1
|
Zhang H, Huang S, Zou X, Shi W, Liang M, Lin Y, Zheng M, Tang X. Exploring the Biosynthetic Potential of Tistrella Species for Producing Didemnin Antitumor Agents. ACS Chem Biol 2024; 19:2176-2185. [PMID: 39312286 DOI: 10.1021/acschembio.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Didemnins are a class of cyclic depsipeptides derived from sea tunicates that exhibit potent anticancer, antiviral, and immunosuppressive properties. Although certain Tistrella species can produce didemnins, their complete biosynthetic potential remains largely unexplored. In this study, we utilize feature-based molecular networking to analyze the metabolomics of Tistrella mobilis and Tistrella bauzanensis, focusing on the production of didemnin natural products. In addition to didemnin B, we identify nordidemnin B and [hysp2]didemnin B, as well as several minor didemnin analogs. Heterologous expression of the didemnin biosynthetic gene cluster in a Streptomyces host results in the production of only didemnin B and nordidemnin B in limited quantities. Isotope-labeling studies reveal that the substrate promiscuity of the adenylation domains during biosynthesis leads to the accumulation of nordidemnin B and [hysp2]didemnin B. Additionally, precursor-directed biosynthesis is applied to generate eight novel didemnin derivatives by supplementing the culture with structurally related amino acids. Furthermore, we increased the titers of nordidemnin B and [hysp2]didemnin B by supplementing the fermentation medium with l-valine and l-isoleucine, respectively. Finally, both compounds undergo side-chain oxidation to enhance their biological activity, with their anticancer properties found to be as potent as plitidepsin.
Collapse
Affiliation(s)
- Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Shipeng Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xiaolin Zou
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wenguang Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Mengdi Liang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yang Lin
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Min Zheng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
2
|
Cai M, Zhang H, Zheng L, Tang X. A global microbiome analysis reveals the ecological feature of Tistrella and its production of the bioactive didemnins in the marine ecosystem. MARINE POLLUTION BULLETIN 2024; 207:116939. [PMID: 39243471 DOI: 10.1016/j.marpolbul.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Marine microorganisms like Tistrella are essential for producing bioactive compounds, including didemnins with antitumor and antiviral properties. However, our understanding of Tistrella's ecological features and didemnin production in natural environments is limited. In this study, we used genomics and metagenomics to show that Tistrella is widely distributed across natural habitats, especially in marine environments from the surface to 5000 m deep, with distinct non-random distribution patterns revealed by co-occurrence analysis. Importantly, transcriptional profiling of didemnin biosynthetic gene clusters indicates active in situ production of this compound within marine ecosystems. These findings enhance our understanding of Tistrella's ecology and secondary metabolite production in natural environments. Further research is needed to explore the ecological dynamics and functional impacts of Tistrella in these ecosystems.
Collapse
Affiliation(s)
- Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
3
|
Richter D, Courvoisier-Clément A, Vagstad AL, Magyari S, Piel J. A structurally conserved helix enables leader-independent tyramine splicing of proteins. Chem Sci 2024:d4sc03867c. [PMID: 39309086 PMCID: PMC11414181 DOI: 10.1039/d4sc03867c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are natural products that feature diverse modifications. They show a wide range of biological activities and are therefore of great interest for drug discovery and protein engineering. An unusual modification found in spliceotide RiPPs is the installation of β-amino acid residues with diverse side chains, generated by backbone excision of a tyramine moiety derived from tyrosine. We have previously shown that the modification can be adapted to protein engineering to greatly expand the set of amino acid residues and to introduce unique reaction centers for site-directed modification. To understand requirements for splicease-substrate interactions, we investigated the role of a RiPP recognition element (RRE) in spliceotide biosynthesis and provide evidence that it acts as an activator and enables leader-independent protein splicing. We leveraged this knowledge to engineer a simplified splicease system derived from Rheinheimera aquimaris B26 that processes splice tags introduced into proteins with high efficiency. This work expands the toolbox for peptide and protein engineering and contributes to an understanding of substrate recognition in RiPP biosynthesis.
Collapse
Affiliation(s)
- Daniel Richter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Alicia Courvoisier-Clément
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Anna Lisa Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Sarolt Magyari
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
4
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
5
|
Khranovska N, Skachkova O, Gorbach O, Semchuk I, Shvets Y, Komarov I. ANTICANCER IMMUNOGENIC POTENTIAL OF ONCOLYTIC PEPTIDES: RECENT ADVANCES AND NEW PROSPECTS. Exp Oncol 2024; 46:3-12. [PMID: 38852058 DOI: 10.15407/exp-oncology.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Oncolytic peptides are derived from natural host defense peptides/antimicrobial peptides produced in a wide variety of life forms. Over the past two decades, they have attracted much attention in both basic research and clinical applications. Oncolytic peptides were expected to act primarily on tumor cells and also trigger the immunogenic cell death. Their ability in the tumor microenvironment remodeling and potentiating the anticancer immunity has long been ignored. Despite the promising results, clinical application of oncolytic peptides is still hindered by their unsatisfactory bioactivity and toxicity to normal cells. To ensure safer therapy, various approaches are being developed. The idea of the Ukrainian research group was to equip peptide molecules with a "molecular photoswitch" - a diarylethene fragment capable of photoisomerization, allowing for the localized photoactivation of peptides within tumors reducing side effects. Such oncolytic peptides that may induce the membrane lysis-mediated cancer cell death and subsequent anticancer immune responses in combination with the low toxicity to normal cells have provided a new paradigm for cancer therapy. This review gives an overview of the broad effects and perspectives of oncolytic peptides in anticancer immunity highlighting the potential issues related to the use of oncolytic peptides in cancer immunotherapy. We summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including immune checkpoint inhibitors, chemotherapy, and targeted therapy.
Collapse
Affiliation(s)
- N Khranovska
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - O Skachkova
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - O Gorbach
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - I Semchuk
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - Yu Shvets
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - I Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
6
|
Zhang H, Li X, Hui Z, Huang S, Cai M, Shi W, Lin Y, Shen J, Sui M, Lai Q, Shao Z, Dou J, Luo X, Ge Y, Tang X. A Semisynthesis Platform for the Efficient Production and Exploration of Didemnin-Based Drugs. Angew Chem Int Ed Engl 2024; 63:e202318784. [PMID: 38291557 DOI: 10.1002/anie.202318784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.
