1
|
Pradhan B, Pavan M, Fisher CL, Salmaso V, Wan TC, Keyes RF, Rollison N, Suresh RR, Kumar TS, Gao ZG, Smith BC, Auchampach JA, Jacobson KA. Lipid Trolling to Optimize A 3 Adenosine Receptor-Positive Allosteric Modulators (PAMs). J Med Chem 2024; 67:12221-12247. [PMID: 38959401 DOI: 10.1021/acs.jmedchem.4c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A3 adenosine receptor (A3AR) positive allosteric modulators (PAMs) (2,4-disubstituted-1H-imidazo[4,5-c]quinolin-4-amines) allosterically increase the Emax of A3AR agonists, but not potency, due to concurrent orthosteric antagonism. Following mutagenesis/homology modeling of the proposed lipid-exposed allosteric binding site on the cytosolic side, we functionalized the scaffold, including heteroatom substitutions and exocyclic phenylamine extensions, to increase allosteric binding. Strategically appended linear alkyl-alkynyl chains with terminal amino/guanidino groups improved allosteric effects at both human and mouse A3ARs. The chain length, functionality, and attachment position were varied to modulate A3AR PAM activity. For example, 26 (MRS8247, p-alkyne-linked 8 methylenes) and homologues increased agonist Cl-IB-MECA's Emax and potency ([35S]GTPγS binding). The putative mechanism involves a flexible, terminally cationic chain penetrating the lipid environment for stable electrostatic anchoring to cytosolic phospholipid head groups, suggesting "lipid trolling", supported by molecular dynamic simulation of the active-state model. Thus, we have improved A3AR PAM activity through rational design based on an extrahelical, lipidic binding site.
Collapse
Affiliation(s)
- Balaram Pradhan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Matteo Pavan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Courtney L Fisher
- Department of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Tina C Wan
- Department of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Robert F Keyes
- Department of Biochemistry and the Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Noah Rollison
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - T Santhosh Kumar
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Brian C Smith
- Department of Biochemistry and the Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - John A Auchampach
- Department of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Kumar K, Sihag B, Patil MT, Singh R, Sakala IG, Honda-Okubo Y, Singh KN, Petrovsky N, Salunke DB. Design and Synthesis of Polyphenolic Imidazo[4,5- c]quinoline Derivatives to Modulate Toll Like Receptor-7 Agonistic Activity and Adjuvanticity. ACS Pharmacol Transl Sci 2024; 7:2063-2079. [PMID: 39022355 PMCID: PMC11249636 DOI: 10.1021/acsptsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
TLR-7/8 agonists are a well-known class of vaccine adjuvants, with a leading example now included in Covaxin, a licensed human COVID-19 vaccine. This thereby provides the opportunity to develop newer, more potent adjuvants based on structure-function studies of these classes of compounds. Imidazoquinoline-based TLR7/8 agonists are the most potent, but when used as a vaccine adjuvant side effects can arise due to diffusion from the injection site into a systemic circulation. In this work, we sought to address this issue through structural modifications in the agonists to enhance their adsorption capacity to the classic adjuvant alum. We selected a potent TLR7-selective agonist, BBIQ (EC50 = 0.85 μM), and synthesized polyphenolic derivatives to assess their TLR7 agonistic activity and adjuvant potential alone or in combination with alum. Most of the phenolic derivatives were more active than BBIQ and, except for 12b, all were TLR7 specific. Although the synthesized compounds were less active than resiquimod, the immunization data on combination with alum, specifically the IgG1, IgG2b and IgG2c responses, were superior in comparison to BBIQ as well as the reference standard resiquimod. Compound 12b was 5-fold more potent (EC50 = 0.15 μM in TLR7) than BBIQ and induced double the IgG response to SARS-CoV-2 and hepatitis antigens. Similarly, compound 12c (EC50 = 0.31 μM in TLR7) was about 3-fold more potent than BBIQ and doubled the IgG levels. Even though compound 12d exhibited low TLR7 activity (EC50 = 5.13 μM in TLR7), it demonstrated superior adjuvant results, which may be attributed to its enhanced alum adsorption capability as compared with BBIQ and resiquimod. Alum-adsorbed polyphenolic TLR7 agonists thereby represent promising combination adjuvants resulting in a balanced Th1/Th2 immune response.
