1
|
Cui M, Mo R, Li Q, Wang R, Shen D, Tang F, Liu Y. Maturation-induced changes in phenolic forms and their antioxidant activities of walnuts: A dual view from kernel and pellicle. Food Chem X 2024; 23:101792. [PMID: 39286045 PMCID: PMC11403452 DOI: 10.1016/j.fochx.2024.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The phenolic profiles and antioxidant activities during walnut maturation are not well understood. This study used UPLC-MS/MS to evaluate phenolic content in walnuts, including free, esterified, and bound forms, at different maturation stages. Findings showed that free phenolics were predominant, comprising 44.57 % in kernels and 56.54 % in pellicles. In vitro assays showed antioxidant capacity decreased with maturation, with IC50 values of 0.87-84.43 μg/mL in pellicles and 48.51-712.30 μg/mL in kernels. Most monomeric phenols decreased in concentration as the fruit ripened. OPLS-DA identified 5 and 8 maturity-sensitive phenolics (MSPs) in kernels and pellicles, respectively, with fold changes from 2.32 to 1664.72. Pearson correlation analysis showed a significant correlation between MSPs and antioxidant activity (r > 0.75, p < 0.05). Bioinformatics analysis elucidated three key metabolic pathways involved in these changes. This research provides insights into walnut phenolic composition, important for optimizing harvest practices and enhancing nutritional value.
Collapse
Affiliation(s)
- Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Runhong Mo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Ruohui Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
- Weinan City Forestry Workstation, Weinan 714000, PR China
| | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| |
Collapse
|
2
|
Wang S, Liu Y, Hao X, Chen Y, Wang Z, Shen Y. Enhancing plant defensins in a desert shrub: Exploring a regulatory pathway of AnWRKY29. Int J Biol Macromol 2024; 270:132259. [PMID: 38740161 DOI: 10.1016/j.ijbiomac.2024.132259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
A distinct family of plant-specific WRKY transcription factors plays a crucial role in modulating responses to biotic and abiotic stresses. In this investigation, we unveiled a signaling pathway activated in the desert shrub Ammopiptanthus nanus during feeding by the moth Spodoptera exigua. The process involves a Ca2+ flux that facilitates interaction between the protein kinase AnCIPK12 and AnWRKY29. AnWRKY29 directly interacts with the promoters of two key genes encoding AnPDF1 and AnHsfB1, involved in the biosynthesis of plant defensins. Consequently, AnWRKY29 exerts its transcriptional regulatory function, influencing plant defensins biosynthesis. This discovery implies that A. nanus can bolster resistance against herbivorous insects like S. exigua by utilizing this signaling pathway, providing an effective natural defense mechanism that supports its survival and reproductive success.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
3
|
Basit A, Humza M, Majeed MZ, Shakeel M, Idrees A, Hu CX, Gui SH, Liu TX. Systemic resistance induced in tomato plants by Beauveria bassiana-derived proteins against tomato yellow leaf curl virus and aphid Myzus persicae. PEST MANAGEMENT SCIENCE 2024; 80:1821-1830. [PMID: 38029362 DOI: 10.1002/ps.7906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Tomato (Solanum lycopersicum L.) is an economically important vegetable crop around the globe. Tomato yellow leaf curling (TYLC) is the most devastating viral disease posing a serious threat to tomato production throughout the tropical and subtropical world. Induction of microbe-mediated systemic resistance in plants has been of great interest in recent years as a novel microbiological tool in disease and insect pest management. This in-vitro study aimed to determine the effectiveness of different strains (BB252, BB72 and ARSEF-2860) of a hypocreal fungus Beauveria bassiana against TYLCV disease and aphid Myzus persicae. Potted tomato plants exogenously treated with conidial and filtrate suspensions of B. bassiana strains and of their partially purified or purified proteins were exposed to TYLCV inoculum and aphid M. persicae. RESULTS Results showed a significant suppression of TYLCV disease severity index by the exogenous application of conidial, filtrate and protein treatments of all B. bassiana strains and this response was directly proportional to the treatment concentration. Similarly, mean fecundity rate of M. persicae was also significantly reduced by the highest concentration of ARSEF-2860-derived elicitor protein PeBb1, followed by the highest concentrations of BB252- and BB72-derived partially purified proteins. Moreover, these B. bassiana-derived proteins also caused a significant upregulation of most of the plant immune marker genes associated with plant defense. CONCLUSION Overall, the study findings suggest that these B. bassiana strains and their partially purified or purified elicitor proteins could be effective biological tools for the management of TYLCV and aphid infestation on tomato plants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Muhammad Humza
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Zeeshan Majeed
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | | | - Atif Idrees
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Chao-Xing Hu
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Shi PQ, Wang L, Chen XY, Wang K, Wu QJ, Turlings TCJ, Zhang PJ, Qiu BL. Rickettsia transmission from whitefly to plants benefits herbivore insects but is detrimental to fungal and viral pathogens. mBio 2024; 15:e0244823. [PMID: 38315036 PMCID: PMC10936170 DOI: 10.1128/mbio.02448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial endosymbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction, and stress tolerance. How endosymbionts may affect the interactions between plants and insect herbivores is still largely unclear. Here, we show that endosymbiotic Rickettsia belli can provide mutual benefits also outside of their hosts when the sap-sucking whitefly Bemisia tabaci transmits them to plants. This transmission facilitates the spread of Rickettsia but is shown to also enhance the performance of the whitefly and co-infesting caterpillars. In contrast, Rickettsia infection enhanced plant resistance to several pathogens. Inside the plants, Rickettsia triggers the expression of salicylic acid-related genes and the two pathogen-resistance genes TGA 2.1 and VRP, whereas they repressed genes of the jasmonic acid pathway. Performance experiments using wild type and mutant tomato plants confirmed that Rickettsia enhances the plants' suitability for insect herbivores but makes them more resistant to fungal and viral pathogens. Our results imply that endosymbiotic Rickettsia of phloem-feeding insects affects plant defenses in a manner that facilitates their spread and transmission. This novel insight into how insects can exploit endosymbionts to manipulate plant defenses also opens possibilities to interfere with their ability to do so as a crop protection strategy. IMPORTANCE Most insects are associated with symbiotic bacteria in nature. These symbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction as well as stress tolerance. Rickettsia is one important symbiont to the agricultural pest whitefly Bemisia tabaci. Here, for the first time, we revealed that the persistence of Rickettsia symbionts in tomato leaves significantly changed the defense pattern of tomato plants. These changes benefit both sap-feeding and leaf-chewing herbivore insects, such as increasing the fecundity of whitefly adults, enhancing the growth and development of the noctuid Spodoptera litura, but reducing the pathogenicity of Verticillium fungi and TYLCV virus to tomato plants distinctively. Our study unraveled a new horizon for the multiple interaction theories among plant-insect-bacterial symbionts.
Collapse
Affiliation(s)
- Pei-Qiong Shi
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Lei Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Xin-Yi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Qing-Jun Wu
- Institute of Vegetables & Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ted C. J. Turlings
- FARCE Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Peng-Jun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Huangzhou, China
| | - Bao-Li Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
5
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|
6
|
Riseh RS, Vazvani MG, Kennedy JF. β-glucan-induced disease resistance in plants: A review. Int J Biol Macromol 2023; 253:127043. [PMID: 37742892 DOI: 10.1016/j.ijbiomac.2023.127043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
7
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
8
|
Zelman AK, Berkowitz GA. Plant Elicitor Peptide (Pep) Signaling and Pathogen Defense in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2856. [PMID: 37571010 PMCID: PMC10421127 DOI: 10.3390/plants12152856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023]
Abstract
Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, increased expression of defensive genes, the activation of phosphorelays, and the induction of cell secondary messenger synthesis. The processes by which Peps confer resistance to pathogenic microorganisms have been extensively studied in Arabidopsis but are less known in crop plants. Tomato and many other solanaceous plants have an endogenous signaling polypeptide, systemin, that is involved in the defense against herbivorous insects and necrotrophic pathogens. This paper explores the similarity of the effects and chemical properties of Pep and systemin in tomato. Additionally, the relationship of the Pep receptor and systemin receptors is explored, and the identification of a second tomato Pep receptor in the literature is called into question. We suggest future directions for research on Pep signaling in solanaceous crops during interactions with microbes.
Collapse
Affiliation(s)
| | - Gerald Alan Berkowitz
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
9
|
Parmagnani AS, Kanchiswamy CN, Paponov IA, Bossi S, Malnoy M, Maffei ME. Bacterial Volatiles (mVOC) Emitted by the Phytopathogen Erwinia amylovora Promote Arabidopsis thaliana Growth and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030600. [PMID: 36978848 PMCID: PMC10045578 DOI: 10.3390/antiox12030600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.
Collapse
Affiliation(s)
- Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | | | - Ivan A. Paponov
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Simone Bossi
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-5967
| |
Collapse
|
10
|
Parmagnani AS, Maffei ME. Calcium Signaling in Plant-Insect Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2689. [PMID: 36297718 PMCID: PMC9609891 DOI: 10.3390/plants11202689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In plant-insect interactions, calcium (Ca2+) variations are among the earliest events associated with the plant perception of biotic stress. Upon herbivory, Ca2+ waves travel long distances to transmit and convert the local signal to a systemic defense program. Reactive oxygen species (ROS), Ca2+ and electrical signaling are interlinked to form a network supporting rapid signal transmission, whereas the Ca2+ message is decoded and relayed by Ca2+-binding proteins (including calmodulin, Ca2+-dependent protein kinases, annexins and calcineurin B-like proteins). Monitoring the generation of Ca2+ signals at the whole plant or cell level and their long-distance propagation during biotic interactions requires innovative imaging techniques based on sensitive sensors and using genetically encoded indicators. This review summarizes the recent advances in Ca2+ signaling upon herbivory and reviews the most recent Ca2+ imaging techniques and methods.
