD biosynthetic pathways to guarantee NAD homeostasis. In the bacterial world a similar scenario has only recently begun to surface. Here we review the current knowledge on the involvement of NAD homeostasis in bacterial stress response mechanisms. In particular, we focus on the participation of both NAD-consuming enzymes (DNA ligase, mono(ADP-ribosyl) transferase, sirtuins, and RNA 2'-phosphotransferase) and NAD biosynthetic enzymes (both de novo, and recycling enzymes) in the response to DNA/RNA damage. As further supporting evidence for such a link, a genomic context analysis is presented showing several conserved associations between NAD homeostasis and stress responsive genes.
Collapse
Affiliation(s)
- Leonardo Sorci
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
47
|
Khater S, Mohanty D. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins. Genome Biol Evol 2014; 6:2017-33. [PMID: 25062915 PMCID: PMC4159009 DOI: 10.1093/gbe/evu161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial phosphothreonine lyases catalyze a novel posttranslational modification involving formation of dehydrobutyrine/dehyroalanine by β elimination of the phosphate group of phosphothreonine or phosphoserine residues in their substrate proteins. Though there is experimental evidence for presence of dehydro amino acids in human proteins, no eukaryotic homologs of these lyases have been identified as of today. A comprehensive genome-wide search for identifying phosphothreonine lyase homologs in eukaryotes was carried out. Our fold-based search revealed structural and catalytic site similarity between bacterial phosphothreonine lyases and BLES03 (basophilic leukemia-expressed protein 03), a human protein with unknown function. Ligand induced conformational changes similar to bacterial phosphothreonine lyases, and movement of crucial arginines in the loop region to the catalytic pocket upon binding of phosphothreonine-containing peptides was seen during docking and molecular dynamics studies. Genome-wide search for BLES03 homologs using sensitive profile-based methods revealed their presence not only in eukaryotic classes such as chordata and fungi but also in bacterial and archaebacterial classes. The synteny of these archaebacterial BLES03-like proteins was remarkably similar to that of type IV lantibiotic synthetases which harbor LanL-like phosphothreonine lyase domains. Hence, context-based analysis reinforced our earlier sequence/structure-based prediction of phosphothreonine lyase catalytic function for BLES03. Our in silico analysis has revealed that BLES03-like proteins with previously unknown function are novel eukaryotic phosphothreonine lyases involved in biosynthesis of dehydro amino acids, whereas their bacterial and archaebacterial counterparts might be involved in biosynthesis of natural products similar to lantibiotics.
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Center, National Institute of Immunology, New Delhi, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, New Delhi, India
| |
Collapse
|
48
|
Aravind L, Burroughs AM, Zhang D, Iyer LM. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Cold Spring Harb Perspect Biol 2014; 6:a016063. [PMID: 24984775 DOI: 10.1101/cshperspect.a016063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth's history.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| |
Collapse
|
49
|
Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front Genet 2014; 5:102. [PMID: 24817877 PMCID: PMC4012209 DOI: 10.3389/fgene.2014.00102] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/08/2014] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas adaptive immunity systems of bacteria and archaea insert fragments of virus or plasmid DNA as spacer sequences into CRISPR repeat loci. Processed transcripts encompassing these spacers guide the cleavage of the cognate foreign DNA or RNA. Most CRISPR-Cas loci, in addition to recognized cas genes, also include genes that are not directly implicated in spacer acquisition, CRISPR transcript processing or interference. Here we comprehensively analyze sequences, structures and genomic neighborhoods of one of the most widespread groups of such genes that encode proteins containing a predicted nucleotide-binding domain with a Rossmann-like fold, which we denote CARF (CRISPR-associated Rossmann fold). Several CARF protein structures have been determined but functional characterization of these proteins is lacking. The CARF domain is most frequently combined with a C-terminal winged helix-turn-helix DNA-binding domain and “effector” domains most of which are predicted to possess DNase or RNase activity. Divergent CARF domains are also found in RtcR proteins, sigma-54 dependent regulators of the rtc RNA repair operon. CARF genes frequently co-occur with those coding for proteins containing the WYL domain with the Sm-like SH3 β-barrel fold, which is also predicted to bind ligands. CRISPR-Cas and possibly other defense systems are predicted to be transcriptionally regulated by multiple ligand-binding proteins containing WYL and CARF domains which sense modified nucleotides and nucleotide derivatives generated during virus infection. We hypothesize that CARF domains also transmit the signal from the bound ligand to the fused effector domains which attack either alien or self nucleic acids, resulting, respectively, in immunity complementing the CRISPR-Cas action or in dormancy/programmed cell death.
Collapse
Affiliation(s)
- Kira S Makarova
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - Vivek Anantharaman
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - Nick V Grishin
- Departments of Biophysics and Biochemistry, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Eugene V Koonin
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - L Aravind
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
50
|
Aktories K, Schmidt G, Lang AE. Photorhabdus luminescens toxins TccC3 and TccC5: insecticidal ADP-ribosyltransferases that modify threonine and glutamine. Curr Top Microbiol Immunol 2014; 384:53-67. [PMID: 24908144 DOI: 10.1007/82_2014_382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ADP-ribosyltransferases TccC3 and TccC5 are the biologically active TcC components of the tripartite Photorhabdus luminescens Tc toxin, which consist of TcA, TcB, and TcC components. TcA is the binding and membrane translocation component. TcB is a functional linker between TcC and TcA and also involved in the translocation of the toxin. While TccC3 ADP-ribosylates actin at threonine 148, TccC5 modifies Rho proteins at glutamine 61/63. Both modifications result in major alteration of the actin cytoskeleton. Here we discuss structure and function of the Tc toxin and compare its ADP-ribosyltransferase activities with other types of actin and Rho modifying toxins.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany,
| | | | | |
Collapse
|