Collapse
Affiliation(s)
- Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Binita Sihag
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T. Patil
- Mehr
Chand Mahajan DAV College for Women, Sector 36A, Chandigarh 160 036, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Isaac G. Sakala
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Kamal Nain Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National
Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials
(NICOVIA), Panjab University, Chandigarh 160 014, India
| |
Collapse
|
3
|
Kumar Y, Ila H. Domino Synthesis of Thiazolo-Fused Six- and Seven-Membered Nitrogen Heterocycles via Intramolecular Heteroannulation of In-Situ-Generated 2-(Het)aryl-4-amino-5-functionalized Thiazoles. J Org Chem 2022; 87:12397-12413. [PMID: 36069522 DOI: 10.1021/acs.joc.2c01673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis of novel 2-(het)aryl-substituted thiazolo-fused six- and seven-membered heterocycles, such as thiazolo[4,5-b]pyridin-5(4H)-ones, thiazolo[4,5-c]isoquinolin-5(4H)-ones, thiazolo[4,5-b]quinolin-9(4H)-ones, 4H-benzo[e]thiazolo[4,5-b]azepine-5,10-diones, have been developed in a single-pot operation via intramolecular heteroannulation of in-situ-generated 2-(het)aryl-4-amino-5-functionalized thiazoles. These 4-amino-5-functionalized thiazoles were readily obtained in a one-pot process by treatment of a range of (het)aryldithioesters with cyanamide in the presence of NaH, followed by in situ S-alkylation-intramolecular condensations of the resulting thioimidate salts with appropriate activated methylene halides. On the other hand, the corresponding 4H-benzo[b]thiazolo[4,5-e][1,4]diazepin-10(9H)-ones were synthesized in a two-step process, requiring prior isolation of 5-carboethoxy-4-(2-nitrophenyl)aminothiazoles and their subsequent reductive cyclization. The activated methylene halides employed in these reactions for the synthesis of various thiazolo-fused heterocycles were methyl bromocrotonate, ethyl 2-(bromomethyl)benzoate, 2-fluorophenacyl bromides, ethyl 2-(2-bromoacetyl)benzoate, and ethyl bromoacetate. Several of these thiazolo-fused heterocycles display yellow green to green fluorescence, and their absorption and emission spectra have also been examined.
Collapse
Affiliation(s)
- Yogendra Kumar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
4
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Kappenberg YG, Stefanello FS, Zanatta N, Martins MAP, Nogara PA, Rocha JBT, Tisoco I, Iglesias BA, Bonacorso HG. Hybridized 4-Trifluoromethyl-(1,2,3-triazol-1-yl)quinoline System: Synthesis, Photophysics, Selective DNA/HSA Bio-interactions and Molecular Docking. Chembiochem 2021; 23:e202100649. [PMID: 34878702 DOI: 10.1002/cbic.202100649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/07/2021] [Indexed: 11/10/2022]
Abstract
The synthesis, structural analysis, and evaluation of the photophysical properties of twelve novel 2-aryl(heteroaryl)-6-(4-alkyl(aryl)-1H-1,2,3-triazol-1-yl)-4-(trifluoromethyl)quinolines (6-8), where aryl(heteroaryl)=Ph, 4-Me-C6 H4 , 4-F-C6 H4 and 2- furyl; 4-alkyl(aryl)=-CH2 OH, -(CH2 )5 CH3 and Ph, are reported. Hybrid scaffolds 6-8 were synthesized at 77-95 % yields by regioselective copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction of unpublished 6-azido-4-(trifluoromethyl)quinolines (2) with selected terminal alkynes (3-5). Azido intermediates 2 were obtained from the reaction of 6-amino-4-(trifluoromethyl)quinolines (1) and sodium azide at good yields (78-87 %). Compounds 6-8 were structurally fully characterized by 1 H-, 13 C- and 19 F- and 1 H-13 C 2D-NMR (HSQC, HMBC) spectroscopy, X-ray diffraction (SC-XRD) and HRMS analysis. Moreover, the photophysical properties, DNA- and HSA-binding experiments (bio-interactions), and molecular docking studies for compounds 6-8 were performed. These are discussed and compared with similar compounds from recent research.