Collapse
|
11
|
Lenci E, Trabocchi A. Diversity‐Oriented Synthesis and Chemoinformatics: A Fruitful Synergy towards Better Chemical Libraries. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Lenci
- Universita degli Studi di Firenze Department of Chemistry Via della Lastruccia 1350019Italia 50019 Sesto Fiorentino ITALY
| | - Andrea Trabocchi
- University of Florence: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" ITALY
| |
Collapse
|
12
|
Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory. PLoS One 2021; 16:e0258235. [PMID: 34679089 PMCID: PMC8535358 DOI: 10.1371/journal.pone.0258235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Carnivorous plants feed on animal prey, mainly insects, to get additional nutrients. This carnivorous syndrome is widely investigated and reported. In contrast, reports on herbivores feeding on carnivorous plants and related defenses of the plants under attack are rare. Here, we studied the interaction of a pitcher plant, Nepenthes x ventrata, with a generalist lepidopteran herbivore, Spodoptera littoralis, using a combination of LC/MS-based chemical analytics, choice and feeding assays. Chemical defenses in N. x ventrata leaves were analyzed upon S. littoralis feeding. A naphthoquinone, plumbagin, was identified in Nepenthes defense against herbivores and as the compound mainly responsible for the finding that S. littoralis larvae gained almost no weight when feeding on Nepenthes leaves. Plumbagin is constitutively present but further 3-fold increased upon long-term (> 1 day) feeding. Moreover, in parallel de novo induced trypsin protease inhibitor (TI) activity was identified. In contrast to TI activity, enhanced plumbagin levels were not phytohormone inducible, not even by defense-related jasmonates although upon herbivory their level increased more than 50-fold in the case of the bioactive jasmonic acid-isoleucine. We conclude that Nepenthes is efficiently protected against insect herbivores by naphthoquinones acting as phytoanticipins, which is supported by additional inducible defenses. The regulation of these defenses remains to be investigated.
Collapse
|
13
|
Javed K, Humayun T, Humayun A, Wang Y, Javed H. PeaT1 and PeBC1 Microbial Protein Elicitors Enhanced Resistance against Myzus persicae Sulzer in Chili Capsicum annum L. Microorganisms 2021; 9:microorganisms9112197. [PMID: 34835323 PMCID: PMC8618443 DOI: 10.3390/microorganisms9112197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The green peach aphid (Myzus persicae Sulzer), a major and harmful chili aphid usually managed using chemical pesticides, is responsible for massive annual agricultural losses. The efficacy of two protein elicitors, PeaT1 and PeBC1, to stimulate a defensive response against M. persicae in chili was studied in this study. When compared to positive (water) and negative (buffer, 50 mM Tris-HCl, pH 8.0) controls, the rates of population growth (intrinsic rate of increase) of M. persicae (second and third generations) were lower with PeaT1- and PeBC1-treated chilli seedlings. M. persicae demonstrated a preference for colonizing control (12.18 ± 0.06) plants over PeaT1- (7.60 ± 0.11) and PeBC1 (6.82 ± 0.09) treated chilli seedlings in a host selection assay. Moreover, PeaT1- and PeBC1-treated chilli seedlings, the nymphal development period of the M. persicae was extended. Similarly, fecundity was lowered in the PeaT1- and PeBC1-treated chilli seedlings, with fewer offspring produced compared to the positive (water) and negative controls (50 mM Tris-HCl, pH 8.0). The trichomes and wax production on the PeaT1 and PeBC1-treated chilli leaves created a disadvantageous surface environment for M. persicae. Compared to control (30.17 ± 0.16 mm-2), PeaT1 (56.23 ± 0.42 mm-2) and PeBC1 (52.14 ± 0.34 mm-2) had more trichomes. The levels of jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) were significantly higher in the PeaT1- and PeBC1-treated chili seedlings, indicating considerable accumulation. PeaT1 and PeBC1 significantly affected the height of the chili plant and the surface structure of the leaves, reducing M. persicae reproduction and preventing colonization, according to the data. The activation of pathways was also part of the defensive response (JA, SA, and ET). This present research findings established an evidence of biocontrol for the utilization of PeaT1 and PeBC1 in the defence of chili plants against M. persicae.
Collapse
Affiliation(s)
- Khadija Javed
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China;
- Department of Environmental Science, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Talha Humayun
- Department of Surgery (Surgical Unit 1 HFH), Rawalpindi Medical University, Rawalpindi 46000, Pakistan;
| | - Ayesha Humayun
- Department of Clinical studies, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China;
- Correspondence:
| | - Humayun Javed
- Department of Entomology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan;
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK
| |
Collapse
|
14
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
15
|
Peptidyl prolyl cis/trans isomerase from Pseudomonas fluorescens encapsulated into biodegradable natural polymers: A potential plant protection agent inducing plant resistance to fungal pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells 2021; 10:cells10092219. [PMID: 34571868 PMCID: PMC8470099 DOI: 10.3390/cells10092219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants and insect herbivores are in a relentless battle to outwit each other. Plants have evolved various strategies to detect herbivores and mount an effective defense system against them. These defenses include physical and structural barriers such as spines, trichomes, cuticle, or chemical compounds, including secondary metabolites such as phenolics and terpenes. Plants perceive herbivory by both mechanical and chemical means. Mechanical sensing can occur through the perception of insect biting, piercing, or chewing, while chemical signaling occurs through the perception of various herbivore-derived compounds such as oral secretions (OS) or regurgitant, insect excreta (frass), or oviposition fluids. Interestingly, ion channels or transporters are the first responders for the perception of these mechanical and chemical cues. These transmembrane pore proteins can play an important role in plant defense through the induction of early signaling components such as plasma transmembrane potential (Vm) fluctuation, intracellular calcium (Ca2+), and reactive oxygen species (ROS) generation, followed by defense gene expression, and, ultimately, plant defense responses. In recent years, studies on early plant defense signaling in response to herbivory have been gaining momentum with the application of genetically encoded GFP-based sensors for real-time monitoring of early signaling events and genetic tools to manipulate ion channels involved in plant-herbivore interactions. In this review, we provide an update on recent developments and advances on early signaling events in plant-herbivore interactions, with an emphasis on the role of ion channels in early plant defense signaling.
Collapse
|
17
|
Ninkovic V, Glinwood R, Ünlü AG, Ganji S, Unelius CR. Effects of Methyl Salicylate on Host Plant Acceptance and Feeding by the Aphid Rhopalosiphum padi. FRONTIERS IN PLANT SCIENCE 2021; 12:710268. [PMID: 34484270 PMCID: PMC8415113 DOI: 10.3389/fpls.2021.710268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Methyl salicylate (MeSA) is a volatile shown to act as an inducer of plant defense against pathogens and certain herbivores, particularly aphids. It has been shown to have potential for aphid pest management, but knowledge on its mode of action is lacking, particularly induced plant-mediated effects. This study investigated the effects of exposing plants to MeSA on the host searching, host acceptance and feeding behavior of the bird cherry-oat aphid Rhopalosiphum padi. Barley plants were exposed to volatile MeSA for 24 h, after which biological effects were tested immediately after the exposure (Day 0), and then 1, 3 and 5 days after the end of the exposure. Aphid settling on MeSA-exposed plants was significantly reduced on days 0, 1 and 3, but not on day 5. In olfactometer tests, aphids preferred the odor of unexposed plants on days 1 and 3, but not on day 0 or 5. Analysis of volatiles from exposed and unexposed plants showed higher levels of MeSA from exposed plants, most likely absorbed and re-released from plant surfaces, but also specific changes in other plant volatiles on days 0, 1 and 3. High doses of MeSA did not affect aphid orientation in an olfactometer, but lower doses were repellent. Analysis of aphid feeding by Electronic penetration graph (EPG) showed that MeSA exposure resulted in resistance factors in barley plants, including surface factors and induced systemic factors in other tissues including the phloem. The results support the potential of MeSA as a potential tool for management of aphid pests.
Collapse
Affiliation(s)
- Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robert Glinwood
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ayse Gül Ünlü
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Suresh Ganji
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - C. Rikard Unelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
18
|
Malabarba J, Meents AK, Reichelt M, Scholz SS, Peiter E, Rachowka J, Konopka-Postupolska D, Wilkins KA, Davies JM, Oelmüller R, Mithöfer A. ANNEXIN1 mediates calcium-dependent systemic defense in Arabidopsis plants upon herbivory and wounding. THE NEW PHYTOLOGIST 2021; 231:243-254. [PMID: 33586181 DOI: 10.1111/nph.17277] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 02/05/2021] [Indexed: 05/21/2023]
Abstract
Cellular calcium (Ca) transients are endogenous signals involved in local and systemic signaling and defense activation upon environmental stress, including wounding and herbivory. Still, not all Ca2+ channels contributing to the signaling have been identified, nor are their modes of action fully known. Plant annexins are proteins capable of binding to anionic phospholipids and can exhibit Ca channel-like activity. Arabidopsis ANNEXIN1 (ANN1) is suggested to contribute to Ca transport. Here, we report that wounding and simulated-herbivory-induced cytosolic free Ca elevation was impaired in systemic leaves in ann1 loss-of-function plants. We provide evidence for a role of ANN1 in local and systemic defense of plants attacked by herbivorous Spodoptera littoralis larvae. Bioassays identified ANN1 as a positive defense regulator. Spodoptera littoralis feeding on ann1 gained significantly more weight than larvae feeding on wild-type, whereas those feeding on ANN1-overexpressing lines gained less weight. Herbivory and wounding both induced defense-related responses on treated leaves, such as jasmonate accumulation and defense gene expression. These responses remained local and were strongly reduced in systemic leaves in ann1 plants. Our results indicate that ANN1 plays an important role in activation of systemic rather than local defense in plants attacked by herbivorous insects.
