1
|
Fischer J, Gräf T, Sakka Y, Tessarek C, Köser J. Ion compositions in artificial media control the impact of humic acid on colloidal behaviour, dissolution and speciation of CuO-NP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147241. [PMID: 33930810 DOI: 10.1016/j.scitotenv.2021.147241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of copper oxide nanoparticles (CuO-NP) strongly depends on their interactions with the surrounding environment, impacting their dissolution and colloidal stability. This behaviour is studied quite extensively for simplified electrolytes, but information on the behaviour of CuO-NP in more complex artificial media are lacking. In our study, we analysed the colloidal behaviour and considered the speciation of CuO-NP in pure water and three artificial media of different complexity which are used in ecotoxicology. Measurements were done over 7 days in the absence and presence of humic acid (HA) as a model organic molecule. In pure water, the addition of HA lowered the zeta potential from +11 to -41 mV, while in all artificial media, it stayed constantly at about -20 mV. The hydrodynamic diameter of CuO-NP remained unaffected by HA in pure water and seawater, while in porewater and especially in freshwater, HA suppressed strong agglomeration. In pure water, HA strongly increased dissolution to the highest observed value (3% of total Cu), while HA reduced dissolution in all artificial media. Speciation calculations revealed that cations from the media competed with Cu from the NP surface for complexing sites of the HA. This competition may have caused the reduced dissolution in the presence of ions. Furthermore, speciation calculations also suggest that ion composition drove agglomeration behaviour rather than ion concentration: agglomeration was high when divalent cations where the major interaction partner and dominant in relative terms. HA may have reduced the relative dominance and thus altered the agglomeration, aligning it in all media. Summarizing, ion composition and the presence of HA strongly drive the dissolution and agglomeration of CuO-NP in artificial media, consequently, analysing complexation can help to predict environmental behaviour and toxicity.
Collapse
Affiliation(s)
- Jonas Fischer
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany.
| | - Tonya Gräf
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany
| | - Yvonne Sakka
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany
| | - Christian Tessarek
- University of Bremen, Institute of Solid State Physics, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Jan Köser
- University of Bremen, UFT, Chemical Engineering, Leobener Str. 6, 28359 Bremen, Germany
| |
Collapse
|
2
|
Fischer J, Evlanova A, Philippe A, Filser J. Soil properties can evoke toxicity of copper oxide nanoparticles towards springtails at low concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116084. [PMID: 33246757 DOI: 10.1016/j.envpol.2020.116084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Copper oxide nanoparticles (CuO-NP) are used as an efficient alternative to conventional Cu in agriculture and might end up in soils. They show a high toxicity towards cells and microorganisms, but only low toxicity towards soil invertebrates. However, most existing soil ecotoxicological studies were conducted in a sandy reference soil and at test concentrations ≥100 mg Cu/kg soil. Therefore, there is a knowledge gap concerning the effect of soil texture on the toxicity of CuO-NP at lower, more realistic test concentrations. In our study, a sandy reference soil and three loamy soils were spiked with CuO-NP at up to four concentrations, ranging from 5 to 158 mg Cu/kg. We investigated 28-day reproduction as well as weight and Cu content after 14-day bioaccumulation and subsequent 14-day elimination for the springtail Folsomia candida. For the first time we analysed the size distribution of CuO-NP in aqueous test soil extracts by single particle-ICP-MS which revealed that the diameter of CuO-NP significantly increased with increasing concentration, but did not vary between test soils. Negative effects on reproduction were only observed in loamy soils, most pronounced in a loamy-acidic soil (-61%), and they were always strongest at the lowest test concentration. The observed effects were much stronger than reported by other studies performed with sandy soils and higher CuO-NP concentrations. In the same soil and concentration, a moderate impact on growth (-28%) was observed, while Cu elimination from springtails was inhibited. Rather than Cu body concentration, the diameter of the CuO-NP taken up, as well as NP-clay interactions might play a crucial role regarding their toxicity. Our study reports for the first time toxic effects of CuO-NP towards a soil invertebrate at a low, realistic concentration range. The results strongly suggest including lower test concentrations and a range of soil types in nanotoxicity testing.