Collapse
Affiliation(s)
- Yuri G Kappenberg
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química, Universidade Federal de Santa Maria, 97105-900 -, Santa Maria, RS, Brazil
| | - Felipe S Stefanello
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química, Universidade Federal de Santa Maria, 97105-900 -, Santa Maria, RS, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química, Universidade Federal de Santa Maria, 97105-900 -, Santa Maria, RS, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química, Universidade Federal de Santa Maria, 97105-900 -, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Isadora Tisoco
- Laboratório de Bioinorgânica e Materiais Porfirínicos Departamento de Química, Universidade Federal de Santa Maria, 97105-900 -, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos Departamento de Química, Universidade Federal de Santa Maria, 97105-900 -, Santa Maria, RS, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química, Universidade Federal de Santa Maria, 97105-900 -, Santa Maria, RS, Brazil
| |
Collapse
|
6
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Talukdar A, Ganguly D, Roy S, Das N, Sarkar D. Structural Evolution and Translational Potential for Agonists and Antagonists of Endosomal Toll-like Receptors. J Med Chem 2021; 64:8010-8041. [PMID: 34107682 DOI: 10.1021/acs.jmedchem.1c00300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are members of a large family of evolutionarily conserved pattern recognition receptors (PRRs), which serve as key components of the innate immune system by playing a pivotal role in sensing "nonself" ligands. Endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) can recognize pathogen-derived nucleic acid and initiate an innate immune response because they react against both self- and non-self-origin nucleic acid molecules. Accordingly, both receptor agonists and antagonists are potentially useful in disparate clinical contexts and thus are globally sought after. Recent research has revealed that agonists and antagonists share an overlapping binding region. This Perspective highlights rational medicinal chemistry approaches to elucidate the structural attributes of small molecules capable of agonism or antagonism or of elegantly switching between the two. The structural evolution of different chemotypes can provide the framework for the future development of endosomal TLR agonists and antagonists.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Swarnali Roy
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Nirmal Das
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Dipika Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
8
|
Kaushik D, Kaur A, Petrovsky N, Salunke DB. Structural evolution of toll-like receptor 7/8 agonists from imidazoquinolines to imidazoles. RSC Med Chem 2021; 12:1065-1120. [PMID: 34355178 DOI: 10.1039/d1md00031d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Several synthetic heterocyclic small molecules like imiquimod, resiquimod, CL097, CL075, bromopirone, tilorone, loxoribine and isatoribine demonstrated TLR7/8 agonistic activity and relatively modest structural changes in such molecules result in major variation in the TLR7 and/or TLR8 activity. A strict dependency of the electronic configuration of the heterocyclic system was also observed to influence the agonistic activity. In the present review, an evolution of imidazole based TLR7/8 agonist from imidazoquinoline based scaffold is delineated along with the elaboration of detailed structure activity relationship (SAR) in each chemotype. The structural and activity details of not only the active compounds but also the related inactive compounds are included to better understand the SAR. TLR7/8 agonists are emerging as promising vaccine adjuvant candidates and the present SAR and structural information will provide a road map towards the identification of more potent and appropriate candidates for further drug discovery.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd 11 Walkley Avenue Warradale 5046 Australia.,College of Medicine and Public Health, Flinders University Bedford Park 5042 Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India .,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University Chandigarh 160014 India
| |
Collapse
|
9
|
Burt AJ, Ahmadvand P, Opp LK, Ryan AT, Kang C, Mancini RJ. A Ligand‐Directed Nitrophenol Carbonate for Transient in situ Bioconjugation and Drug Delivery. ChemMedChem 2020. [PMCID: PMC7702144 DOI: 10.1002/cmdc.202000655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we report the first use of ligand‐directed proximity accelerated bioconjugation chemistry in the tandem delivery and release of a therapeutic payload. To do this, we designed a nitrophenol carbonate for ligand‐directed in situ bioconjugation of a prodrug payload to a protein. The transient nature of our conjugation chemistry renders the protein a depot for time‐dependent release of active drug following hydrolysis and self‐immolation. In our model system, using an immunostimulant prodrug, biotin ligand, and avidin protein, we observe release of bioavailable immunostimulant both spectroscopically and with an immune cell line over 48 h. Avidin co‐crystalized with the nitrophenolate directing group verified the binding pose of the ligand and offered insight into the mechanism of in situ bioconjugation. Overall, this scaffold warrants further investigation for the time‐dependent delivery of therapeutics and use in protein ligand pairs beyond biotin and avidin used for this work.
Collapse
Affiliation(s)
- Anthony J. Burt
- Department of Chemistry Washington State University 1470 NE College Ave Pullman WA 99164 USA
| | - Parvaneh Ahmadvand
- Department of Chemistry Washington State University 1470 NE College Ave Pullman WA 99164 USA
| | - Larissa K. Opp
- Department of Chemistry Washington State University 1470 NE College Ave Pullman WA 99164 USA
| | - Austin T. Ryan
- Department of Chemistry Washington State University 1470 NE College Ave Pullman WA 99164 USA
| | - ChulHee Kang