Collapse
Affiliation(s)
- Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xuyang Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Zhen Hui
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Shipeng Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518000, Shenzhen, China
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Wenguang Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yang Lin
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Jie Shen
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Minghao Sui
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, 361005, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, 361005, Xiamen, China
| | - Jie Dou
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yun Ge
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| |
Collapse
|
7
|
Zou X, Hui Z, Shepherd RA, Zhao S, Wu Y, Shen Z, Pang C, Zhou S, Yu Z, Zhou J, Moore BS, Sanchez LM, Tang X. Unveiling a CAAX Protease-Like Protein Involved in Didemnin Drug Maturation and Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306044. [PMID: 38032137 PMCID: PMC10811503 DOI: 10.1002/advs.202306044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Indexed: 12/01/2023]
Abstract
The assembly line biosynthesis of the powerful anticancer-antiviral didemnin cyclic peptides is proposed to follow a prodrug release mechanism in Tristella bacteria. This strategy commences with the formation of N-terminal prodrug scaffolds and culminates in their cleavage during the cellular export of the mature products. In this study, a comprehensive exploration of the genetic and biochemical aspects of the enzymes responsible for both the assembly and cleavage of the acylated peptide prodrug scaffolds is provided. This process involves the assembly of N-acyl-polyglutamine moieties orchestrated by the nonribosomal peptide synthetase DidA and the cleavage of these components at the post-assembly stage by DidK, a transmembrane CAAX hydrolase homolog. The findings not only shed light on the complex prodrug mechanism that underlies the synthesis and secretion of didemnin compounds but also offer novel insights into the expanded role of CAAX hydrolases in microbes. Furthermore, this knowledge can be leveraged for the strategic design of genome mining approaches aimed at discovering new bioactive natural products that employ similar prodrug biochemical strategies.
Collapse
Affiliation(s)
- Xiaolin Zou
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Zhen Hui
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Robert A. Shepherd
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCA95064USA
| | - Shuaiqiang Zhao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yanfei Wu
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhuanglin Shen
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Cuiping Pang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Shipeng Zhou
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Zehai Yu
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Bradly S. Moore
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCA92093USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCA92093USA
| | - Laura M. Sanchez
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCA95064USA
| | - Xiaoyu Tang
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| |
Collapse
|
8
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
9
|
Bestion E, Raymond E, Mezouar S, Halfon P. Update on Autophagy Inhibitors in Cancer: Opening up to a Therapeutic Combination with Immune Checkpoint Inhibitors. Cells 2023; 12:1702. [PMID: 37443736 PMCID: PMC10341243 DOI: 10.3390/cells12131702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a highly conserved and natural degradation process that helps maintain cell homeostasis through the elimination of old, worn, and defective cellular components, ensuring proper cell energy intake. The degradative pathway constitutes a protective barrier against diverse human diseases including cancer. Autophagy basal level has been reported to be completely dysregulated during the entire oncogenic process. Autophagy influences not only cancer initiation, development, and maintenance but also regulates cancer response to therapy. Currently, autophagy inhibitor candidates mainly target the early autophagy process without any successful preclinical/clinical development. Lessons learned from autophagy pharmaceutical manipulation as a curative option progressively help to improve drug design and to encounter new targets of interest. Combinatorial strategies with autophagy modulators are supported by abundant evidence, especially dealing with immune checkpoint inhibitors, for which encouraging preclinical results have been recently published. GNS561, a PPT1 inhibitor, is a promising autophagy modulator as it has started a phase 2 clinical trial in liver cancer indication, combined with atezolizumab and bevacizumab, an assessment without precedent in the field. This approach paves a new road, leading to the resurgence of anticancer autophagy inhibitors as an attractive therapeutic target in cancer.
Collapse
Affiliation(s)
- Eloïne Bestion
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| | - Eric Raymond
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Department of Medical Oncology, Paris Saint-Joseph Hospital Group, 75014 Paris, France
| | - Soraya Mezouar
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Établissement Français du Sang, Provence Alpes Côte d’Azur et Corse, Marseille, France; «Biologie des Groupes Sanguins», Aix Marseille Univ-CNRS-EFS-ADÉS, 13005 Marseille, France
| | - Philippe Halfon
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| |
Collapse
|
10
|
Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int J Mol Sci 2023; 24:ijms24065184. [PMID: 36982256 PMCID: PMC10049629 DOI: 10.3390/ijms24065184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure–activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.
Collapse
|
11
|
Stankey RJ, Johnson D, Duggan BM, Mead DA, La Clair JJ. A Survey of Didemnin Depsipeptide Production in Tistrella. Mar Drugs 2023; 21:md21020056. [PMID: 36827097 PMCID: PMC9964501 DOI: 10.3390/md21020056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
As one of the first families of marine natural products to undergo clinical trials, the didemnin depsipeptides have played a significant role in inspiring the discovery of marine drugs. Originally developed as anticancer therapeutics, the recent re-evaluation of these compounds including synthetically derived dehydrodidemnin B or Aplidine, has led to their advancement towards antiviral applications. While conventionally associated with production in colonial tunicates of the family Didemnidae, recent studies have identified their biosynthetic gene clusters from the marine-derived bacteria Tistrella mobilis. While these studies confirm the production of didemnin X/Y, the low titer and general lack of understanding of their biosynthesis in Tistrella currently prevents the development of effective microbial or synthetic biological approaches for their production. To this end, we conducted a survey of known species of Tistrella and report on their ability to produce the didemnin depsipeptides. These data were used to develop conditions to produce didemnin B at titers over 15 mg/L.
Collapse
Affiliation(s)
| | - Don Johnson
- Terra Bioworks Inc., Middleton, WI 53562, USA
| | - Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive, San Diego, CA 92093-0657, USA
| | - David A. Mead
- Terra Bioworks Inc., Middleton, WI 53562, USA
- Correspondence: (D.A.M.); (J.J.L.C.)