Collapse
Affiliation(s)
- Jonas Fischer
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany.
| | - Anna Evlanova
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany
| | - Allan Philippe
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Juliane Filser
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany
| |
Collapse
|
3
|
Bemowsky S, Rother A, Willmann W, Köser J, Markiewicz M, Dringen R, Stolte S. Quantification and biodegradability assessment of meso-2,3-dimercaptosuccinic acid adsorbed on iron oxide nanoparticles. NANOSCALE ADVANCES 2019; 1:3670-3679. [PMID: 36133553 PMCID: PMC9419269 DOI: 10.1039/c9na00236g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 06/12/2023]
Abstract
Many interesting applications of magnetic iron oxide nanoparticles (IONPs) have recently been developed based on their magnetic properties and promising catalytic activity. Depending on their intended use, such nanoparticles (NPs) are frequently functionalized with proteins, polymers, or other organic molecules such as meso-2,3-dimercaptosuccinic acid (DMSA) to improve their colloidal stability or biocompatibility. Although the coating strongly affects the colloidal properties and environmental behaviour of NPs, quantitative analysis of the coating is often neglected. To address this issue, we established an ion chromatographic method for the quantitative analysis of surface-bound sulfur-containing molecules such as DMSA. The method determines the amount of sulfate generated by complete oxidation of sulfur present in the molecule. Quantification of the DMSA content of DMSA-coated IONPs showed that reproducibly approximately 38% of the DMSA used in the synthesis was adsorbed on the IONPs. Tests for the biodegradability of free and NP-bound DMSA using a microbial community from a wastewater treatment plant showed that both free and NP-bound DMSA was degraded to negligible extent, suggesting long-term environmental stability of DMSA-coated IONPs.
Collapse
Affiliation(s)
- S Bemowsky
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - A Rother
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - W Willmann
- CBIB - Centre for Biomolecular Interactions Bremen, Neurobiochemistry, Faculty 2 (Biology/Chemistry), University of Bremen Leobener Straße 5/NW2 D-28359 Bremen Germany
- UFT - Centre for Environmental Research and Sustainable Technology, Department Neurobiochemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - J Köser
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - M Markiewicz
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry Bergstraße 66 01069 Dresden Germany
| | - R Dringen
- CBIB - Centre for Biomolecular Interactions Bremen, Neurobiochemistry, Faculty 2 (Biology/Chemistry), University of Bremen Leobener Straße 5/NW2 D-28359 Bremen Germany
- UFT - Centre for Environmental Research and Sustainable Technology, Department Neurobiochemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - S Stolte
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
4
|
Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S. Nanoparticles in the environment: where do we come from, where do we go to? ENVIRONMENTAL SCIENCES EUROPE 2018; 30:6. [PMID: 29456907 PMCID: PMC5803285 DOI: 10.1186/s12302-018-0132-6] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
Nanoparticles serve various industrial and domestic purposes which is reflected in their steadily increasing production volume. This economic success comes along with their presence in the environment and the risk of potentially adverse effects in natural systems. Over the last decade, substantial progress regarding the understanding of sources, fate, and effects of nanoparticles has been made. Predictions of environmental concentrations based on modelling approaches could recently be confirmed by measured concentrations in the field. Nonetheless, analytical techniques are, as covered elsewhere, still under development to more efficiently and reliably characterize and quantify nanoparticles, as well as to detect them in complex environmental matrixes. Simultaneously, the effects of nanoparticles on aquatic and terrestrial systems have received increasing attention. While the debate on the relevance of nanoparticle-released metal ions for their toxicity is still ongoing, it is a re-occurring phenomenon that inert nanoparticles are able to interact with biota through physical pathways such as biological surface coating. This among others interferes with the growth and behaviour of exposed organisms. Moreover, co-occurring contaminants interact with nanoparticles. There is multiple evidence suggesting nanoparticles as a sink for organic and inorganic co-contaminants. On the other hand, in the presence of nanoparticles, repeatedly an elevated effect on the test species induced by the co-contaminants has been reported. In this paper, we highlight recent achievements in the field of nano-ecotoxicology in both aquatic and terrestrial systems but also refer to substantial gaps that require further attention in the future.