- Department of Chemistry Washington State University 1470 NE College Ave Pullman WA 99164 USA
| | - Rock J. Mancini
- Department of Chemistry Washington State University 1470 NE College Ave Pullman WA 99164 USA
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering Washington State University 1470 NE College Ave Pullman WA 99164 USA
| |
Collapse
|
10
|
Kutasevich AV, Perevalov VP, Mityanov VS. Recent Progress in Non‐Catalytic C–H Functionalization of Heterocyclic
N
‐Oxides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anton V. Kutasevich
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
| | - Valery P. Perevalov
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
| | - Vitaly S. Mityanov
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Pr., 47 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
12
|
Mackman RL, Mish M, Chin G, Perry JK, Appleby T, Aktoudianakis V, Metobo S, Pyun P, Niu C, Daffis S, Yu H, Zheng J, Villasenor AG, Zablocki J, Chamberlain J, Jin H, Lee G, Suekawa-Pirrone K, Santos R, Delaney WE, Fletcher SP. Discovery of GS-9688 (Selgantolimod) as a Potent and Selective Oral Toll-Like Receptor 8 Agonist for the Treatment of Chronic Hepatitis B. J Med Chem 2020; 63:10188-10203. [DOI: 10.1021/acs.jmedchem.0c00100] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Richard L. Mackman
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Michael Mish
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gregory Chin
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jason K. Perry
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Todd Appleby
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Sammy Metobo
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Peter Pyun
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Congrong Niu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephane Daffis
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Helen Yu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jim Zheng
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Armando G. Villasenor
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jeff Zablocki
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jason Chamberlain
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Haolun Jin
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gary Lee
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Rex Santos
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - William E. Delaney
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Simon P. Fletcher
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|
13
|
Jiang S, Tanji H, Yin K, Zhang S, Sakaniwa K, Huang J, Yang Y, Li J, Ohto U, Shimizu T, Yin H. Rationally Designed Small-Molecule Inhibitors Targeting an Unconventional Pocket on the TLR8 Protein-Protein Interface. J Med Chem 2020; 63:4117-4132. [PMID: 32233366 DOI: 10.1021/acs.jmedchem.9b02128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rational designs of small-molecule inhibitors targeting protein-protein interfaces have met little success. Herein, we have designed a series of triazole derivatives with a novel scaffold to specifically intervene with the interaction of TLR8 homomerization. In multiple assays, TH1027 was identified as a highly potent and specific inhibitor of TLR8. A successful solution of the X-ray crystal structure of TLR8 in complex with TH1027 provided an in-depth mechanistic insight into its binding mode, validating that TH1027 was located between two TLR8 monomers and recognized as an unconventional pocket, thereby preventing TLR8 from activation. Further biological evaluations showed that TH1027 dose-dependently suppressed the TLR8-mediated inflammatory responses in both human monocyte cell lines, peripheral blood mononuclear cells, and rheumatoid arthritis patient specimens, suggesting a strong therapeutic potential against autoimmune diseases.
Collapse
Affiliation(s)
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | - Kentaro Sakaniwa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing 100730, China
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
14
|
Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020; 193:112238. [PMID: 32203790 PMCID: PMC7173040 DOI: 10.1016/j.ejmech.2020.112238] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
The discovery of the TLRs family and more precisely its functions opened a variety of gates to modulate immunological host responses. TLRs 7/8 are located in the endosomal compartment and activate a specific signaling pathway in a MyD88-dependant manner. According to their involvement into various autoimmune, inflammatory and malignant diseases, researchers have designed diverse TLRs 7/8 ligands able to boost or block the inherent signal transduction. These modulators are often small synthetic compounds and most act as agonists and to a much lesser extent as antagonists. Some of them have reached preclinical and clinical trials, and only one has been approved by the FDA and EMA, imiquimod. The key to the success of these modulators probably lies in their combination with other therapies as recently demonstrated. We gather in this review more than 360 scientific publications, reviews and patents, relating the extensive work carried out by researchers on the design of TLRs 7/8 modulators, which are classified firstly by their biological activities (agonist or antagonist) and then by their chemical structures, which total syntheses are not discussed here. This review also reports about 90 clinical cases, thereby showing the biological interest of these modulators in multiple pathologies.
Collapse
Affiliation(s)
- Cindy Patinote
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nour Bou Karroum
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Natalina Cirnat
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | | | | |
Collapse
|
15
|
Abass M, Alzandi ARA, Hassan MM, Mohamed N. Recent Advances on Diversity Oriented Heterocycle Synthesis of Fused Quinolines and Its Biological Evaluation. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2019.1710856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohamed Abass