Collapse
Affiliation(s)
- Jaiana Malabarba
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Postgraduate Program in Cell and Molecular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - Anja K Meents
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sandra S Scholz
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Julia Rachowka
- Plant Protein Phosphorylation Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Dorota Konopka-Postupolska
- Plant Protein Phosphorylation Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, CB24 6DG, UK
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, CB24 6DG, UK
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
19
|
Brosset A, Islam M, Bonzano S, Maffei ME, Blande JD. Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory. Sci Rep 2021; 11:13532. [PMID: 34188152 PMCID: PMC8242006 DOI: 10.1038/s41598-021-93052-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
It is well established that plants emit, detect and respond to volatile organic compounds; however, knowledge on the ability of plants to detect and respond to volatiles emitted by non-plant organisms is limited. Recent studies indicated that plants detect insect-emitted volatiles that induce defence responses; however, the mechanisms underlying this detection and defence priming is unknown. Therefore, we explored if exposure to a main component of Plutella xylostella female sex pheromone namely (Z)-11-hexadecenal [(Z)-11-16:Ald] induced detectable early and late stage defence-related plant responses in Brassica nigra. Exposure to biologically relevant levels of vapourised (Z)-11-16:Ald released from a loaded septum induced a change in volatile emissions of receiver plants after herbivore attack and increased the leaf area consumed by P. xylostella larvae. Further experiments examining the effects of the (Z)-11-16:Ald on several stages of plant defence-related responses showed that exposure to 100 ppm of (Z)-11-16:Ald in liquid state induced depolarisation of the transmembrane potential (Vm), an increase in cytosolic calcium concentration [Ca2+]cyt, production of H2O2 and an increase in expression of reactive oxygen species (ROS)-mediated genes and ROS-scavenging enzyme activity. The results suggest that exposure to volatile (Z)-11-16:Ald increases the susceptibility of B. nigra to subsequent herbivory. This unexpected finding, suggest alternative ecological effects of detecting insect pheromone to those reported earlier. Experiments conducted in vitro showed that high doses of (Z)-11-16:Ald induced defence-related responses, but further experiments should assess how specific the response is to this particular aldehyde.
Collapse
Affiliation(s)
- Agnès Brosset
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, N70211, Kuopio, Finland.
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.,Department of Sustainable Crop Production, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Sara Bonzano
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO) Regione Gonzole, 10 - 10043, Orbassano (TO), Italy
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, N70211, Kuopio, Finland
| |
Collapse
|
20
|
Mazumdar P, Singh P, Kethiravan D, Ramathani I, Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. PLANTA 2021; 253:119. [PMID: 33963935 DOI: 10.1007/s00425-021-03636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This review provides insights into the molecular interactions between Phytophthora infestans and tomato and highlights research gaps that need further attention. Late blight in tomato is caused by the oomycota hemibiotroph Phytophthora infestans, and this disease represents a global threat to tomato farming. The pathogen is cumbersome to control because of its fast-evolving nature, ability to overcome host resistance and inefficient natural resistance obtained from the available tomato germplasm. To achieve successful control over this pathogen, the molecular pathogenicity of P. infestans and key points of vulnerability in the host plant immune system must be understood. This review primarily focuses on efforts to better understand the molecular interaction between host pathogens from both perspectives, as well as the resistance genes, metabolomic changes, quantitative trait loci with potential for improvement in disease resistance and host genome manipulation via transgenic approaches, and it further identifies research gaps and provides suggestions for future research priorities.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Pooja Singh
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharane Kethiravan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Idd Ramathani
- National Crops Resources Research Institute, Gayaza Road Namulonge, 7084, Kampala, Uganda
| | - N Ramakrishnan
- ECSE, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| |
Collapse
|
21
|
Arimura GI. Making Sense of the Way Plants Sense Herbivores. TRENDS IN PLANT SCIENCE 2021; 26:288-298. [PMID: 33277185 DOI: 10.1016/j.tplants.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Plants are constantly threatened by herbivore attacks and must devise survival strategies. Some plants sense and respond to elicitors including specific molecules secreted by herbivores and molecules that are innate to plants. Elicitors activate diverse arrays of plant defense mechanisms that confer resistance to the predator. Recent new insights into the cellular pathways by which plants sense elicitors and elicit defense responses against herbivores are opening doors to a myriad of agricultural applications. This review focuses on the machinery of herbivory-sensing and on cellular and systemic/airborne signaling via elicitors, exemplified by the model case of interactions between Arabidopsis hosts and moths of the genus Spodoptera.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
22
|
Do microbial protein elicitors PeaT1 obtained from Alternaria tenuissima and PeBL1 from Brevibacillus laterosporus enhance defense response against tomato aphid ( Myzus persicae)? Saudi J Biol Sci 2021; 28:3242-3248. [PMID: 34121861 PMCID: PMC8176006 DOI: 10.1016/j.sjbs.2021.02.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022] Open
Abstract
Tomato aphid (Myzus persicae) is a destructive insect pest of tomato responsible for huge losses in the production as well in the vegetable industry. In the present in vitro study two protein elicitors, PeaT1 and PeBL1 were considered to study their efficacies to exhibit defense response against tomato aphid. Three different concentrations of both protein elicitors were applied on the tomato seedlings. After the application of PeaT1 and PeBL1, population growth rates of tomato aphid were decreased as compared to the control treatment. In host preference assay, the tomato aphid showed a preference to build a colony on the control as compared to the treated tomato plant, because tomato leaves provided hazardous surface for aphid after the formation of wax and trichome. The concentrations of protein showed significant (p < 0.05) results in life-history traits of the aphid. Jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) showed significant accumulation in tomato seedlings treated with PeaT1 and PeBL1. Elicitors treated plants produced resistance against M. persicae. Our finding suggests that PeaT1 and PeBL1 have shown high potentials against the damage of M. persicae, and both elicitors could be used as novel biological tools against tomato aphid.
Collapse
|
23
|
Barbero F, Guglielmotto M, Islam M, Maffei ME. Extracellular Fragmented Self-DNA Is Involved in Plant Responses to Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:686121. [PMID: 34381477 PMCID: PMC8350447 DOI: 10.3389/fpls.2021.686121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 05/17/2023]
Abstract
A growing body of evidence indicates that extracellular fragmented self-DNA (eDNA), by acting as a signaling molecule, triggers inhibitory effects on conspecific plants and functions as a damage-associated molecular pattern (DAMP). To evaluate early and late events in DAMP-dependent responses to eDNA, we extracted, fragmented, and applied the tomato (Solanum lycopersicum) eDNA to tomato leaves. Non-sonicated, intact self-DNA (intact DNA) was used as control. Early event analyses included the evaluation of plasma transmembrane potentials (Vm), cytosolic calcium variations (Ca2+ cy t), the activity and subcellular localization of both voltage-gated and ligand-gated rectified K+ channels, and the reactive oxygen species (ROS) subcellular localization and quantification. Late events included RNA-Seq transcriptomic analysis and qPCR validation of gene expression of tomato leaves exposed to tomato eDNA. Application of eDNA induced a concentration-dependent Vm depolarization which was correlated to an increase in (Ca2+)cyt; this event was associated to the opening of K+ channels, with particular action on ligand-gated rectified K+ channels. Both eDNA-dependent (Ca2+)cyt and K+ increases were correlated to ROS production. In contrast, application of intact DNA produced no effects. The plant response to eDNA was the modulation of the expression of genes involved in plant-biotic interactions including pathogenesis-related proteins (PRPs), calcium-dependent protein kinases (CPK1), heat shock transcription factors (Hsf), heat shock proteins (Hsp), receptor-like kinases (RLKs), and ethylene-responsive factors (ERFs). Several genes involved in calcium signaling, ROS scavenging and ion homeostasis were also modulated by application of eDNA. Shared elements among the transcriptional response to eDNA and to biotic stress indicate that eDNA might be a common DAMP that triggers plant responses to pathogens and herbivores, particularly to those that intensive plant cell disruption or cell death. Our results suggest the intriguing hypothesis that some of the plant reactions to pathogens and herbivores might be due to DNA degradation, especially when associated to the plant cell disruption. Fragmented DNA would then become an important and powerful elicitor able to trigger early and late responses to biotic stress.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Michela Guglielmotto
- Neuroscience Institute of Cavalieri Ottolenghi Foundation, University of Turin, Turin, Italy
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Massimo E. Maffei,
| |
Collapse
|
24
|
Oligosaccharides: Defense Inducers, Their Recognition in Plants, Commercial Uses and Perspectives. Molecules 2020; 25:molecules25245972. [PMID: 33339414 PMCID: PMC7766089 DOI: 10.3390/molecules25245972] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023] Open
Abstract
Plants have innate immune systems or defense mechanisms that respond to the attack of pathogenic microorganisms. Unlike mammals, they lack mobile defense cells, so defense processes depend on autonomous cellular events with a broad repertoire of recognition to detect pathogens, which compensates for the lack of an adaptive immune system. These defense mechanisms remain inactive or latent until they are activated after exposure or contact with inducing agents, or after the application of the inductor; they remain inactive only until they are affected by a pathogen or challenged by an elicitor from the same. Resistance induction represents a focus of interest, as it promotes the activation of plant defense mechanisms, reducing the use of chemical synthesis pesticides, an alternative that has even led to the generation of new commercial products with high efficiency, stability and lower environmental impact, which increase productivity by reducing not only losses but also increasing plant growth. Considering the above, the objective of this review is to address the issue of resistance induction with a focus on the potential of the use of oligosaccharides in agriculture, how they are recognized by plants, how they can be used for commercial products and perspectives.