Collapse
Affiliation(s)
- Mirco Bundschuh
- Functional Aquatic Ecotoxicology, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| | - Juliane Filser
- FB 02, UFT Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Simon Lüderwald
- Ecotoxicology and Environment, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Moira S. McKee
- FB 02, UFT Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - George Metreveli
- Environmental and Soil Chemistry, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Gabriele E. Schaumann
- Environmental and Soil Chemistry, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Ralf Schulz
- Ecotoxicology and Environment, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UfZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
5
|
Saif S, Tahir A, Chen Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E209. [PMID: 28335338 PMCID: PMC5245755 DOI: 10.3390/nano6110209] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe₂O₃/Fe₃O₄) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.
Collapse
Affiliation(s)
- Sadia Saif
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Arifa Tahir
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
6
|
Holden PA, Gardea-Torresdey J, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, Hubal EAC, Avery D, Barceló D, Behra R, Cohen Y, Deydier-Stephan L, Lee Ferguson P, Fernandes TF, Harthorn BH, Henderson WM, Hoke RA, Hristozov D, Johnston JM, Kane AB, Kapustka L, Keller AA, Lenihan HS, Lovell W, Murphy CJ, Nisbet RM, Petersen EJ, Salinas ER, Scheringer M, Sharma M, Speed DE, Sultan Y, Westerhoff P, White JC, Wiesner MR, Wong EM, Xing B, Horan MS, Godwin HA, Nel AE. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6124-45. [PMID: 27177237 PMCID: PMC4967154 DOI: 10.1021/acs.est.6b00608] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.
Collapse
Affiliation(s)
- Patricia A. Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Jorge Gardea-Torresdey
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Department of Chemistry, Environmental Science and Engineering PhD Program, University of Texas, El Paso, Texas 79968, United States
| | - Fred Klaessig
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Pennsylvania Bio Nano Systems, Doylestown, Pennsylvania 18901, United States
| | - Ronald F. Turco
- College of Agriculture, Laboratory for Soil Microbiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Monika Mortimer
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology, D-57392 Schmallenberg, Germany
| | - Elaine A. Cohen Hubal
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David Avery
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona 08034, Spain
- Institut Català de Recerca de l’Aigua (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Girona 17003, Spain
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Yoram Cohen
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, California 90095, United States
| | | | - Patrick Lee Ferguson
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | | | - Barbara Herr Harthorn
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Center for Nanotechnology in Society, University of California, Santa Barbara, California 93106
- Department of Anthropology, University of California, Santa Barbara, California 93106
| | - William Matthew Henderson
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Robert A. Hoke
- E.I. du Pont de Nemours and Company, Newark, Delaware 19711, United States
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice 30123, Italy
| | - John M. Johnston
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Agnes B. Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, United States
| | | | - Arturo A. Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Hunter S. Lenihan
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Wess Lovell
- Vive Crop Protection Inc, Toronto, Ontario M5G 1L6, Canada
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Roger M. Nisbet
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, United States
| | - Elijah J. Petersen
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Edward R. Salinas
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, D-67056, Germany