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
- Xenobe Research Institute, P.O. Box 3052, San Diego, CA 92163-1052, USA
- Correspondence: (D.A.M.); (J.J.L.C.)
| |
Collapse
|
12
|
Depsipeptides Targeting Tumor Cells: Milestones from In Vitro to Clinical Trials. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020670. [PMID: 36677728 PMCID: PMC9864405 DOI: 10.3390/molecules28020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Cancer is currently considered one of the most threatening diseases worldwide. Diet could be one of the factors that can be enhanced to comprehensively address a cancer patient's condition. Unfortunately, most molecules capable of targeting cancer cells are found in uncommon food sources. Among them, depsipeptides have emerged as one of the most reliable choices for cancer treatment. These cyclic amino acid oligomers, with one or more subunits replaced by a hydroxylated carboxylic acid resulting in one lactone bond in a core ring, have broadly proven their cancer-targeting efficacy, some even reaching clinical trials and being commercialized as "anticancer" drugs. This review aimed to describe these depsipeptides, their reported amino acid sequences, determined structure, and the specific mechanism by which they target tumor cells including apoptosis, oncosis, and elastase inhibition, among others. Furthermore, we have delved into state-of-the-art in vivo and clinical trials, current methods for purification and synthesis, and the recognized disadvantages of these molecules. The information collated in this review can help researchers decide whether these molecules should be incorporated into functional foods in the near future.
Collapse
|
13
|
Scott TA, Verest M, Farnung J, Forneris CC, Robinson SL, Ji X, Hubrich F, Chepkirui C, Richter DU, Huber S, Rust P, Streiff AB, Zhang Q, Bode JW, Piel J. Widespread microbial utilization of ribosomal β-amino acid-containing peptides and proteins. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Ahmed S, Alam W, Jeandet P, Aschner M, Alsharif KF, Saso L, Khan H. Therapeutic Potential of Marine Peptides in Prostate Cancer: Mechanistic Insights. Mar Drugs 2022; 20:md20080466. [PMID: 35892934 PMCID: PMC9330892 DOI: 10.3390/md20080466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer death in men, and its treatment is commonly associated with severe adverse effects. Thus, new treatment modalities are required. In this context, natural compounds have been widely explored for their anti-PCa properties. Aquatic organisms contain numerous potential medications. Anticancer peptides are less toxic to normal cells and provide an efficacious treatment approach via multiple mechanisms, including altered cell viability, apoptosis, cell migration/invasion, suppression of angiogenesis and microtubule balance disturbances. This review sheds light on marine peptides as efficacious and safe therapeutic agents for PCa.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, EA 4707-USC INRAe 1488, SFR Condorcet FR CNRS 3417, P.O. Box 1039, CEDEX 02, 51687 Reims, France;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Luciano Saso
- Department of Physiology and Pharmacology, “Vittorio Erspamer” Sapienza University, 00185 Rome, Italy;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
- Correspondence:
| |
Collapse
|
15
|
Nuzzo G, Senese G, Gallo C, Albiani F, Romano L, d’Ippolito G, Manzo E, Fontana A. Antitumor Potential of Immunomodulatory Natural Products. Mar Drugs 2022; 20:md20060386. [PMID: 35736189 PMCID: PMC9229642 DOI: 10.3390/md20060386] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death globally. Anticancer drugs aim to block tumor growth by killing cancerous cells in order to prevent tumor progression and metastasis. Efficient anticancer drugs should also minimize general toxicity towards organs and healthy cells. Tumor growth can also be successfully restrained by targeting and modulating immune response. Cancer immunotherapy is assuming a growing relevance in the fight against cancer and has recently aroused much interest for its wider safety and the capability to complement conventional chemotherapeutic approaches. Natural products are a traditional source of molecules with relevant potential in the pharmacological field. The huge structural diversity of metabolites with low molecular weight (small molecules) from terrestrial and marine organisms has provided lead compounds for the discovery of many modern anticancer drugs. Many natural products combine chemo-protective and immunomodulant activity, thus offering the potential to be used alone or in association with conventional cancer therapy. In this review, we report the natural products known to possess antitumor properties by interaction with immune system, as well as discuss the possible immunomodulatory mechanisms of these molecules.
Collapse
Affiliation(s)
- Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Giuseppina Senese
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Federica Albiani
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Lucia Romano
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Giuliana d’Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Department of Biology, University of Naples Federico II, Via Cinthia–Bld. 7, 80126 Napoli, Italy
| |
Collapse
|
16
|
Brönstrup M, Sasse F. Natural products targeting the elongation phase of eukaryotic protein biosynthesis. Nat Prod Rep 2021; 37:752-762. [PMID: 32428051 DOI: 10.1039/d0np00011f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2020 The translation of mRNA into proteins is a precisely regulated, complex process that can be divided into three main stages, i.e. initiation, elongation, termination, and recycling. This contribution is intended to highlight how natural products interfere with the elongation phase of eukaryotic protein biosynthesis. Cycloheximide, isolated from Streptomyces griseus, has long been the prototype inhibitor of eukaryotic translation elongation. In the last three decades, a variety of natural products from different origins were discovered to also address the elongation step in different manners, including interference with the elongation factors eEF1 and eEF2 as well as binding to A-, P- or E-sites of the ribosome itself. Recent advances in the crystallization of the ribosomal machinery together with natural product inhibitors allowed characterizing similarities as well as differences in their mode of action. Since aberrations in protein synthesis are commonly observed in tumors, and malfunction or overexpression of translation factors can cause cellular transformation, the protein synthesis machinery has been realized as an attractive target for anticancer drugs. The therapeutic use of the first natural products that reached market approval, plitidepsin (Aplidin®) and homoharringtonine (Synribo®), will be introduced. In addition, we will highlight two other potential indications for translation elongation inhibitors, i.e. viral infections and genetic disorders caused by premature termination of translation.