Collapse
|
25
|
Mujiono K, Tohi T, Sobhy IS, Hojo Y, Ho NT, Shinya T, Galis I. Ethylene functions as a suppressor of volatile production in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6491-6511. [PMID: 32697299 DOI: 10.1093/jxb/eraa341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We examined the role of ethylene in the production of rice (Oryza sativa) volatile organic compounds (VOCs), which act as indirect defense signals against herbivores in tritrophic interactions. Rice plants were exposed to exogenous ethylene (1 ppm) after simulated herbivory, which consisted of mechanical wounding supplemented with oral secretions (WOS) from the generalist herbivore larva Mythimna loreyi. Ethylene treatment highly suppressed VOCs in WOS-treated rice leaves, which was further corroborated by the reduced transcript levels of major VOC biosynthesis genes in ethylene-treated rice. In contrast, the accumulation of jasmonates (JA), known to control VOCs in higher plants, and transcript levels of primary JA response genes, including OsMYC2, were not largely affected by ethylene application. At the functional level, flooding is known to promote internode elongation in young rice via ethylene signaling. Consistent with the negative role of ethylene on VOC genes, the accumulation of VOCs in water-submerged rice leaves was suppressed. Furthermore, in mature rice plants, which naturally produce less volatiles, VOCs could be rescued by the application of the ethylene perception inhibitor 1-methylcyclopropene. Our data suggest that ethylene acts as an endogenous suppressor of VOCs in rice plants during development and under stress.
Collapse
Affiliation(s)
- Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda, Indonesia
| | - Tilisa Tohi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Islam S Sobhy
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Nhan Thanh Ho
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Cuu Long Delta Rice Research Institute, Can Tho, Vietnam
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
26
|
de Mello US, Vidigal PMP, Vital CE, Tomaz AC, de Figueiredo M, Peternelli LA, Barbosa MHP. An overview of the transcriptional responses of two tolerant and susceptible sugarcane cultivars to borer (Diatraea saccharalis) infestation. Funct Integr Genomics 2020; 20:839-855. [PMID: 33068201 DOI: 10.1007/s10142-020-00755-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Diatraea saccharalis constitutes a threat to the sugarcane productivity, and obtaining borer tolerant cultivars is an alternative method of control. Although there are studies about the relationship between the interaction of D. saccharalis with sugarcane, little is known about the molecular and genomic basis of defense mechanisms that confer tolerance to sugarcane cultivars. Here, we analyzed the transcriptional profile of two sugarcane cultivars in response to borer attack, RB867515 and SP80-3280, which are considered tolerant and sensitive to the borer attack, respectively. A sugarcane genome and transcriptome were used for read mapping. Differentially expressed transcripts and genes were identified and termed to as DETs and DEGs, according to the sugarcane database adopted. A total of 745 DETs and 416 DEGs were identified (log2|ratio| > 0.81; FDR corrected P value ≤ 0.01) after borer infestation. Following annotation of up- and down-regulated DETs and DEGs by similarity searches, the sugarcane cultivars demonstrated an up-regulation of jasmonic acid (JA), ethylene (ET), and defense protein genes, as well as a down-regulation of pathways involved in photosynthesis and energy metabolism. The expression analysis also highlighted that RB867515 cultivar is possibly more transcriptionally activated after 12 h from infestation than SP80-3280, which could imply in quicker responses by probably triggering more defense-related genes and mediating metabolic pathways to cope with borer attack.
Collapse
Affiliation(s)
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil.
| | - Camilo Elber Vital
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Adriano Cirino Tomaz
- Department of Agronomy, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Milene de Figueiredo
- Department of Agronomy, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
27
|
Keerio AU, Nazir T, Anwar T, Zeeshan Majeed M, Abdulle YA, Jatoi GH, Gadhi MA, Qiu D. Sub-Lethal Effects of Partially Purified Protein Extracted from Beauveria bassiana (Balsamo) and Its Presumptive Role in Tomato ( Lycopersicon esculentum L.) Defense against Whitefly ( Bemisia tabaci Genn.). INSECTS 2020; 11:insects11090574. [PMID: 32867017 PMCID: PMC7564989 DOI: 10.3390/insects11090574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary Apart from their direct entomopathogenicity, many entomopathogenic fungi synthesize protein molecules that can trigger plant defense mechanisms against herbivore insect pests. This laboratory study determined the sub-lethal effects of a partially purified protein derived from Beauveria bassiana against whitefly Bemisia tabaci on tomato plants along with the subsequent gene expression analyses of key gens potentially linked to jasmonic acid (JA) and salicylic acid (SA) associated plant defense pathways. The exogenous foliar application of B. bassiana-derived protein significantly reduced the whitefly survival and fecundity parameters concomitantly with an up-regulation of all the plant defense associated genes, particularly of SA pathway genes. These findings demonstrate the putative role of this partially purified entomopathogenic fungal protein and suggest its further purification and characterization for using in future microbial pest control strategies against whiteflies and other sap-feeding insect pests. Abstract Plants rely on various physiological and molecular defense mechanisms against biotic stresses such as herbivore insects. Many entomopathogenic fungi synthesize protein molecules that can trigger these plant defenses. This laboratory study characterized the bioactivity of a partially purified protein derived from Beauveria bassiana (ARSEF 2860) against whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), which is an economically important pest of agricultural and horticultural crops worldwide. Different concentrations (i.e., 0.021, 0.042 and 0.063 μM) of fungal protein were bioassayed to determine their sub-lethal effect on the survival percentage and fecundity rate of B. tabaci on tomato (Lycopersicon esculentum) plants. In addition, the putative role of this partially purified B. bassiana protein in the defense mechanisms of plant was assessed through the expression analyses of important genes related to salicylic acid (SA)—and jasmonic acid (JA)—associated pathways using RT-qPCR. Results revealed a significant suppression of the survival percentage and fecundity rate of B. tabaci by the fungal protein. Lowest survival (41%) was recorded for the highest concentration of protein (0.063 μM), whereas mean survival for the other two protein concentrations (0.042 and 0.021 μM) were 62 and 71%, respectively. Likewise, the highest and lowest mean fecundity rates were observed for the control and the highest protein concentration (i.e., 3.3 and 1.8 eggs day−1 female−1, respectively). Furthermore, the exogenous application of B. bassiana-derived protein on tomato plants strongly up-regulated the SA-related genes (PAL, PR1, BGL2 and EDS1) and slightly up-regulated the JA-related genes (AOC, AOS, OPR3 and LOX) as compared to the control plants. These findings demonstrate the putative role of this partially purified B. bassiana protein fraction in inducing systemic resistance in the tomato plants against B. tabaci, suggesting its further purification and characterization to be used as novel biological pest control tool against B. tabaci and other sap-sucking insect pests.
Collapse
Affiliation(s)
- Azhar Uddin Keerio
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (Y.A.A.); (G.H.J.); (M.A.G.)
- Correspondence: (A.U.K.); (D.Q.); Tel.: +86-13520642805 (D.Q.)
| | - Talha Nazir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (Y.A.A.); (G.H.J.); (M.A.G.)
| | - Tauqir Anwar
- Pest Warning & Quality Control of Pesticides, Punjab Agriculture Department, Government of the Punjab, Sillanwali 40010, Pakistan;
| | | | - Yusuf Ali Abdulle
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (Y.A.A.); (G.H.J.); (M.A.G.)
| | - Ghulam Hussain Jatoi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (Y.A.A.); (G.H.J.); (M.A.G.)
- Department of Plant Pathology, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Muswar Ali Gadhi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (Y.A.A.); (G.H.J.); (M.A.G.)
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (Y.A.A.); (G.H.J.); (M.A.G.)
- Correspondence: (A.U.K.); (D.Q.); Tel.: +86-13520642805 (D.Q.)
| |
Collapse
|
28
|
Liu J, Legarrea S, Alba JM, Dong L, Chafi R, Menken SBJ, Kant MR. Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults. FRONTIERS IN PLANT SCIENCE 2020; 11:980. [PMID: 32754172 PMCID: PMC7367147 DOI: 10.3389/fpls.2020.00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 05/25/2023]
Abstract
When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e., Tetranychus urticae of which the adult females induce defenses and T. evansi of which the adult females suppress defenses in Solanum lycopersicum (tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant defenseless-1 (def-1, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector 28, 84, SHOT2b, and SHOT3b) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and def-1 did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by T. urticae larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector 84 and SHOT3b was higher in T. urticae females than in males, this was the opposite for T. evansi. We also observed T. urticae females to upregulate tomato defenses, while T. evansi females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.