| | - Martin Scheringer
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Monita Sharma
- PETA International Science Consortium, Ltd., London N1 9RL, England, United Kingdom
| | - David E. Speed
- Globalfoundries, Corporate EHS, Hopewell Junction, New York 12533, United States
| | - Yasir Sultan
- Environment Canada, Gatineau, Quebec J8X 4C8, Canada
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jason C. White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Mark R. Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | - Eva M. Wong
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Washington, D.C. 20460, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Meghan Steele Horan
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Hilary A. Godwin
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, United States
| | - André E. Nel
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Mahapatra I, Sun TY, Clark JRA, Dobson PJ, Hungerbuehler K, Owen R, Nowack B, Lead J. Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J Nanobiotechnology 2015; 13:93. [PMID: 26694868 PMCID: PMC4688950 DOI: 10.1186/s12951-015-0150-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/18/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The use of gold nanoparticles (Au-NP) based medical applications is rising due to their unique physical and chemical properties. Diagnostic devices based on Au-NP are already available in the market or are in clinical trials and Au-NP based therapeutics and theranostics (combined diagnostic and treatment modality) are in the research and development phase. Currently, no information on Au-NP consumption, material flows to and concentrations in the environment are available. Therefore, we estimated prospective maximal consumption of Au-NP from medical applications in the UK and US. We then modelled the Au-NP flows post-use and predicted their environmental concentrations. Furthermore, we assessed the environment risks of Au-NP by comparing the predicted environmental concentrations (PECs) with ecological threshold (PNEC) values. RESULTS The mean annual estimated consumption of Au-NP from medical applications is 540 kg for the UK and 2700 kg for the US. Among the modelled concentrations of Au-NP in environmental compartments, the mean annual PEC of Au-NP in sludge for both the UK and US was estimated at 124 and 145 μg kg(-1), respectively. The mean PEC in surface water was estimated at 468 and 4.7 pg L(-1), respectively for the UK and US. The NOEC value for the water compartment ranged from 0.12 up to 26,800 μg L(-1), with most values in the range of 1000 μg L(-1). CONCLUSION The results using the current set of data indicate that the environmental risk from Au-NP used in nanomedicine in surface waters and from agricultural use of biosolids is minimal in the near future, especially because we have used a worst-case use assessment. More Au-NP toxicity studies are needed for the soil compartment.
Collapse
Affiliation(s)
- Indrani Mahapatra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Tian Yin Sun
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland. .,Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH-Hoenggerberg, 8093, Zurich, Switzerland.
| | - Julian R A Clark
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Peter J Dobson
- The Queen's College, Oxford, OX1 4AW, UK. .,Warwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL, UK.
| | - Konrad Hungerbuehler
- Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH-Hoenggerberg, 8093, Zurich, Switzerland.
| | - Richard Owen
- Business School, University of Exeter, Exeter, EX4 4PU, UK.
| | - Bernd Nowack
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| | - Jamie Lead
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
8
|
Wigger H, Hackmann S, Zimmermann T, Köser J, Thöming J, von Gleich A. Influences of use activities and waste management on environmental releases of engineered nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 535:160-171. [PMID: 25728395 DOI: 10.1016/j.scitotenv.2015.02.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments.
Collapse
Affiliation(s)
- Henning Wigger
- Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany.