Collapse
Affiliation(s)
- Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. and Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany and German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
17
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
18
|
Bharadwaj KK, Sarkar T, Ghosh A, Baishya D, Rabha B, Panda MK, Nelson BR, John AB, Sheikh HI, Dash BP, Edinur HA, Pati S. Macrolactin A as a Novel Inhibitory Agent for SARS-CoV-2 M pro: Bioinformatics Approach. Appl Biochem Biotechnol 2021; 193:3371-3394. [PMID: 34212286 PMCID: PMC8248955 DOI: 10.1007/s12010-021-03608-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022]
Abstract
COVID-19 is a disease that puts most of the world on lockdown and the search for therapeutic drugs is still ongoing. Therefore, this study used in silico screening to identify natural bioactive compounds from fruits, herbaceous plants, and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2 (PDB: 6LU7). We have used extensive screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME, molecular dynamics (MD) simulation, and MM/GBSA. A total of 17 compounds were shortlisted using Lipinski’s rule in which 5 compounds showed significant predicted antiviral activity values. Among these 5, only 2 compounds, Macrolactin A and Stachyflin, showed good binding energy of −9.22 and −8.00 kcal/mol, respectively, within the binding pocket of the Mpro catalytic residues (HIS 41 and CYS 145). These two compounds were further analyzed to determine their ADME properties. The ADME evaluation of these 2 compounds suggested that they could be effective in developing therapeutic drugs to be used in clinical trials. MD simulations showed that protein–ligand complexes of Macrolactin A and Stachyflin with the target receptor (6LU7) were stable for 100 nanoseconds. The MM/GBSA calculations of Mpro–Macrolactin A complex indicated higher binding free energy (−42.58 ± 6.35 kcal/mol). Dynamic cross-correlation matrix (DCCM) and principal component analysis (PCA) on the residual movement in the MD trajectories further confirmed the stability of Macrolactin A bound state with 6LU7. In conclusion, this study showed that marine natural compound Macrolactin A could be an effective therapeutic inhibitor against SARS-CoV-2 protease (6LU7). Additional in vitro and in vivo validations are strongly needed to determine the efficacy and therapeutic dose of Macrolactin A in biological systems.
Collapse
Affiliation(s)
- Kaushik Kumar Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, 781014, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, West Bengal, 732102, India.,Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, West Bengal, 700038, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, ,781014, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, 781014, India
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, 781014, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, 751013, Bhubaneswar, India
| | - Bryan Raveen Nelson
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Research Divisions, Association for Biodiversity Conservation and Research, Balasore, Odisha, 756001, India
| | - Akbar B John
- INOCEM Research Station, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200, Kuantan, Pahang, Malaysia
| | - Hassan I Sheikh
- Faculty of Fisheries and Food Science, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Bisnu Prasad Dash
- Department of Biosciences and Biotechnology, Fakir Mohan University, 756089, Balasore, India
| | - Hisham Atan Edinur
- Forensic Science Programme, School of Health Sciences, University Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siddhartha Pati
- Research Divisions, Association for Biodiversity Conservation and Research, Balasore, Odisha, 756001, India. .,Centre of Excellence (OHEPEE), Khallikote University, Berhampur, Ganjam, Odisha, 761008, India.
| |
Collapse
|
19
|
Alonzo DA, Schmeing TM. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Protein Sci 2020; 29:2316-2347. [PMID: 33073901 DOI: 10.1002/pro.3979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Depsipeptides are compounds that contain both ester bonds and amide bonds. Important natural product depsipeptides include the piscicide antimycin, the K+ ionophores cereulide and valinomycin, the anticancer agent cryptophycin, and the antimicrobial kutzneride. Furthermore, database searches return hundreds of uncharacterized systems likely to produce novel depsipeptides. These compounds are made by specialized nonribosomal peptide synthetases (NRPSs). NRPSs are biosynthetic megaenzymes that use a module architecture and multi-step catalytic cycle to assemble monomer substrates into peptides, or in the case of specialized depsipeptide synthetases, depsipeptides. Two NRPS domains, the condensation domain and the thioesterase domain, catalyze ester bond formation, and ester bonds are introduced into depsipeptides in several different ways. The two most common occur during cyclization, in a reaction between a hydroxy-containing side chain and the C-terminal amino acid residue in a peptide intermediate, and during incorporation into the growing peptide chain of an α-hydroxy acyl moiety, recruited either by direct selection of an α-hydroxy acid substrate or by selection of an α-keto acid substrate that is reduced in situ. In this article, we discuss how and when these esters are introduced during depsipeptide synthesis, survey notable depsipeptide synthetases, and review insight into bacterial depsipeptide synthetases recently gained from structural studies.
Collapse
Affiliation(s)
- Diego A Alonzo
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
20
|
From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules 2020; 10:biom10020248. [PMID: 32041255 PMCID: PMC7072248 DOI: 10.3390/biom10020248] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
The marine environment represents an outstanding source of antitumoral compounds and, at the same time, remains highly unexplored. Organisms living in the sea synthesize a wide variety of chemicals used as defense mechanisms. Interestingly, a large number of these compounds exert excellent antitumoral properties and have been developed as promising anticancer drugs that have later been approved or are currently under validation in clinical trials. However, due to the high need for these compounds, new methodologies ensuring its sustainable supply are required. Also, optimization of marine bioactives is an important step for their success in the clinical setting. Such optimization involves chemical modifications to improve their half-life in circulation, potency and tumor selectivity. In this review, we outline the most promising marine bioactives that have been investigated in cancer models and/or tested in patients as anticancer agents. Moreover, we describe the current state of development of anticancer marine compounds and discuss their therapeutic limitations as well as different strategies used to overcome these limitations. The search for new marine antitumoral agents together with novel identification and chemical engineering approaches open the door for novel, more specific and efficient therapeutic agents for cancer treatment.
Collapse
|
21
|
Antitumor Potential of Marine and Freshwater Lectins. Mar Drugs 2019; 18:md18010011. [PMID: 31877692 PMCID: PMC7024344 DOI: 10.3390/md18010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Often, even the most effective antineoplastic drugs currently used in clinic do not efficiently allow complete healing due to the related toxicity. The reason for the toxicity lies in the lack of selectivity for cancer cells of the vast majority of anticancer agents. Thus, the need for new potent anticancer compounds characterized by a better toxicological profile is compelling. Lectins belong to a particular class of non-immunogenic glycoproteins and have the characteristics to selectively bind specific sugar sequences on the surface of cells. This property is exploited to exclusively bind cancer cells and exert antitumor activity through the induction of different forms of regulated cell death and the inhibition of cancer cell proliferation. Thanks to the extraordinary biodiversity, marine environments represent a unique source of active natural compounds with anticancer potential. Several marine and freshwater organisms, ranging from the simplest alga to the most complex vertebrate, are amazingly enriched in these proteins. Remarkably, all studies gathered in this review show the impressive anticancer effect of each studied marine lectin combined with irrelevant toxicity in vitro and in vivo and pave the way to design clinical trials to assess the real antineoplastic potential of these promising proteins. It provides a concise and precise description of the experimental results, their interpretation as well as the experimental conclusions that can be drawn.