Collapse
Affiliation(s)
- Jie Liu
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Saioa Legarrea
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Juan M. Alba
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Lin Dong
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rachid Chafi
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Steph B. J. Menken
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Merijn R. Kant
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Liu J, Chafi R, Legarrea S, Alba JM, Meijer T, Menken SBJ, Kant MR. Spider Mites Cause More Damage to Tomato in the Dark When Induced Defenses Are Lower. J Chem Ecol 2020; 46:631-641. [PMID: 32588284 PMCID: PMC7371662 DOI: 10.1007/s10886-020-01195-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022]
Abstract
Plants have evolved robust mechanisms to cope with incidental variation (e.g. herbivory) and periodical variation (e.g. light/darkness during the day-night cycle) in their environment. It has been shown that a plant's susceptibility to pathogens can vary during its day-night cycle. We demonstrated earlier that the spider mite Tetranychus urticae induces jasmonate- and salicylate-mediated defenses in tomato plants while the spider mite T. evansi suppresses these defenses probably by secreting salivary effector proteins. Here we compared induction/suppression of plant defenses; the expression of mite-effector genes and the amount of damage due to mite feeding during the day and during the night. T. urticae feeding upregulated the expression of jasmonate and salicylate marker-genes albeit significantly higher under light than under darkness. Some of these marker-genes were also upregulated by T. evansi-feeding albeit to much lower levels than by T. urticae-feeding. The expression of effector 28 was not affected by light or darkness in either mite species. However, the expression of effector 84 was considerably higher under light, especially for T. evansi. Finally, while T. evansi produced overall more feeding damage than T. urticae both mites produced consistently more damage during the dark phase than under light. Our results suggest that induced defenses are subject to diurnal variation possibly causing tomatoes to incur more damage due to mite-feeding during the dark phase. We speculate that mites, but especially T. evansi, may relax effector production during the dark phase because under these conditions the plant's ability to upregulate defenses is reduced.
Collapse
Affiliation(s)
- Jie Liu
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Rachid Chafi
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Saioa Legarrea
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Juan M Alba
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Tomas Meijer
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Steph B J Menken
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Merijn R Kant
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
30
|
Jones TKL, Medina RF. Corn Stunt Disease: An Ideal Insect-Microbial-Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn. PLANTS 2020; 9:plants9060747. [PMID: 32545891 PMCID: PMC7356856 DOI: 10.3390/plants9060747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over 700 plant diseases identified as vector-borne negatively impact plant health and food security globally. The pest control of vector-borne diseases in agricultural settings is in urgent need of more effective tools. Ongoing research in genetics, molecular biology, physiology, and vector behavior has begun to unravel new insights into the transmission of phytopathogens by their insect vectors. However, the intricate mechanisms involved in phytopathogen transmission for certain pathosystems warrant further investigation. In this review, we propose the corn stunt pathosystem (Zea mays-Spiroplasma kunkelii-Dalbulus maidis) as an ideal model for dissecting the molecular determinants and mechanisms underpinning the persistent transmission of a mollicute by its specialist insect vector to an economically important monocotyledonous crop. Corn stunt is the most important disease of corn in the Americas and the Caribbean, where it causes the severe stunting of corn plants and can result in up to 100% yield loss. A comprehensive study of the corn stunt disease system will pave the way for the discovery of novel molecular targets for genetic pest control targeting either the insect vector or the phytopathogen.
Collapse
Affiliation(s)
- Tara-kay L. Jones
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843-2475, USA;
- Texas A&M AgriLife Research—Weslaco, 2415 E. Business 83, Weslaco, TX 78596-8344, USA
| | - Raul F. Medina
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843-2475, USA;
- Correspondence: ; Tel.: +1-979-845-4775
| |
Collapse
|
31
|
Uemura T, Hachisu M, Desaki Y, Ito A, Hoshino R, Sano Y, Nozawa A, Mujiono K, Galis I, Yoshida A, Nemoto K, Miura S, Nishiyama M, Nishiyama C, Horito S, Sawasaki T, Arimura GI. Soy and Arabidopsis receptor-like kinases respond to polysaccharide signals from Spodoptera species and mediate herbivore resistance. Commun Biol 2020; 3:224. [PMID: 32385340 PMCID: PMC7210110 DOI: 10.1038/s42003-020-0959-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Plants respond to herbivory by perceiving herbivore danger signal(s) (HDS(s)), including "elicitors", that are present in herbivores' oral secretions (OS) and act to induce defense responses. However, little is known about HDS-specific molecules and intracellular signaling. Here we explored soybean receptor-like kinases (RLKs) as candidates that might mediate HDS-associated RLKs' (HAKs') actions in leaves in response to OS extracted from larvae of a generalist herbivore, Spodoptera litura. Fractionation of OS yielded Frα, which consisted of polysaccharides. The GmHAKs composed of their respective homomultimers scarcely interacted with Frα. Moreover, Arabidopsis HAK1 homomultimers interacted with cytoplasmic signaling molecule PBL27, resulting in herbivory resistance, in an ethylene-dependent manner. Altogether, our findings suggest that HAKs are herbivore-specific RLKs mediating HDS-transmitting, intracellular signaling through interaction with PBL27 and the subsequent ethylene signaling for plant defense responses in host plants.
Collapse
Affiliation(s)
- Takuya Uemura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yoshitake Desaki
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ayaka Ito
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryosuke Hoshino
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yuka Sano
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Kadis Mujiono
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda, Indonesia
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | | | - Shigetoshi Miura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shigeomi Horito
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | | | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
32
|
Margaritopoulou T, Toufexi E, Kizis D, Balayiannis G, Anagnostopoulos C, Theocharis A, Rempelos L, Troyanos Y, Leifert C, Markellou E. Reynoutria sachalinensis extract elicits SA-dependent defense responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci Rep 2020; 10:3354. [PMID: 32098979 PMCID: PMC7042220 DOI: 10.1038/s41598-020-60148-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew (PM) caused by Podosphaera xanthii is one of the most important courgette diseases with high yield losses and is currently controlled by fungicides and sulphur applications in conventional and organic production. Plant derived elicitors/inducers of resistance are natural compounds that induce resistance to pathogen attack and promote a faster and/or more robust activation of plant defense responses. Giant knotweed (Reynoutria sachalinensis, RS) extract is a known elicitor of plant defenses but its mode of action remains elusive. The aim of this study was to investigate the mechanisms of foliar RS applications and how these affect PM severity and crop performance when used alone or in combination with genetic resistance. RS foliar treatments significantly reduced conidial germination and PM severity on both an intermediate resistance (IR) and a susceptible (S) genotype. RS application triggered plant defense responses, which induced the formation of callose papillae, hydrogen peroxide accumulation and the Salicylic acid (SA) - dependent pathway. Increased SA production was detected along with increased p-coumaric and caffeic acid concentrations. These findings clearly indicate that RS elicits plant defenses notably as a consequence of SA pathway induction.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Eleftheria Toufexi
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
- Newcastle University, Nafferton Ecological Farming Group, School of Agriculture Food and Rural Development, Newcastle upon Tyne, NE1 7RU, UK
| | - Dimosthenis Kizis
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - George Balayiannis
- Benaki Phytopathological Institute, Department of Pesticides Control & Phytopharmacy, Laboratory of Chemical Control of Pesticides, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Christos Anagnostopoulos
- Benaki Phytopathological Institute, Department of Pesticides Control & Phytopharmacy, Laboratory of Pesticide Residues, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Andreas Theocharis
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Leonidas Rempelos
- Newcastle University, Nafferton Ecological Farming Group, School of Agriculture Food and Rural Development, Newcastle upon Tyne, NE1 7RU, UK
| | - Yerasimos Troyanos
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Non-Parasitic Diseases, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Carlo Leifert
- Centre for Organics Research, Southern Cross University, Military Rd., Lismore, NSW, Australia
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372, Oslo, Norway
| | - Emilia Markellou
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece.
| |
Collapse
|
33
|
Nazir T, Hanan A, Basit A, Majeed MZ, Anwar T, Nawaz I, Qiu D. Putative Role of a Yet Uncharacterized Protein Elicitor PeBb1 Derived from Beauveria bassiana ARSEF 2860 Strain against Myzus persicae (Homoptera: Aphididae) in Brassica rapa ssp. pekinensis. Pathogens 2020; 9:pathogens9020111. [PMID: 32054010 PMCID: PMC7167858 DOI: 10.3390/pathogens9020111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
This study reports the characterization of protein elicitor PeBb1 derived from entomopathogenic fungus Beauveria bassiana ARSEF-2860 strain and its putative role in induced systemic resistance in Brassica rapa ssp. pekinensis against green peach aphid Myzus persicae. The sequence of purified elicitor protein was matched with the genomic sequence of a hypothetical protein BBA_10269 from B. bassiana ARSEF-2860 (GenBank Accession No. XP_008603588.1). The protein-encoding gene PeBb1 contained 534 bp cDNA encoding a polypeptide of 177 amino acids with a molecular mass of 19 kDa. The recombinant elicitor protein was expressed in Escherichia coli using pET-28a (+) expression vector and induced necrosis in the leaves of tobacco. The effects of elicitor protein on aphid M. persicae was determined by applying three different concentrations of PeBb1 (i.e., 26, 35, 53 μM) on B. rapa plants at 4-leaf stage and the treated plants were exposed to newly emerged (0–6 h old) apterous adult aphids. Bioassay results showed significant (p < 0.05) sub-lethal effects of the exogenous application of PeBb1 elicitor on M. persicae. Moreover, the RT-qPCR gene expression analyses showed a significant up-regulation of most of the key genes linked to ethylene (ET)- and jasmonic acid (JA)-associated plant defense pathways in elicitor-treated plants. These results not only recommend the putative utilization of PeBb1 elicitor protein in future biological pest control strategies against phloem-feeding insect pests such as M. persicae, but also help in better comprehension of the mechanisms through which beneficial fungi trigger the induced plant resistance.
Collapse
Affiliation(s)
- Talha Nazir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (A.H.); (A.B.)
| | - Abdul Hanan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (A.H.); (A.B.)
| | - Abdul Basit
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (A.H.); (A.B.)
| | - Muhammad Zeeshan Majeed
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan;
| | - Tauqir Anwar
- Department of Entomology, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Iqra Nawaz
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Ministry of Agriculture, Xingcheng 125100, China;
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.N.); (A.H.); (A.B.)