| | - Stephan Hackmann
- UFT Center for Environmental Research and Sustainable Technology, Department of General and Theoretical Ecology, University of Bremen, Leobener Str., 28359 Bremen, Germany
| | - Till Zimmermann
- Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; ARTEC - Research Center for Sustainability Studies, Enrique-Schmidt-Str. 7, 28359 Bremen, Germany
| | - Jan Köser
- UFT Center for Environmental Research and Sustainable Technology, Department of Sustainable Chemistry, University of Bremen, Leobener Str., 28359 Bremen, Germany
| | - Jorg Thöming
- UFT Center for Environmental Research and Sustainable Technology, Department of Sustainable Chemical Engineering, University of Bremen, Leobener Str., 28359 Bremen, Germany
| | - Arnim von Gleich
- Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; ARTEC - Research Center for Sustainability Studies, Enrique-Schmidt-Str. 7, 28359 Bremen, Germany
| |
Collapse
|
9
|
Weil M, Meißner T, Busch W, Springer A, Kühnel D, Schulz R, Duis K. The oxidized state of the nanocomposite Carbo-Iron® causes no adverse effects on growth, survival and differential gene expression in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:198-208. [PMID: 26042533 DOI: 10.1016/j.scitotenv.2015.05.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 05/24/2023]
Abstract
For degradation of halogenated chemicals in groundwater Carbo-Iron®, a composite of activated carbon and nano-sized Fe(0), was developed (Mackenzie et al., 2012). Potential effects of this nanocomposite on fish were assessed. Beyond the contaminated zone Fe(0) can be expected to have oxidized and Carbo-Iron was used in its oxidized form in ecotoxicological tests. Potential effects of Carbo Iron in zebrafish (Danio rerio) were investigated using a 48 h embryo toxicity test under static conditions, a 96 h acute test with adult fish under semi-static conditions and a 34 d fish early life stage test (FELST) in a flow-through system. Particle diameters in test suspensions were determined via dynamic light scattering (DLS) and ranged from 266 to 497 nm. Particle concentrations were measured weekly in samples from the FELST using a method based on the count rate in DLS. Additionally, uptake of particles into test organisms was investigated using microscopic methods. Furthermore, effects of Carbo-Iron on gene expression were investigated by microarray analysis in zebrafish embryos. In all tests performed, no significant lethal effects were observed. Furthermore, Carbo-Iron had no significant influence on weight and length of fish as determined in the FELST. In the embryo test and the early life stage test, growth of fungi on the chorion was observed at Carbo-Iron concentrations between 6.3 and 25mg/L. Fungal growth did not affect survival, hatching success and growth. In the embryo test, no passage of Carbo-Iron particles into the perivitelline space or the embryo was observed. In juvenile and adult fish, Carbo-Iron was detected in the gut at the end of exposure. In juvenile fish exposed to Carbo-Iron for 29 d and subsequently kept for 5d in control water, Carbo-Iron was no longer detectable in the gut. Global gene expression in zebrafish embryos was not significantly influenced by Carbo-Iron.
Collapse
Affiliation(s)
- Mirco Weil
- ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim, Germany.
| | - Tobias Meißner
- Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstrasse 28, 01277 Dresden, Germany.
| | - Wibke Busch
- Helmholtz Centre for Environmental Research - UFZ, Dept. of Bioanalytical Ecotoxicology, Permoser Strasse 15, 04318 Leipzig, Germany.
| | - Armin Springer
- Centre for Translational Bone, Joint and Soft Tissue Research, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Dept. of Bioanalytical Ecotoxicology, Permoser Strasse 15, 04318 Leipzig, Germany.
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany.
| | - Karen Duis
- ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim, Germany.
| |
Collapse
|
10
|
Wigger H, Zimmermann T, Pade C. Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s10669-014-9530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Baumann J, Köser J, Arndt D, Filser J. The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 484:176-184. [PMID: 24705300 DOI: 10.1016/j.scitotenv.2014.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 05/29/2023]
Abstract
The surface of nanoparticles (NP) is often functionalized with a capping agent to increase their colloidal stability. Having a strong effect on the characteristics of NP, the coating might already determine the risk from NP to organisms and the environment. In this study identical iron oxide nanoparticles (IONP; Ø 5-6nm) were functionalized with four different coatings: ascorbate (ASC-IONP), citrate (CIT-IONP), dextran (DEX-IONP), and polyvinylpyrrolidone (PVP-IONP). Ascorbate and citrate stabilize NP via electrostatic repulsion whereas dextran and polyvinylpyrrolidone are steric stabilizers. All IONP were colloidally stable over several weeks. Their acute effects on neonates of the waterflea Daphnia magna were investigated over 96h. The highest immobilizing effect was found for ASC- and DEX-IONP. In the presence of neonates, both agglomerated or flocculated and adsorbed to the carapace and filtering apparatuses, inducing high immobilization. Lower immobilization was found for CIT-IONP. Their effect was hypothesized to partly originate from an increased release of dissolved iron and the ability to form reactive oxygen species (ROS). Furthermore, incomplete ecdysis occurred at high concentrations of ASC-, DEX-, and CIT-IONP. PVP-IONP did not induce any negative effect, although high quantities were visibly ingested by the daphnids. PVP-IONP had the highest colloidal stability without any occurring agglomeration, adsorption, or dissolution. Only strong swelling of the PVP coating was observed in medium, highly increasing the hydrodynamic diameter. Each coating caused individual effects. Toxicity cannot be correlated to hydrodynamic diameter or the kind of stabilizing forces. Effects are rather linked to decreasing colloidal stability, the release of ions from the core material or the ability to form ROS, respectively.