Collapse
|
22
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Oceans as a Source of Immunotherapy. Mar Drugs 2019; 17:md17050282. [PMID: 31083446 PMCID: PMC6562586 DOI: 10.3390/md17050282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Marine flora is taxonomically diverse, biologically active, and chemically unique. It is an excellent resource, which offers great opportunities for the discovery of new biopharmaceuticals such as immunomodulators and drugs targeting cancerous, inflammatory, microbial, and fungal diseases. The ability of some marine molecules to mediate specific inhibitory activities has been demonstrated in a range of cellular processes, including apoptosis, angiogenesis, and cell migration and adhesion. Immunomodulators have been shown to have significant therapeutic effects on immune-mediated diseases, but the search for safe and effective immunotherapies for other diseases such as sinusitis, atopic dermatitis, rheumatoid arthritis, asthma and allergies is ongoing. This review focuses on the marine-originated bioactive molecules with immunomodulatory potential, with a particular focus on the molecular mechanisms of specific agents with respect to their targets. It also addresses the commercial utilization of these compounds for possible drug improvement using metabolic engineering and genomics.
Collapse
|
24
|
Itoh H, Inoue M. Comprehensive Structure–Activity Relationship Studies of Macrocyclic Natural Products Enabled by Their Total Syntheses. Chem Rev 2019; 119:10002-10031. [DOI: 10.1021/acs.chemrev.9b00063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Giordano D, Costantini M, Coppola D, Lauritano C, Núñez Pons L, Ruocco N, di Prisco G, Ianora A, Verde C. Biotechnological Applications of Bioactive Peptides From Marine Sources. Adv Microb Physiol 2018; 73:171-220. [PMID: 30262109 DOI: 10.1016/bs.ampbs.2018.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review is an overview on marine bioactive peptides with promising activities for the development of alternative drugs to fight human pathologies. In particular, we focus on potentially prolific producers of peptides in microorganisms, including sponge-associated bacteria and marine photoautotrophs such as microalgae and cyanobacteria. Microorganisms are still poorly explored for drug discovery, even if they are highly metabolically plastic and potentially amenable to culturing. This offers the possibility of obtaining a continuous source of bioactive compounds to satisfy the challenging demands of pharmaceutical industries. This review targets peptides because of the variety of potent biological activities demonstrated by these molecules, including antiviral, antimicrobial, antifungal, antioxidant, anticoagulant, antihypertensive, anticancer, antidiabetic, antiobesity, and calcium-binding bioactivities. Several of these peptides have already gained recognition as effective drug agents in recent years. We also focus on cutting-edge omic approaches for the discovery of novel compounds for pharmacological applications. With rapid depletion of natural resources, omic technologies may be the solution to efficiently produce a vast variety of novel peptides with unique pharmacological potential.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Maria Costantini
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Chiara Lauritano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Núñez Pons
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy; Department of Biology, University of Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Napoli, Italy; Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy; Dipartimento di Biologia, Università Roma 3, Roma, Italy.
| |
Collapse
|
26
|
Watters DJ. Ascidian Toxins with Potential for Drug Development. Mar Drugs 2018; 16:E162. [PMID: 29757250 PMCID: PMC5983293 DOI: 10.3390/md16050162] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Ascidians (tunicates) are invertebrate chordates, and prolific producers of a wide variety of biologically active secondary metabolites from cyclic peptides to aromatic alkaloids. Several of these compounds have properties which make them candidates for potential new drugs to treat diseases such as cancer. Many of these natural products are not produced by the ascidians themselves, rather by their associated symbionts. This review will focus mainly on the mechanism of action of important classes of cytotoxic molecules isolated from ascidians. These toxins affect DNA transcription, protein translation, drug efflux pumps, signaling pathways and the cytoskeleton. Two ascidian compounds have already found applications in the treatment of cancer and others are being investigated for their potential in cancer, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Dianne J Watters
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
27
|
Tian Y, Xu X, Ding Y, Hao X, Bai Y, Tang Y, Zhang X, Li Q, Yang Z, Zhang W, Chen Y. Synthesis and biological evaluation of nannocystin analogues toward understanding the binding role of the (2R,3S)-Epoxide in nannocystin A. Eur J Med Chem 2018; 150:626-632. [DOI: 10.1016/j.ejmech.2018.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022]
|
28
|
Meng Z, Souillart L, Monks B, Huwyler N, Herrmann J, Müller R, Fürstner A. A “Motif-Oriented” Total Synthesis of Nannocystin Ax. Preparation and Biological Assessment of Analogues. J Org Chem 2017; 83:6977-6994. [DOI: 10.1021/acs.joc.7b02871] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | | | - Brendan Monks
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Nikolas Huwyler
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbrücken, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
29
|
Hetherington AM, Sawyez CG, Sutherland BG, Robson DL, Arya R, Kelly K, Jacobs RL, Borradaile NM. Treatment with didemnin B, an elongation factor 1A inhibitor, improves hepatic lipotoxicity in obese mice. Physiol Rep 2017; 4:4/17/e12963. [PMID: 27613825 PMCID: PMC5027364 DOI: 10.14814/phy2.12963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic elongation factor EEF1A1 is induced by oxidative and ER stress, and contributes to subsequent cell death in many cell types, including hepatocytes. We recently showed that blocking the protein synthesis activity of EEF1A1 with the peptide inhibitor, didemnin B, decreases saturated fatty acid overload-induced cell death in HepG2 cells. In light of this and other recent work suggesting that limiting protein synthesis may be beneficial in treating ER stress-related disease, we hypothesized that acute intervention with didemnin B would decrease hepatic ER stress and lipotoxicity in obese mice with nonalcoholic fatty liver disease (NAFLD). Hyperphagic male ob/ob mice were fed semipurified diet for 4 weeks, and during week 5 received i.p. injections of didemnin B or vehicle on days 1, 4, and 7. Interestingly, we observed that administration of this compound modestly decreased food intake without evidence of illness or distress, and thus included an additional control group matched for food consumption with didemnin B-treated animals. Treatment with didemnin B improved several characteristics of hepatic lipotoxicity to a greater extent than the effects of caloric restriction alone, including hepatic steatosis, and some hepatic markers of ER stress and inflammation (GRP78, Xbp1s, and Mcp1). Plasma lipid and lipoprotein profiles and histopathological measures of NAFLD, including lobular inflammation, and total NAFLD activity score were also improved by didemnin B. These data indicate that acute intervention with the EEF1A inhibitor, didemnin B, improves hepatic lipotoxicity in obese mice with NAFLD through mechanisms not entirely dependent on decreased food intake, suggesting a potential therapeutic strategy for this ER stress-related disease.