- Correspondence: ; Tel.: +86-13520642805
| |
Collapse
|
34
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
35
|
Anti-insect activity of a partially purified protein derived from the entomopathogenic fungus Lecanicillium lecanii (Zimmermann) and its putative role in a tomato defense mechanism against green peach aphid. J Invertebr Pathol 2019; 170:107282. [PMID: 31759949 DOI: 10.1016/j.jip.2019.107282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/20/2022]
Abstract
Many biotrophic and necrotrophic fungi synthesize proteins that may elicit induced plant resistance against different herbivore pests. This in-vitro study elucidates the sub-lethal effect of a partially-purified protein derived from the entomopathogenic fungus Lecanicillium lecanii (Zimmerman) (Hypocreales: Clavicipitaceae) against green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae), an economically important pest of many solanaceous crops including tomato. Bioassays were conducted to determine the impact of different concentrations of protein (i.e. 0.018, 0.036 and 0.054 µM) on the survival and fecundity of M. persicae on tomato (Lycopersicon esculentum) plants. Moreover, the potential role of this exogenous protein in the plant defense mechanism was assessed by expression analyses of key genes associated with salicylic acid (SA) and jasmonic acid (JA) pathways using RT-qPCR. The results indicated a significant negative effect of all protein concentrations on the survivorship and fecundity of M. persicae. The highest concentration (0.054 µM) resulted in lowest survival (46%) of aphids at 7th day post-treatment, while two other concentrations (0.036 and 0.018 µM) resulted in 61 and 71% survival rate, respectively. Similarly, lowest and highest mean fecundity rates were recorded for the highest protein concentration and the control (1.5 and 2.4 nymphs day-1 female-1), respectively. Moreover, L. lecanii-derived protein strongly upregulated the SA associated genes PR1, BGL2 and PAL, and moderately upregulated the JA associated genes LOX, AOS and AOC in protein-treated tomato plants compared to the control plants. These findings demonstrate the systemic resistance induced in tomato plants against M. persicae by the exogenous application of partially-purified protein extracted from L. lecanii, suggesting its further purification and characterization as a novel biological pest management tool against aphids and other phloem-feeding insect pests.
Collapse
|
36
|
Iida J, Desaki Y, Hata K, Uemura T, Yasuno A, Islam M, Maffei ME, Ozawa R, Nakajima T, Galis I, Arimura GI. Tetranins: new putative spider mite elicitors of host plant defense. THE NEW PHYTOLOGIST 2019; 224:875-885. [PMID: 30903698 DOI: 10.1111/nph.15813] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/08/2019] [Indexed: 05/07/2023]
Abstract
The two-spotted spider mite (Tetranychus urticae) is a plant-sucking arthropod herbivore that feeds on a wide array of cultivated plants. In contrast to the well-characterized classical chewing herbivore salivary elicitors that promote plant defense responses, little is known about sucking herbivores' elicitors. To characterize the sucking herbivore elicitors, we explored putative salivary gland proteins of spider mites by using an Agrobacterium-mediated transient expression system or protein infiltration in damaged bean leaves. Two candidate elicitors (designated as tetranin1 (Tet1) and tetranin2 (Tet2)) triggered early leaf responses (cytosolic calcium influx and membrane depolarization) and increased the transcript abundances of defense genes in the leaves, eventually resulting in reduced survivability of T. urticae on the host leaves as well as induction of indirect plant defenses by attracting predatory mites. Tet1 and/or Tet2 also induced jasmonate, salicylate and abscisic acid biosynthesis. Notably, Tet2-induced signaling cascades were also activated via the generation of reactive oxygen species. The signaling cascades of these two structurally dissimilar elicitors are mostly overlapping but partially distinct and thus they would coordinate the direct and indirect defense responses in host plants under spider mite attack in both shared and distinct manners.
Collapse
Affiliation(s)
- Junya Iida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Yoshitake Desaki
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Kumiko Hata
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Ayano Yasuno
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Monirul Islam
- Department of Life Sciences and Systems Biology, Plant Physiology-Innovation Centre, University of Turin, Via Quarello15/A, I-10135, Turin, Italy
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology-Innovation Centre, University of Turin, Via Quarello15/A, I-10135, Turin, Italy
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan
| | - Tadaaki Nakajima
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| |
Collapse
|
37
|
Oberländer J, Lortzing V, Hilker M, Kunze R. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC PLANT BIOLOGY 2019; 19:338. [PMID: 31375063 PMCID: PMC6679549 DOI: 10.1186/s12870-019-1943-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In native environments plants frequently experience simultaneous or sequential unfavourable abiotic and biotic stresses. The plant's response to combined stresses is usually not the sum of the individual responses. Here we investigated the impact of cold on plant defense against subsequent herbivory by a generalist and specialist insect. RESULTS We determined transcriptional responses of Arabidopsis thaliana to low temperature stress (4 °C) and subsequent larval feeding damage by the lepidopteran herbivores Mamestra brassicae (generalist), Pieris brassicae (specialist) or artificial wounding. Furthermore, we compared the performance of larvae feeding upon cold-experienced or untreated plants. Prior experience of cold strongly affected the plant's transcriptional anti-herbivore and wounding response. Feeding by P. brassicae, M. brassicae and artificial wounding induced transcriptional changes of 1975, 1695, and 2239 genes, respectively. Of these, 125, 360, and 681 genes were differentially regulated when cold preceded the tissue damage. Overall, prior experience of cold mostly reduced the transcriptional response of genes to damage. The percentage of damage-responsive genes, which showed attenuated transcriptional regulation when cold preceded the tissue damage, was highest in M. brassicae damaged plants (98%), intermediate in artificially damaged plants (89%), and lowest in P. brassicae damaged plants (69%). Consistently, the generalist M. brassicae performed better on cold-treated than on untreated plants, whereas the performance of the specialist P. brassicae did not differ. CONCLUSIONS The transcriptional defense response of Arabidopsis leaves to feeding by herbivorous insects and artificial wounding is attenuated by a prior exposure of the plant to cold. This attenuation correlates with improved performance of the generalist herbivore M. brassicae, but not the specialist P. brassicae, a herbivore of the same feeding guild.
Collapse
Affiliation(s)
- Jana Oberländer
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: University of Bern, Molecular Plant Physiology, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vivien Lortzing
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Reinhard Kunze
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
38
|
Basit A, Hanan A, Nazir T, Majeed MZ, Qiu D. Molecular and Functional Characterization of Elicitor PeBC1 Extracted from Botrytis cinerea Involved in the Induction of Resistance against Green Peach Aphid ( Myzus persicae) in Common Beans ( Phaseolus vulgaris L.). INSECTS 2019; 10:insects10020035. [PMID: 30678331 PMCID: PMC6409696 DOI: 10.3390/insects10020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
Elicitors are biofactors that induce resistance in plants against different insect pests. This in vitro study evaluated the impact of a novel elicitor protein PeBC1, extracted from a necrotrophic fungus Botrytis cinerea, on the development and fecundity parameters of green peach aphid (Myzus persicae) on common beans (Phaseolus vulgaris L.). Three different concentrations of PeBC1 elicitor (i.e., 33.56, 25.43, 19.33 µg mL−1) were applied at three different temperature regimes (i.e., 18, 21, and 25 °C). Elicitor treatments were applied topically on the bean plants at 3-leaf stage and newly emerged (0–6 h old) apterous adult aphids were exposed to these treated leaves. In addition to the biological parameters of aphids, the relative expression levels of key genes associated with jasmonic acid (JA) and salicylic acid (SA) plant defense pathways were also determined through RT-qPCR. Results of bioassays revealed that the application of PeBC1 elicitor protein exhibited pronounced and significant (p < 0.05) sub-lethal effects on green peach aphids. The fecundity was reduced and the nymphal development time was prolonged by different concentrations of PeBC1 elicitor and temperature regimes. Gene expression studies showed that the exogenous application of PeBC1 induced a significant upregulation of the expression levels of JA and SA pathway-associated genes in bean plants. As compared to control, elicitor-treated plants exhibited an induced resistance against aphids. Our findings suggest the potential use of PeBC1 elicitor protein in future bio-intensive management strategies against sap-sucking insect pests such as green peach aphids.
Collapse
Affiliation(s)
- Abdul Basit
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Abdul Hanan
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Talha Nazir
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Muhammad Zeeshan Majeed
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan.
| | - Dewen Qiu
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
39
|
Reis A, Boutet-Mercey S, Massot S, Ratet P, Zuanazzi JAS. Isoflavone production in hairy root cultures and plantlets of Trifolium pratense. Biotechnol Lett 2019; 41:427-442. [PMID: 30661155 DOI: 10.1007/s10529-018-02640-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to develop a Trifolium pratense hairy root (HR) production protocol and select HR lines with high isoflavone yield following elicitor treatments. RESULTS We obtained 13 independent HR lines, producing approximately three times more isoflavonoids than seedlings (3.3 mg/g dry weight) and in which 27 isoflavonoids were detected. Each HR line had its own isoflavonoid profile. These lines produced as major components daidzein, genistein, formononetin and biochanin A. Sucrose, salicylic acid (SA), yeast extract (YE) and flagellin 22 (flg22) were tested as elicitors. Using SA 140 mg/L, allowed the maximum isoflavonoid production in plantlets (11.9 mg/g dry weight) but reduced root growth, possibly as a result of its toxicity. The highest isoflavone production in HR (27.9 mg/g dry weight) was obtained using sucrose 60 g/L, for 3.5 days. CONCLUSION This work reports the high production of various isoflavonoids with T. pratense elicited HR cultures.