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Abdel Rahman A. Alzandi
- Biology Department, Faculty of Sciences & Arts (Almikhwah), Al Baha University, Al Baha, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Noha Mohamed
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Šribar D, Grabowski M, Murgueitio MS, Bermudez M, Weindl G, Wolber G. Identification and characterization of a novel chemotype for human TLR8 inhibitors. Eur J Med Chem 2019; 179:744-752. [DOI: 10.1016/j.ejmech.2019.06.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
|
17
|
Bou Karroum N, Moarbess G, Guichou JF, Bonnet PA, Patinote C, Bouharoun-Tayoun H, Chamat S, Cuq P, Diab-Assaf M, Kassab I, Deleuze-Masquefa C. Novel and Selective TLR7 Antagonists among the Imidazo[1,2- a]pyrazines, Imidazo[1,5- a]quinoxalines, and Pyrazolo[1,5- a]quinoxalines Series. J Med Chem 2019; 62:7015-7031. [PMID: 31283223 DOI: 10.1021/acs.jmedchem.9b00411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Toll-like receptors (TLRs) 7 and 8 play an important role in the immune system activation, and their agonists may therefore serve as promising candidate vaccine adjuvants. However, the chronic immune activation by excessive TLR stimulation is a hallmark of several clinically important infectious and autoimmune diseases, which warrants the search for TLR antagonists. In this study, we have synthesized and characterized a variety of compounds belonging to three heterocyclic chemical series: imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline. These compounds have been tested for their TLR7 or TLR8 agonistic and antagonistic activities. Several of them are shown to be selective TLR7 antagonists without any TLR7 or TLR8 agonistic activity. The selectivity was confirmed by a comparative ligand-docking study in TLR7 antagonist pocket. Two compounds of the pyrazolo[1,5-a]quinoxaline series (10a and 10b) are potent selective TLR7 antagonists and may be considered as promising starting points for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Nour Bou Karroum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France.,Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Jean-François Guichou
- CNRS, UMR 5048, INSERM, U105, Université de Montpellier, Centre de Biochimie Structurale , Montpellier F-34090 , France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Hasnaa Bouharoun-Tayoun
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health , Lebanese University , Fanar Jdeideh 1202 , Lebanon
| | - Soulaima Chamat
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health , Lebanese University , Fanar Jdeideh 1202 , Lebanon.,Faculty of Medical Sciences , Lebanese University , Hadath 1500 , Lebanon
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Mona Diab-Assaf
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Carine Deleuze-Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| |
Collapse
|
18
|
Zhu J, Wang LN, Cai R, Geng SQ, Dong YF, Liu YM. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg Med Chem Lett 2019; 29:1325-1329. [DOI: 10.1016/j.bmcl.2019.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022]
|
19
|
Han S, Gao X, Wu Q, Li J, Zou D, Wu Y, Wu Y. Nickel-promoted C(2)–H amidation of quinoline N-oxides with N-fluorobenzenesulfonimide. Org Chem Front 2019. [DOI: 10.1039/c8qo01281d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first example of nickel-promoted C–H amidation of quinoline N-oxides with NFSI.
Collapse
Affiliation(s)
- Shuaijun Han
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Xianying Gao
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Qingsong Wu
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Jingya Li
- Tetranov Biopharm
- LLC
- and Collaborative Innovation Center of New Drug Research and Safety Evaluation
- Zhengzhou
- People's Republic of China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| |
Collapse
|
20
|
Huang S, Mei H, Zhang D, Ren Y, Kevin M, Pan X. The emerging chemical patterns applied in predicting human toll-like receptor 8 agonists. MEDCHEMCOMM 2018; 9:1961-1971. [PMID: 30568763 PMCID: PMC6256730 DOI: 10.1039/c8md00276b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are important pattern recognition receptors to human innate immunity, which can recognize pathogen-associated molecular patterns and initiate innate immune responses. As the receptor of single stranded RNA (ssRNA), toll-like receptor 8 (TLR8) has potential in the treatment of tumors, microbial infection, and inflammatory diseases. Herein, an emerging chemical pattern (ECP) method was utilized to predict the key chemical patterns of TLR8 agonists. Based on the ECPs discovered, a robust and predictive ECP model was derived with prediction accuracies of 83.3%, 81.0%, and 80.0% for 132 training samples, 79 validation samples, and 75 test samples, respectively. When the ECP model was applied with a molecular docking method, the hit rate of TLR8 agonists was greatly enhanced. The results of ECP-based hierarchical cluster analysis and Connolly surface analysis of the TLR8 receptor showed that the H-bonding, hydrophilic and hydrophobic potentials as well as the unbalanced degree of property distributions are very important for distinguishing the TLR8 agonists from non-agonists.
Collapse
Affiliation(s)
- Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education) , Chongqing University , Chongqing 400044 , China . ; Tel: +86 23 65112677
- College of Bioengineering , Chongqing University , Chongqing 400044 , China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education) , Chongqing University , Chongqing 400044 , China . ; Tel: +86 23 65112677
- College of Bioengineering , Chongqing University , Chongqing 400044 , China
| | - Duo Zhang
- College of Bioengineering , Chongqing University , Chongqing 400044 , China
| | - Yubin Ren
- College of Bioengineering , Chongqing University , Chongqing 400044 , China
| | | | - Xianchao Pan
- College of Bioengineering , Chongqing University , Chongqing 400044 , China
- Department of Medicinal Chemistry , College of Pharmacy , Southwest Medical University , Luzhou , Sichuan 646000 , China .