Collapse
Affiliation(s)
- Alexandra M Hetherington
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Cynthia G Sawyez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada Robarts Research Institute, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada Department of Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Brian G Sutherland
- Robarts Research Institute, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Debra L Robson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Rigya Arya
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Karen Kelly
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| |
Collapse
|
30
|
Timmermans ML, Paudel YP, Ross AC. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies. Mar Drugs 2017; 15:E235. [PMID: 28762997 PMCID: PMC5577590 DOI: 10.3390/md15080235] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria.
Collapse
Affiliation(s)
| | - Yagya P Paudel
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
31
|
Abstract
Total synthesis of nannocystin Ax has been accomplished concisely. The key elements in this total synthesis feature Kobayashi's remote asymmetric induction with vinylketene silyl N,O-acetal, Roush's asymmetric crotylboration of aldehyde, Mitsunobu's esterification and macrocyclization via Stille cross-coupling.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
32
|
Pelay-Gimeno M, Albericio F, Tulla-Puche J. Synthesis of complex head-to-side-chain cyclodepsipeptides. Nat Protoc 2016; 11:1924-1947. [DOI: 10.1038/nprot.2016.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Synergistic Activity of Combined NS5A Inhibitors. Antimicrob Agents Chemother 2015; 60:1573-83. [PMID: 26711745 DOI: 10.1128/aac.02639-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022] Open
Abstract
Daclatasvir (DCV) is a first-in-class hepatitis C virus (HCV) nonstructural 5A replication complex inhibitor (NS5A RCI) that is clinically effective in interferon-free combinations with direct-acting antivirals (DAAs) targeting alternate HCV proteins. Recently, we reported NS5A RCI combinations that enhance HCV inhibitory potential in vitro, defining a new class of HCV inhibitors termed NS5A synergists (J. Sun, D. R. O'Boyle II, R. A. Fridell, D. R. Langley, C. Wang, S. Roberts, P. Nower, B. M. Johnson F. Moulin, M. J. Nophsker, Y. Wang, M. Liu, K. Rigat, Y. Tu, P. Hewawasam, J. Kadow, N. A. Meanwell, M. Cockett, J. A. Lemm, M. Kramer, M. Belema, and M. Gao, Nature 527:245-248, 2015, doi:10.1038/nature15711). To extend the characterization of NS5A synergists, we tested new combinations of DCV and NS5A synergists against genotype (gt) 1 to 6 replicons and gt 1a, 2a, and 3a viruses. The kinetics of inhibition in HCV-infected cells treated with DCV, an NS5A synergist (NS5A-Syn), or a combination of DCV and NS5A-Syn were distinctive. Similar to activity observed clinically, DCV caused a multilog drop in HCV, followed by rebound due to the emergence of resistance. DCV-NS5A-Syn combinations were highly efficient at clearing cells of viruses, in line with the trend seen in replicon studies. The retreatment of resistant viruses that emerged using DCV monotherapy with DCV-NS5A-Syn resulted in a multilog drop and rebound in HCV similar to the initial decline and rebound observed with DCV alone on wild-type (WT) virus. A triple combination of DCV, NS5A-Syn, and a DAA targeting the NS3 or NS5B protein cleared the cells of viruses that are highly resistant to DCV. Our data support the observation that the cooperative interaction of DCV and NS5A-Syn potentiates both the genotype coverage and resistance barrier of DCV, offering an additional DAA option for combination therapy and tools for explorations of NS5A function.
Collapse
|
34
|
Krastel P, Roggo S, Schirle M, Ross NT, Perruccio F, Aspesi P, Aust T, Buntin K, Estoppey D, Liechty B, Mapa F, Memmert K, Miller H, Pan X, Riedl R, Thibaut C, Thomas J, Wagner T, Weber E, Xie X, Schmitt EK, Hoepfner D. Nannocystin A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties. Angew Chem Int Ed Engl 2015; 54:10149-54. [DOI: 10.1002/anie.201505069] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/21/2022]
|
35
|
Krastel P, Roggo S, Schirle M, Ross NT, Perruccio F, Aspesi P, Aust T, Buntin K, Estoppey D, Liechty B, Mapa F, Memmert K, Miller H, Pan X, Riedl R, Thibaut C, Thomas J, Wagner T, Weber E, Xie X, Schmitt EK, Hoepfner D. Nannocystin A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Stoianov AM, Robson DL, Hetherington AM, Sawyez CG, Borradaile NM. Elongation Factor 1A-1 Is a Mediator of Hepatocyte Lipotoxicity Partly through Its Canonical Function in Protein Synthesis. PLoS One 2015; 10:e0131269. [PMID: 26102086 PMCID: PMC4478042 DOI: 10.1371/journal.pone.0131269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/01/2015] [Indexed: 01/22/2023] Open
Abstract
Elongation factor 1A-1 (eEF1A-1) has non-canonical functions in regulation of the actin cytoskeleton and apoptosis. It was previously identified through a promoter-trap screen as a mediator of fatty acid-induced cell death (lipotoxicity), and was found to participate in this process downstream of ER stress. Since ER stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), we investigated the mechanism of action of eEF1A-1 in hepatocyte lipotoxicity. HepG2 cells were exposed to excess fatty acids, followed by assessments of ER stress, subcellular localization of eEF1A-1, and cell death. A specific inhibitor of eEF1A-1 elongation activity, didemnin B, was used to determine whether its function in protein synthesis is involved in lipotoxicity. Within 6 h, eEF1A-1 protein was modestly induced by high palmitate, and partially re-localized from its predominant location at the ER to polymerized actin at the cell periphery. This early induction and subcellular redistribution of eEF1A-1 coincided with the onset of ER stress, and was later followed by cell death. Didemnin B did not prevent the initiation of ER stress by high palmitate, as indicated by eIF2α phosphorylation. However, consistent with sustained inhibition of eEF1A-1-dependent elongation activity, didemnin B prevented the recovery of protein synthesis and increase in GRP78 protein that are normally associated with later phases of the response to ongoing ER stress. This resulted in decreased palmitate-induced cell death. Our data implicate eEF1A-1, and its function in protein synthesis, in hepatocyte lipotoxicity.