Collapse
Affiliation(s)
- Andressa Reis
- Laboratory of Pharmacognosy, Department of Raw Material Production, Federal University of Rio Grande do Sul, Porto Alegre - UFRGS, Porto Alegre, 90610-000, Brazil
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Sophie Massot
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France.
| | - José Angelo Silveira Zuanazzi
- Laboratory of Pharmacognosy, Department of Raw Material Production, Federal University of Rio Grande do Sul, Porto Alegre - UFRGS, Porto Alegre, 90610-000, Brazil
| |
Collapse
|
40
|
Jack CN, Rowe SL, Porter SS, Friesen ML. A high-throughput method of analyzing multiple plant defensive compounds in minimized sample mass. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01210. [PMID: 30693156 PMCID: PMC6342235 DOI: 10.1002/aps3.1210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Current methods for quantifying herbivore-induced alterations in plant biochemistry are often unusable by researchers due to practical constraints. We present a cost-effective, high-throughput protocol to quantify multiple biochemical responses from small plant tissue samples using spectrophotometric techniques. METHODS AND RESULTS Using Solanum lycopersicum and Medicago polymorpha leaves pre- and post-herbivory, we demonstrate that our protocol quantifies common plant defense responses: peroxidase production, polyphenol oxidase production, reactive oxygen species production, total protein production, and trypsin-like protease inhibition activity. CONCLUSIONS Current protocols can require 500 mg of tissue, but our assays detect activity in less than 10 mg. Our protocol takes two people 6 h to run any of the assays on 300 samples in triplicate, or all of the assays on 20 samples. Our protocol enables researchers to plan complex experiments that compare local versus systemic plant responses, quantify environmental and genetic variation, and measure population-level variation.
Collapse
Affiliation(s)
- Chandra N. Jack
- Department of Plant PathologyWashington State UniversityPullmanWashington99164USA
| | - Shawna L. Rowe
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashington98686USA
| | - Maren L. Friesen
- Department of Plant PathologyWashington State UniversityPullmanWashington99164USA
- Department of Crop and Soil SciencesWashington State UniversityPullmanWashington99164USA
| |
Collapse
|
41
|
Sukegawa S, Shiojiri K, Higami T, Suzuki S, Arimura GI. Pest management using mint volatiles to elicit resistance in soy: mechanism and application potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:910-920. [PMID: 30156351 DOI: 10.1111/tpj.14077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 05/12/2023]
Abstract
Plants can eavesdrop on volatile cues emitted from neighboring plants to boost their defense responses. When 10 categories of mints were tested for their effects on Glycine max (soybean) plants cultivated nearby, candy mint (Mentha × piperita cv. Candy) and peppermint (Mentha × piperita L.) induced the strongest enhancement in RNA levels of defense genes in the soybean leaves. The mechanism by which the mint volatiles enhanced these transcript levels was based on histone acetylation within the promoter regions of defense genes. These increases in transcript levels were induced when receiver plants were cultivated near to candy mint, but the priming of the defense responses was instead induced when receiver plants were cultivated at mid-length intervals. Field assays revealed that anti-herbivore ability of soy was strengthened both by co-cultivation and by pre-incubation of receiver plants with candy mint. The same held true for another receiver, Brassica rapa, when the receiver was co-cultivated or pre-incubated with peppermint. Exposure to mint volatiles resulted in lower damage to receiver plants, although ecological effects on the herbivores and predators probably also contributed. Together, our findings indicate that pest management systems relying on mint as companion plants might be commercially useful for reducing herbivore damage in crops.
Collapse
Affiliation(s)
- Satoru Sukegawa
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, 125-8585, Tokyo, Japan
| | - Kaori Shiojiri
- Department of Agriculture, Ryukoku University, 520-2194, Otsu, Japan
| | - Tomota Higami
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, 125-8585, Tokyo, Japan
| | - Syunpei Suzuki
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, 125-8585, Tokyo, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, 125-8585, Tokyo, Japan
| |
Collapse
|
42
|
Zhou M, Wang W. Recent Advances in Synthetic Chemical Inducers of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2018; 9:1613. [PMID: 30459795 PMCID: PMC6232518 DOI: 10.3389/fpls.2018.01613] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 05/20/2023]
Abstract
Different from the conventional biocidal agrochemicals, synthetic chemical inducers of plant immunity activate, bolster, or prime plant defense machineries rather than directly acting on the pathogens. Advances in combinatorial synthesis and high-throughput screening methods have led to the discovery of various synthetic plant immune activators as well as priming agents. The availability of their structures and recent progress in the mechanistic understanding of plant immune responses have opened up the possibility of identifying new or more potent chemical inducers through rational design. In this review, we first summarize the chemical inducers identified through large-scale screening and then discuss the emerging trends in the identification and development of novel plant immune inducers including natural elicitor based chemical derivation, bifunctional combination, and computer-aided design.
Collapse
Affiliation(s)
- Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Wei Wang
- School of Life Sciences, Peking University, Beijing, China
- Peking University – Tsinghua University Joint Center for Life Sciences, Beijing, China
| |
Collapse
|
43
|
Suárez I, da Silva Lima G, Conti R, Pinedo C, Moraga J, Barúa J, de Oliveira ALL, Aleu J, Durán-Patrón R, Macías-Sánchez AJ, Hanson JR, Tallarico Pupo M, Hernández-Galán R, Collado IG. Structural and biosynthetic studies on eremophilenols related to the phytoalexin capsidiol, produced by Botrytis cinerea. PHYTOCHEMISTRY 2018; 154:10-18. [PMID: 29929021 DOI: 10.1016/j.phytochem.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
A thorough study of the fermentation broth of three strains of Botrytis cinerea which were grown on a modified Czapek-Dox medium supplemented with 5 ppm copper sulphate, yielded five undescribed metabolites. These metabolites possessed a sesquiterpenoid (+)-4-epi-eremophil-9-ene carbon skeleton which was enantiomeric to that of the phytoalexin, capsidiol. The isolation of these metabolites when the fungus was stressed, suggests that they may be potential effectors used by B. cinerea to circumvent plant chemical defences against phytopathogenic fungi. The biosynthesis of these compounds has been studied using 2H and 13C labelled acetate.
Collapse
Affiliation(s)
- Ivonne Suárez
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Gesiane da Silva Lima
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Raphael Conti
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Cristina Pinedo
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Javier Moraga
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Javier Barúa
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Ana Ligia L de Oliveira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Antonio J Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - James R Hanson
- Department of Chemistry, University of Sussex, Brighton, Sussex, BN1 9QJ, United Kingdom
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Isidro G Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
44
|
Camoni L, Barbero F, Aducci P, Maffei ME. Spodoptera littoralis oral secretions inhibit the activity of Phaseolus lunatus plasma membrane H+-ATPase. PLoS One 2018; 13:e0202142. [PMID: 30096181 PMCID: PMC6086434 DOI: 10.1371/journal.pone.0202142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/27/2018] [Indexed: 12/03/2022] Open
Abstract
Biotic stresses induced by herbivores result in diverse physiological changes in plants. In the interaction between the Lima bean (Phaseolus lunatus) and the herbivore Spodoptera littoralis, the earliest event induced by feeding on leaves is the depolarization of the plasma membrane potential (Vm), which is the results of both mechanical damage and insect oral secretions (OS). Although this herbivore-induced Vm depolarization depends on a calcium-dependent opening of potassium channels, the attacked leaf remains depolarized for an extended period, which cannot be explained by the sole action of potassium channels. Here we show that the plasma membrane H+-ATPase of P. lunatus leaves is strongly inhibited by S. littoralis OS. Inhibition of the H+-ATPase was also found in plasma membranes purified from leaf sections located distally from the application zone of OS, thus suggesting a long-distance transport of a signaling molecule(s). S. littoralis’ OS did not influence the amount of the plasma membrane H+-ATPase, whereas the levels of membrane-bound 14-3-3 proteins were significantly decreased in membranes purified from treated leaves. Furthermore, OS strongly reduced the in vitro interaction between P. lunatus H+-ATPase and 14-3-3 proteins. The results of this work demonstrate that inhibition of the plasma membrane H+-ATPase is a key component of the S. littoralis OS mechanism leading to an enduring Vm depolarization in P. lunatus wounded leaves.