| |
Collapse
|
21
|
Singh A, Srivastava A, Singh MS. Metal-Free One-Pot Four-Component Cascade Annulation in Ionic Liquids at Room Temperature: Convergent Access to Thiazoloquinolinone Derivatives. J Org Chem 2018; 83:7950-7961. [PMID: 29978705 DOI: 10.1021/acs.joc.8b00814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An efficient, eco-friendly, and highly convergent one-pot route to privileged thiazoloquinolinone derivatives has been developed via four-component cascade coupling (4CCC) of α-enolic dithioesters, cysteamine/2-aminothiophenols, aldehydes, and cyclic 1,3-diketones in recyclable [EMIM][EtSO4] ionic liquid at room temperature for the first time. The reaction proceeds via a N,S-acetal formation, Knoevenagel condensation, aza-ene reaction, imine-enamine/keto-enol tautomerization, and intramolecular N-cyclization cascade sequence. The merit of the protocol is highlighted by its efficacy of forming consecutive five new bonds (two C-C, two C-N, and one C-S) and two rings with all reactants being efficiently utilized. The operational simplicity, sustainability, mild conditions, excellent yields, tolerance of wide functional groups, and avoidance of expensive/toxic reagents are additional attributes to this domino four-component protocol. Notably, the products were easily separated from the ionic liquid, and thus the ionic liquid obtained was reused four times without considerable loss of any activity.
Collapse
Affiliation(s)
- Anshu Singh
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi 221005 , India
| | - Abhijeet Srivastava
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi 221005 , India
| | - Maya Shankar Singh
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi 221005 , India
| |
Collapse
|
22
|
Salyer ACD, David SA. Transcriptomal signatures of vaccine adjuvants and accessory immunostimulation of sentinel cells by toll-like receptor 2/6 agonists. Hum Vaccin Immunother 2018; 14:1686-1696. [PMID: 29852079 PMCID: PMC6067887 DOI: 10.1080/21645515.2018.1480284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
An important component of vaccine development is the identification of safe and effective adjuvants. We sought to identify transcriptomal signatures of innate immune stimulating molecules using next-generation RNA sequencing with the goal of being able to utilize such signatures in identifying novel immunostimulatory compounds with adjuvant activity. The CC family of chemokines, particularly CC chemokines 1, 2, 3, 4, 7, 8, 17, 18, 20, and 23, were broadly upregulated by most Toll-like receptor (TLR) and nucleotide-binding domain and leucine-rich repeat-containing receptors (NLR) stimuli. Extracellular receptors such as TLR2, TLR4 and TLR5 induced the transcription of CXC chemokines including CXCL5, CXCL6 and CXCL8, whereas intracellular receptors such as TLR7 and TLR8 upregulated CXC chemokines 11 and 12. Both TLR1/2 and TLR2/6 agonists induced strong chemokine production in human peripheral blood mononuclear cells. Human skeletal muscle cells and fibroblasts respond with chemokine production only to TLR2/6 agonists, but not TLR1/2 agonists, consistent with strong expression of TLR2 and TLR6, but not of TLR1, in fibroblasts. TLR2/6 stimulated fibroblasts demonstrated functional chemotactic responses to human T cell and natural killer cells subsets. The activation of non-hematopoietic, adventitial cells such as fibroblasts and myocytes may contribute.
Collapse
Affiliation(s)
- Alex C. D. Salyer
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M. Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjug Chem 2018; 29:587-603. [PMID: 29378134 PMCID: PMC10642707 DOI: 10.1021/acs.bioconjchem.7b00808] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are vital elements of the mammalian immune system that function by recognizing pathogen-associated molecular patterns (PAMPs), bridging innate and adaptive immunity. They have become a prominent therapeutic target for the treatment of infectious diseases, cancer, and allergies, with many TLR agonists currently in clinical trials or approved as immunostimulants. Numerous studies have shown that conjugation of TLR agonists to other molecules can beneficially influence their potency, toxicity, pharmacokinetics, or function. The functional properties of TLR agonist conjugates, however, are highly dependent on the ligation strategy employed. Here, we review the chemical structural requirements for effective functional TLR agonist conjugation. In addition, we provide similar analysis for those that have yet to be conjugated. Moreover, we discuss applications of covalent TLR agonist conjugation and their implications for clinical use.