Collapse
Affiliation(s)
- Alexandra M. Stoianov
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Debra L. Robson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Alexandra M. Hetherington
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Cynthia G. Sawyez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
- Department of Medicine, Western University, London, ON, Canada, N6A 5C1
- Robarts Research Institute, Western University, London, ON, Canada, N6A 5C1
| | - Nica M. Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
- * E-mail:
| |
Collapse
|
37
|
González-Almela E, Sanz MA, García-Moreno M, Northcote P, Pelletier J, Carrasco L. Differential action of pateamine A on translation of genomic and subgenomic mRNAs from Sindbis virus. Virology 2015; 484:41-50. [PMID: 26057151 DOI: 10.1016/j.virol.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/28/2015] [Accepted: 05/03/2015] [Indexed: 12/14/2022]
Abstract
Pateamine A (Pat A) is a natural marine product that interacts specifically with the translation initiation factor eIF4A leading to the disruption of the eIF4F complex. In the present study, we have examined the activity of Pat A on the translation of Sindbis virus (SINV) mRNAs. Translation of genomic mRNA is strongly suppressed by Pat A, as shown by the reduction of nsP1 or nsP2 synthesis. Notably, protein synthesis directed by subgenomic mRNA is resistant to Pat A inhibition when the compound is added at late times following infection; however, subgenomic mRNA is sensitive to Pat A in transfected cells or in cell free systems, indicating that this viral mRNA exhibits a dual mechanism of translation. A detailed kinetic analysis of Pat A inhibition in SINV-infected cells demonstrates that a switch occurs approximately 4h after infection, rendering subgenomic mRNA translation more resistant to Pat A inhibition.
Collapse
Affiliation(s)
- Esther González-Almela
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Manuel García-Moreno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Peter Northcote
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Center, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
38
|
Potts MB, McMillan EA, Rosales TI, Kim HS, Ou YH, Toombs JE, Brekken RA, Minden MD, MacMillan JB, White MA. Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nat Chem Biol 2015; 11:401-8. [PMID: 25867045 PMCID: PMC4433765 DOI: 10.1038/nchembio.1797] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022]
Abstract
Modern cancer treatment employs many effective chemotherapeutic agents originally discovered from natural sources. The cyclic depsipeptide didemnin B has demonstrated impressive anticancer activity in preclinical models. Clinical use has been approved but is limited by sparse patient responses combined with toxicity risk and an unclear mechanism of action. From a broad-scale effort to match antineoplastic natural products to their cellular activities, we found that didemnin B selectively induces rapid and wholesale apoptosis through dual inhibition of PPT1 and EEF1A1. Furthermore, empirical discovery of a small panel of exceptional responders to didemnin B allowed the generation of a regularized regression model to extract a sparse-feature genetic biomarker capable of predicting sensitivity to didemnin B. This may facilitate patient selection in a fashion that could enhance and expand the therapeutic application of didemnin B against neoplastic disease.
Collapse
Affiliation(s)
- Malia B. Potts
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Elizabeth A. McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tracy I. Rosales
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hyun Seok Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yi-Hung Ou
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jason E. Toombs
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mark D. Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Ontario Cancer Institute and Princess Margaret Hospital, University Health Network, Toronto, Ontario M5T 2M9, Canada
| | - John B. MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael A. White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
39
|
Predicting the unpredictable: Recent structure–activity studies on peptide-based macrocycles. Bioorg Chem 2015; 60:74-97. [DOI: 10.1016/j.bioorg.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022]
|
40
|
Newman DJ, Cragg GM. Endophytic and epiphytic microbes as "sources" of bioactive agents. Front Chem 2015; 3:34. [PMID: 26052511 PMCID: PMC4440917 DOI: 10.3389/fchem.2015.00034] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/05/2015] [Indexed: 11/21/2022] Open
Abstract
Beginning with the report by Stierle and Strobel in 1993 on taxol(R) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified. They are probably the product of a microbe in, on or around the macroorganism. At times there is an intricate “dance” between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease. This report will give examples from insects, plants, and marine invertebrates.
Collapse
|
41
|
Schmidt EW. The secret to a successful relationship: lasting chemistry between ascidians and their symbiotic bacteria. INVERTEBRATE BIOLOGY : A QUARTERLY JOURNAL OF THE AMERICAN MICROSCOPICAL SOCIETY AND THE DIVISION OF INVERTEBRATE ZOOLOGY/ASZ 2015; 134:88-102. [PMID: 25937788 PMCID: PMC4414342 DOI: 10.1111/ivb.12071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bioactive secondary metabolites are common components of marine animals. In many cases, symbiotic bacteria, and not the animals themselves, synthesize the compounds. Among marine animals, ascidians are good models for understanding these symbioses. Ascidians often contain potently bioactive secondary metabolites as their major extractable components. Strong evidence shows that ~8% of the known secondary metabolites from ascidians are made by symbiotic bacteria, and indirect evidence implicates bacteria in the synthesis of many more. Far from being "secondary" to the animals, secondary metabolites are essential components of the interaction between host animals and their symbiotic bacteria. These interactions have complex underlying biology, but the chemistry is clearly ascidian-species specific. The chemical interactions are ancient in at least some cases, and they are widespread among ascidians. Ascidians maintain secondary metabolic symbioses with bacteria that are phylogenetically diverse, indicating a convergent solution to obtaining secondary metabolites and reinforcing the importance of secondary metabolism in animal survival.
Collapse
|
42
|
Vijaykrishnaraj M, Prabhasankar P. Marine protein hydrolysates: their present and future perspectives in food chemistry – a review. RSC Adv 2015. [DOI: 10.1039/c4ra17205a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Marine protein hydrolysates are usually prepared by the enzymatic digestion with different proteases at controlled pH and temperature.