Collapse
Affiliation(s)
- Jonas Baumann
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse UFT, D-28359 Bremen, Germany.
| | - Jan Köser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse UFT, D-28359 Bremen, Germany.
| | - Darius Arndt
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse UFT, D-28359 Bremen, Germany.
| | - Juliane Filser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse UFT, D-28359 Bremen, Germany.
| |
Collapse
|
12
|
Baumann J, Sakka Y, Bertrand C, Köser J, Filser J. Adaptation of the Daphnia sp. acute toxicity test: miniaturization and prolongation for the testing of nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2201-2213. [PMID: 24043504 DOI: 10.1007/s11356-013-2094-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/26/2013] [Indexed: 06/02/2023]
Abstract
Manufacturing of nanomaterials (NMs) is often complex and expensive, and their environmental risks are poorly understood or even unknown. An economization of testing NMs is therefore desirable, which can be achieved by miniaturizing test systems. However, the downsizing of test vessels and volumes can enlarge the surface/volume ratio (SVR) which in turn can affect the bioavailable concentration of adsorbing substances like NMs. The present study focused on the miniaturization of the acute toxicity test with Daphnia magna. The adaptations were verified with three reference substances, the non-adsorbing potassium dichromate (K2Cr2O7) and as potentially highly-adsorbing substances silver nanoparticles (AgNPs) and silver nitrate (AgNO3). The miniaturized test was conducted in 24-well microtiter plates (MT) and simultaneously compared to the OECD standard test (ST). Furthermore, the test duration was prolonged from 48 to 96 h since NMs tend to show effects only after extended exposure. The toxicity of K2Cr2O7 and AgNPs continued to increase within the prolonged test span. The test comparisons with K2Cr2O7 did not reveal any significant differences between ST and MT. AgNO3 toxicity was significantly decreased in MT compared to ST due to the enlarged SVR. The toxicity of AgNPs in MT after 24 h was equal to ST. Contrary to our expectations an exposure longer than 24 h resulted in an increase of AgNP toxicity in MT, possibly due to enhanced dissolution of silver. Microtiter plates are appropriate alternative test vessels for the Daphnia sp. acute toxicity test; thus, its miniaturization is feasible. The enlarged SVR has to be taken into account since it can affect the toxicity of potentially adsorbing substances. Furthermore, the standard test duration of 48 h might underestimate the toxicity of many substances, especially of NMs.
Collapse
Affiliation(s)
- Jonas Baumann
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse UFT, 28359, Bremen, Germany.
| | - Yvonne Sakka
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse UFT, 28359, Bremen, Germany
| | - Carole Bertrand
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS UMR 7360, Université de Lorraine, Rue du Général Delestraint - Campus Bridoux, 57070, Metz, France
| | - Jan Köser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse UFT, 28359, Bremen, Germany
| | - Juliane Filser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse UFT, 28359, Bremen, Germany
| |
Collapse
|