Collapse
Affiliation(s)
- Bob J. Ignacio
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tyler J. Albin
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
24
|
Folgueiras-Amador AA, Qian XY, Xu HC, Wirth T. Catalyst- and Supporting-Electrolyte-Free Electrosynthesis of Benzothiazoles and Thiazolopyridines in Continuous Flow. Chemistry 2017; 24:487-491. [DOI: 10.1002/chem.201705016] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Indexed: 01/09/2023]
Affiliation(s)
| | - Xiang-Yang Qian
- College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Thomas Wirth
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT UK
| |
Collapse
|
25
|
Yu X, Yang S, Zhang Y, Guo M, Yamamoto Y, Bao M. Intermolecular Amidation of Quinoline N-Oxides with Arylsulfonamides under Metal-Free Conditions. Org Lett 2017; 19:6088-6091. [DOI: 10.1021/acs.orglett.7b02922] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoqiang Yu
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Sana Yang
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yue Zhang
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Mingju Guo
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yoshinori Yamamoto
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- WPI-AIMR
(WPI-Advanced Institute for Materials Research), Tohoku University, Sendai 980-8577, Japan
| | - Ming Bao
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
26
|
Qian XY, Li SQ, Song J, Xu HC. TEMPO-Catalyzed Electrochemical C–H Thiolation: Synthesis of Benzothiazoles and Thiazolopyridines from Thioamides. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00426] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang-Yang Qian
- iChEM,
State Key Laboratory of Physical Chemistry of Solid Surfaces, and
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shu-Qi Li
- iChEM,
State Key Laboratory of Physical Chemistry of Solid Surfaces, and
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jinshuai Song
- Fujian
Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Hai-Chao Xu
- iChEM,
State Key Laboratory of Physical Chemistry of Solid Surfaces, and
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
27
|
Beesu M, Salyer ACD, Brush MJH, Trautman KL, Hill JK, David SA. Identification of High-Potency Human TLR8 and Dual TLR7/TLR8 Agonists in Pyrimidine-2,4-diamines. J Med Chem 2017; 60:2084-2098. [PMID: 28146629 DOI: 10.1021/acs.jmedchem.6b01860] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The induction of toll-like receptor 7 (TLR7)-dependent type I interferons (IFN-α/β) from plasmacytoid dendritic cells as well as the production of TLR8-dependent type II interferon (IFN-γ), TNF-α, and IL-12 in myeloid dendritic cells are of importance in generating T helper-1 biased adaptive immune responses. In an effort to identify novel dual TLR7/TLR8-active compounds, we undertook structure-activity relationship studies in pyrimidine 2,4-diamines, focusing on substituents at C5. Several analogues substituted with aminopropyl appendages at C5 displayed dominant TLR8-agonistic activity. N4-Butyl-6-methyl-5-(3-morpholinopropyl)pyrimidine-2,4-diamine was found to be a very potent dual TLR7/TLR8 agonist. Employing novel cytokine reporter cell assays, we verified that potency at TLR7 correlates with IFN-α/β production in human blood, whereas IFN-γ and TNF-α induction is largely TLR8-dependent. Dual TLR7/TLR8 agonists markedly upregulate CD80 expression in multiple dendritic cell subsets, providing insight into the immunological basis for the superior adjuvantic properties of such innate immune stimuli.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Alex C D Salyer
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael J H Brush
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Kathryn L Trautman
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Justin K Hill
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Sunil A David
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Balancing Inflammation: Computational Design of Small-Molecule Toll-like Receptor Modulators. Trends Pharmacol Sci 2017; 38:155-168. [DOI: 10.1016/j.tips.2016.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
|
29
|
Abstract
Human toll-like receptor (hTLR)-8 is expressed in myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells. Engagement by TLR8 agonists evokes a distinct cytokine profile which favors the development of type 1 helper T cells. Focused exploration of structure-activity relationships in the imidazoquinolines has led to the identification of several novel human TLR8-specific agonists. The synthetic procedures for best-in-class analogues encompassing four chemotypes are described.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Minnesota, 2-132, Cancer & Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Hari Prasad Kokatla
- Department of Medicinal Chemistry, University of Minnesota, 2-132, Cancer & Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Sunil A David
- Department of Medicinal Chemistry, University of Minnesota, 2-132, Cancer & Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
30
|
He Y, Zhao N, Qiu L, Zhang X, Fan X. Regio- and Chemoselective Mono- and Bisnitration of 8-Amino quinoline Amides with Fe(NO3)3·9H2O as Promoter and Nitro Source. Org Lett 2016; 18:6054-6057. [DOI: 10.1021/acs.orglett.6b02998] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yan He
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ningning Zhao
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Liqi Qiu
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
31
|
Pérez-Regidor L, Zarioh M, Ortega L, Martín-Santamaría S. Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators. Int J Mol Sci 2016; 17:ijms17091508. [PMID: 27618029 PMCID: PMC5037785 DOI: 10.3390/ijms17091508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
This review aims to summarize the latest efforts performed in the search for novel chemical entities such as Toll-like receptor (TLR) modulators by means of virtual screening techniques. This is an emergent research field with only very recent (and successful) contributions. Identification of drug-like molecules with potential therapeutic applications for the treatment of a variety of TLR-regulated diseases has attracted considerable interest due to the clinical potential. Additionally, the virtual screening databases and computational tools employed have been overviewed in a descriptive way, widening the scope for researchers interested in the field.