Collapse
Affiliation(s)
- M. Vijaykrishnaraj
- Flour Milling Baking and Confectionery Technology Department
- CSIR-Central Food Technological Research Institute
- Mysore – 570 020
- India
| | - P. Prabhasankar
- Flour Milling Baking and Confectionery Technology Department
- CSIR-Central Food Technological Research Institute
- Mysore – 570 020
- India
| |
Collapse
|
43
|
Maharani R, Sleebs BE, Hughes AB. Macrocyclic N-Methylated Cyclic Peptides and Depsipeptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63460-3.00004-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
La Clair JJ, Loveridge ST, Tenney K, O'Neil–Johnson M, Chapman E, Crews P. In situ natural product discovery via an artificial marine sponge. PLoS One 2014; 9:e100474. [PMID: 25004127 PMCID: PMC4086721 DOI: 10.1371/journal.pone.0100474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/26/2014] [Indexed: 01/01/2023] Open
Abstract
There is continuing international interest in exploring and developing the therapeutic potential of marine–derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin–targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine–derived scaffolds.
Collapse
Affiliation(s)
- James J. La Clair
- Xenobe Research Institute, San Diego, California, United States of America
- * E-mail: (JJL); (PC); (EC)
| | - Steven T. Loveridge
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Mark O'Neil–Johnson
- Lead Discovery and Rapid Structure Elucidation Group, Sequoia Sciences, Inc., St. Louis, Missouri, United States of America
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (JJL); (PC); (EC)
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (JJL); (PC); (EC)
| |
Collapse
|
45
|
Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 2014; 351:13-22. [PMID: 24836189 DOI: 10.1016/j.canlet.2014.05.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/31/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Conventional cancer therapies mainly focus on mass cell killing without high specificity and often cause severe side effects and toxicities. Peptides are a novel class of anticancer agents that could specifically target cancer cells with lower toxicity to normal tissues, which will offer new opportunities for cancer prevention and treatment. Anticancer peptides face several therapeutic challenges. In this review, we present the sources and mechanisms of anticancer peptides and further discuss modification strategies to improve the anticancer effects of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- College of Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Yanfeng Gao
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanming Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Lixiang Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanfang Ma
- College of Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Yanzhang Li
- College of Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
46
|
Still PC, Johnson TA, Theodore CM, Loveridge ST, Crews P. Scrutinizing the scaffolds of marine biosynthetics from different source organisms: Gram-negative cultured bacterial products enter center stage. JOURNAL OF NATURAL PRODUCTS 2014; 77:690-702. [PMID: 24571234 PMCID: PMC4095796 DOI: 10.1021/np500041x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Compounds from macro marine organisms are presumed to owe their biosynthetic origins to associated microbial symbionts, although few definitive examples exist. An upsurge in the recent literature from 2012 to 2013 has shown that four compounds previously reported from macro marine organisms are in fact biosynthesized by non-photosynthetic Gram-negative bacteria (NPGNB). Structural parallels between compounds isolated from macro marine organisms and NPGNB producers form the basis of this review. Although less attention has been given to investigating the chemistry of NPGNB sources, there exists a significant list of structural parallels between NPGNB and macro marine organism-derived compounds. Alternatively, of the thousands of compounds isolated from Gram-positive actinomycetes, few structural parallels with macro marine organisms are known. A summary of small molecules isolated from marine NPGNB sources is presented, including compounds isolated from marine myxobacteria. From this assemblage of structural parallels and diverse chemical structures, it is hypothesized that the potential for the discovery of inspirational molecules from NPGNB sources is vast and that the recent spike in the literature of macro marine compounds owing their biosynthetic origin to NPGNB producers represents a turning point in the field.
Collapse
Affiliation(s)
- Patrick C. Still
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| | - Tyler A. Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| | - Christine M. Theodore
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| | - Steven T. Loveridge
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, United States
| |
Collapse
|
47
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
48
|
Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PHK, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit AED, Wan DCC, Ye XJ, Xia J, Ng TB. Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 2014; 98:3475-94. [PMID: 24562325 DOI: 10.1007/s00253-014-5575-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/27/2023]
Abstract
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 2014; 12:255-78. [PMID: 24424355 PMCID: PMC3917273 DOI: 10.3390/md12010255] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/17/2013] [Accepted: 01/07/2014] [Indexed: 01/08/2023] Open
Abstract
The marine habitat has produced a significant number of very potent marine-derived agents that have the potential to inhibit the growth of human tumor cells in vitro and, in a number of cases, in both in vivo murine models and in humans. Although many agents have entered clinical trials in cancer, to date, only Cytarabine, Yondelis® (ET743), Eribulin (a synthetic derivative based on the structure of halichondrin B), and the dolastatin 10 derivative, monomethylauristatin E (MMAE or vedotin) as a warhead, have been approved for use in humans (Adcetris®). In this review, we show the compounds derived from marine sources that are currently in clinical trials against cancer. We have included brief discussions of the approved agents, where they are in trials to extend their initial approved activity (a common practice once an agent is approved), and have also included an extensive discussion of the use of auristatin derivatives as warheads, plus an area that has rarely been covered, the use of marine-derived agents to ameliorate the pain from cancers in humans, and to act as an adjuvant in immunological therapies.
Collapse
|
50
|
Thell K, Hellinger R, Schabbauer G, Gruber CW. Immunosuppressive peptides and their therapeutic applications. Drug Discov Today 2013; 19:645-53. [PMID: 24333193 PMCID: PMC4042018 DOI: 10.1016/j.drudis.2013.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022]
Abstract
T cell signaling has a pivotal role in autoimmunity and immunosuppression. Immunosuppressive pharmaceuticals often exhibit severe side-effects in patients. Gene-encoded peptides have potential as immunosuppressive drug candidates. Cyclotides are stable peptides that offer enhanced oral administration properties.
The immune system is vital for detecting and evading endogenous and exogenous threats to the body. Failure to regulate this homeostasis leads to autoimmunity, which is often associated with malfunctioning T cell signaling. Several medications are available to suppress over-reactive T lymphocytes, but many of the currently marketed drugs produce severe and life-threatening side-effects. Ribosomally synthesized peptides are gaining recognition from the pharmaceutical industry for their enhanced selectivity and decreased toxicity compared with small molecules; in particular, circular peptides exhibit remarkable stability and increased oral administration properties. For example, plant cyclotides effectively inhibit T lymphocyte proliferation. They are composed of a head-to-tail cyclized backbone and a cystine-knot motif, which confers them with remarkable stability, thus making them attractive pharmaceutical tools.
Collapse
Affiliation(s)
- Kathrin Thell
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Gernot Schabbauer
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria.
| |
Collapse
|