Collapse
Affiliation(s)
- Lorenzo Camoni
- Dept. Biology, Universtity of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - Francesca Barbero
- Dept. Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Patrizia Aducci
- Dept. Biology, Universtity of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - Massimo E. Maffei
- Dept. Life Sciences and Systems Biology, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
45
|
Ferreira-Saab M, Formey D, Torres M, Aragón W, Padilla EA, Tromas A, Sohlenkamp C, Schwan-Estrada KRF, Serrano M. Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea. Front Microbiol 2018; 9:1596. [PMID: 30065716 PMCID: PMC6056754 DOI: 10.3389/fmicb.2018.01596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 12/16/2022] Open
Abstract
Plant diseases induced by fungi are among the most important limiting factors during pre- and post-harvest food production. For decades, synthetic chemical fungicides have been used to control these diseases, however, increase on worldwide regulatory policies and the demand to reduce their application, have led to searching for new ecofriendly alternatives such as the biostimulants. The commercial application of yeasts as biocontrol agents, has shown low efficacy compared to synthetic fungicides, mostly due to the limited knowledge of the molecular mechanisms of yeast-induced responses. To date, only two genome-wide transcriptomic analyses have characterized the mode of action of biocontrols using the plant model Arabidopsis thaliana, missing, in our point of view, all its molecular and genomic potential. Here we describe that compounds released by the biocontrol yeast Hanseniaspora opuntiae (HoFs) can protect Glycine max and Arabidopsis thaliana plants against the broad host-range necrotrophic fungi Corynespora cassiicola and Botrytis cinerea. We show that HoFs have a long-lasting, dose-dependent local, and systemic effect against Botrytis cinerea. Additionally, we performed a genome-wide transcriptomic analysis to identify genes differentially expressed after application of HoFs in Arabidopsis thaliana. Our work provides novel and valuable information that can help researchers to improve HoFs efficacy in order for it to become an ecofriendly alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Mariana Ferreira-Saab
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico.,Departemento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Wendy Aragón
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Emir A Padilla
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Alexandre Tromas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| |
Collapse
|
46
|
Shcherbakova LA, Nazarova TA, Mikityuk OD, Istomina EA, Odintsova TI. An Extract Purified from the Mycelium of a Tomato Wilt-Controlling Strain of Fusarium sambucinum Can Protect Wheat against Fusarium and Common Root Rots. Pathogens 2018; 7:E61. [PMID: 30011945 PMCID: PMC6160971 DOI: 10.3390/pathogens7030061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
An approach to manage seed-transmitted Fusarium crown-foot-root rot (FCR, Fusarium spp.) and common root rot (CRR, Bipolaris sorokiniana) on wheat, avoiding environmental risks of chemicals, is seed treatments with microbial metabolites. F. sambucinum strain FS-94 that induces resistance to tomato wilt was shown by this study to be a source of non-fungitoxic wheat-protecting metabolites, which were contained in a mycelium extract purified by gel-chromatography and ultrafiltration. Plant-protecting effect of the purified mycelial extract (PME) was demonstrated in vegetation experiments using a rolled-towel assay and by small-plot field trials. To elucidate mechanisms putatively underlying PME protective activity, tests with cultured Triticum aestivum and T. kiharae cells, particularly the extracellular alkalinization assay, as well as gene expression analysis in germinated wheat seeds were used. Pre-inoculation treatments of seeds with PME significantly decreased the incidence (from 30 to 40%) and severity (from 37 to 50%) of root rots on seedlings without any inhibition of the seed germination and potentiation of deoxynivalenol (DON), DON monoacetylated derivatives and zearalenon production in FCR agents. In vegetation experiments, reductions in the DON production were observed with doses of 0.5 and 1 mg/mL of PME. Pre-sowing PME application on seeds of two spring wheat cultivars naturally infected with FCR and CRR provided the mitigation of both diseases under field conditions during four growing seasons (2013⁻2016). PME-induced ion exchange response in cultured wheat cells, their increased survivability, and up-regulated expression of some defensins' genes in PME-exposed seedlings allow the suggestion of the plant-mediated character of disease-controlling effect observed in field.
Collapse
Affiliation(s)
- Larisa A Shcherbakova
- Laboratory of Physiological Plant Pathology, All-Russian Research Institute of Phytopathology, B. Vyazyomy, Moscow Reg.143050, Russia.
| | - Tatyana A Nazarova
- Laboratory of Physiological Plant Pathology, All-Russian Research Institute of Phytopathology, B. Vyazyomy, Moscow Reg.143050, Russia.
| | - Oleg D Mikityuk
- Laboratory of Physiological Plant Pathology, All-Russian Research Institute of Phytopathology, B. Vyazyomy, Moscow Reg.143050, Russia.
| | - Ekaterina A Istomina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics, Gubkina str. 3, 119333 Moscow, Russia.
| | - Tatyana I Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics, Gubkina str. 3, 119333 Moscow, Russia.
| |
Collapse
|
47
|
Schausberger P. Herbivore-Associated Bacteria as Potential Mediators and Modifiers of Induced Plant Defense Against Spider Mites and Thrips. FRONTIERS IN PLANT SCIENCE 2018; 9:1107. [PMID: 30105044 PMCID: PMC6077224 DOI: 10.3389/fpls.2018.01107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 05/13/2023]
Abstract
Induced plant defense, comprising contact with exogenous stimuli, production of endogenous signals alerting the plant, associated biochemical cascades, and local and/or systemic expression of the defense mechanisms, critically depends on the nature of the inducing agents. At large, bio-trophic pathogenic microorganisms and viruses usually trigger the salicylate (SA)-mediated pathway, whereas necro-trophic pathogens and herbivores usually trigger the jasmonate (JA)-mediated pathway in plants. The SA- and JA-mediated pathways do not operate independently but commonly interfere with each other. Several recent studies revealed abnormal plant responses upon herbivore attack in diverse plant-herbivore systems. Observed abnormalities range from suppression of the common JA-pathway, induction of the SA-pathway to no response, yet the underlying proximate causes and ultimate consequences of these variations are elusive. Strikingly, some studies provide compelling evidence that anti-herbivore plant responses may decisively depend on bacteria associated with the herbivore attacking the plant (HAB for herbivore-associated bacteria). HAB may influence herbivore recognition by the plant and alter the biochemical cascades inside plants. Here, I report cases in point of HAB manipulating induced anti-herbivore plant responses, suggest spatial and temporal categorization of HAB, and point at proximate and ultimate aspects of plant defense manipulation by HAB. Following, I overview the diversity of HAB of spider mites and herbivorous thrips, argue that, considering recently reported phenomena of abnormal plant responses upon spider mite attack, some of these HAB could represent important, but hitherto largely neglected, mediators/modifiers of induced plant defense against spider mites and thrips, and conclude with suggestions for future research.
Collapse
Affiliation(s)
- Peter Schausberger
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda, Japan
- *Correspondence: Peter Schausberger,
| |
Collapse
|
48
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
49
|
Pappas ML, Broekgaarden C, Broufas GD, Kant MR, Messelink GJ, Steppuhn A, Wäckers F, van Dam NM. Induced plant defences in biological control of arthropod pests: a double-edged sword. PEST MANAGEMENT SCIENCE 2017; 73:1780-1788. [PMID: 28387028 PMCID: PMC5575458 DOI: 10.1002/ps.4587] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/21/2023]
Abstract
Biological control is an important ecosystem service delivered by natural enemies. Together with breeding for plant defence, it constitutes one of the most promising alternatives to pesticides for controlling herbivores in sustainable crop production. Especially induced plant defences may be promising targets in plant breeding for resistance against arthropod pests. Because they are activated upon herbivore damage, costs are only incurred when defence is needed. Moreover, they can be more specific than constitutive defences. Nevertheless, inducible defence traits that are harming plant pest organisms may interfere with biological control agents, such as predators and parasitoids. Despite the vast fundamental knowledge on plant defence mechanisms and their effects on natural enemies, our understanding of the feasibility of combining biological control with induced plant defence in practice is relatively poor. In this review, we focus on arthropod pest control and present the most important features of biological control with natural enemies and of induced plant defence. Furthermore, we show potential synergies and conflicts among them and, finally, identify gaps and list opportunities for their combined use in crop protection. We suggest that breeders should focus on inducible resistance traits that are compatible with the natural enemies of arthropod pests, specifically traits that help communities of natural enemies to build up. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria L Pappas
- Democritus University of Thrace, Faculty of Agricultural and Forestry SciencesDepartment of Agricultural DevelopmentOrestiadaGreece
| | - Colette Broekgaarden
- Utrecht University, Faculty of ScienceDepartment of Biology, Plant − Microbe InteractionsUtrechtThe Netherlands
| | - George D Broufas
- Democritus University of Thrace, Faculty of Agricultural and Forestry SciencesDepartment of Agricultural DevelopmentOrestiadaGreece
| | - Merijn R Kant
- University of AmsterdamInstitute for Biodiversity and Ecosystem Dynamics, Section Molecular and Chemical EcologyAmsterdamThe Netherlands
| | | | - Anke Steppuhn
- Freie Universität BerlinInstitute of Biology, Molecular Ecology, Dahlem Centre of Plant SciencesBerlinGermany
| | - Felix Wäckers
- BiobestWesterloBelgium
- Lancaster UniversityLancaster Environment CentreUK
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Friedrich Schiller University JenaInstitute of EcologyJenaGermany
| |
Collapse
|
50
|
Fatima S, Anjum T. Identification of a Potential ISR Determinant from Pseudomonas aeruginosa PM12 against Fusarium Wilt in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:848. [PMID: 28620396 PMCID: PMC5450013 DOI: 10.3389/fpls.2017.00848] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/08/2017] [Indexed: 05/20/2023]
Abstract
Biocontrol of plant diseases through induction of systemic resistance is an environmental friendly substitute to chemicals in crop protection measures. Different biotic and abiotic elicitors can trigger the plant for induced resistance. Present study was designed to explore the potential of Pseudomonas aeruginosa PM12 in inducing systemic resistance in tomato against Fusarium wilt. Initially the bioactive compound, responsible for ISR, was separated and identified from extracellular filtrate of P. aeruginosa PM12. After that purification and characterization of the bacterial crude extracts was carried out through a series of organic solvents. The fractions exhibiting ISR activity were further divided into sub-fractions through column chromatography. Sub fraction showing maximum ISR activity was subjected to Gas chromatography/mass spectrometry for the identification of compounds. Analytical result showed three compounds in the ISR active sub-fraction viz: 3-hydroxy-5-methoxy benzene methanol (HMB), eugenol and tyrosine. Subsequent bioassays proved that HMB is the potential ISR determinant that significantly ameliorated Fusarium wilt of tomato when applied as soil drench method at the rate of 10 mM. In the next step of this study, GC-MS analysis was performed to detect changes induced in primary and secondary metabolites of tomato plants by the ISR determinant. Plants were treated with HMB and Fusarium oxysporum in different combinations showing intensive re- modulations in defense related pathways. This work concludes that HMB is the potential elicitor involved in dynamic reprogramming of plant pathways which functionally contributes in defense responses. Furthermore the use of biocontrol agents as natural enemies of soil borne pathogens besides enhancing production potential of crop can provide a complementary tactic for sustainable integrated pest management.
Collapse
Affiliation(s)
- Sabin Fatima
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Tehmina Anjum
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| |
Collapse
|