Collapse
Affiliation(s)
- Lucía Pérez-Regidor
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Malik Zarioh
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Laura Ortega
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Sonsoles Martín-Santamaría
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
32
|
Beesu M, Salyer ACD, Trautman KL, Hill JK, David SA. Human Toll-like Receptor (TLR) 8-Specific Agonistic Activity in Substituted Pyrimidine-2,4-diamines. J Med Chem 2016; 59:8082-93. [DOI: 10.1021/acs.jmedchem.6b00872] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mallesh Beesu
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alex C. D. Salyer
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kathryn L. Trautman
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Justin K. Hill
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sunil A. David
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Pitta E, Rogacki MK, Balabon O, Huss S, Cunningham F, Lopez-Roman EM, Joossens J, Augustyns K, Ballell L, Bates RH, Van der Veken P. Searching for New Leads for Tuberculosis: Design, Synthesis, and Biological Evaluation of Novel 2-Quinolin-4-yloxyacetamides. J Med Chem 2016; 59:6709-28. [DOI: 10.1021/acs.jmedchem.6b00245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eleni Pitta
- Medicinal
Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, B-2610 Wilrijk, Belgium
- Diseases
of the Developing World (DDW), Tres Cantos Medicines Development Campus
(TCMDC), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos Madrid, Spain
| | - Maciej K. Rogacki
- Medicinal
Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, B-2610 Wilrijk, Belgium
- Diseases
of the Developing World (DDW), Tres Cantos Medicines Development Campus
(TCMDC), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos Madrid, Spain
| | - Olga Balabon
- Medicinal
Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, B-2610 Wilrijk, Belgium
- Diseases
of the Developing World (DDW), Tres Cantos Medicines Development Campus
(TCMDC), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos Madrid, Spain
| | - Sophie Huss
- Diseases
of the Developing World (DDW), Tres Cantos Medicines Development Campus
(TCMDC), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos Madrid, Spain
| | - Fraser Cunningham
- Diseases
of the Developing World (DDW), Tres Cantos Medicines Development Campus
(TCMDC), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos Madrid, Spain
| | - Eva Maria Lopez-Roman
- Diseases
of the Developing World (DDW), Tres Cantos Medicines Development Campus
(TCMDC), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos Madrid, Spain
| | - Jurgen Joossens
- Medicinal
Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, B-2610 Wilrijk, Belgium
| | - Koen Augustyns
- Medicinal
Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, B-2610 Wilrijk, Belgium
| | - Lluis Ballell
- Diseases
of the Developing World (DDW), Tres Cantos Medicines Development Campus
(TCMDC), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos Madrid, Spain
| | - Robert H. Bates
- Diseases
of the Developing World (DDW), Tres Cantos Medicines Development Campus
(TCMDC), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos Madrid, Spain
| | - Pieter Van der Veken
- Medicinal
Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
34
|
Beesu M, Caruso G, Salyer ACD, Shukla NM, Khetani KK, Smith LJ, Fox LM, Tanji H, Ohto U, Shimizu T, David SA. Identification of a Human Toll-Like Receptor (TLR) 8-Specific Agonist and a Functional Pan-TLR Inhibitor in 2-Aminoimidazoles. J Med Chem 2016; 59:3311-30. [PMID: 26966993 DOI: 10.1021/acs.jmedchem.6b00023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of human toll-like receptor-8 (TLR8), expressed in myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells, evokes a distinct cytokine profile which favors the development of Type 1 helper T cells. Part-structures of the 2-aminobenzimidazole scaffold were examined with a view to identifying structural requisites corresponding to the smallest possible fragment of the benzimidazole core that would allow for retention of TLR8-agonistic activity. TLR8-specific agonistic activity was retained in 1-pentyl-4-phenyl-1H-imidazol-2-amine. The crystal structure of this compound bound to the TLR8 ectodomain displayed binding interactions that are common to other TLR8 agonists. This compound showed markedly attenuated proinflammatory properties in ex vivo human blood models. SAR studies revealed that 4-(2-(benzyloxy)phenyl)-1-pentyl-1H-imidazol-2-amine inhibited TLR signaling in a variety of TLR reporter cell lines, as well as in pharmacologically relevant human blood model systems. A kinase screen of this compound showed relative specificity for calmodulin kinases.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Giuseppe Caruso
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Alex C D Salyer
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Nijunj M Shukla
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karishma K Khetani
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Luke J Smith
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Lauren M Fox
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Sunil A David
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Salyer ACD, Caruso G, Khetani KK, Fox LM, Malladi SS, David SA. Identification of Adjuvantic Activity of Amphotericin B in a Novel, Multiplexed, Poly-TLR/NLR High-Throughput Screen. PLoS One 2016; 11:e0149848. [PMID: 26919709 PMCID: PMC4769227 DOI: 10.1371/journal.pone.0149848] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/05/2016] [Indexed: 01/26/2023] Open
Abstract
Small-molecule agonists have been identified for TLR7, TLR8, TLR4 and TLR2 thus far, and chemotypes other than those of canonical ligands are yet to be explored for a number of innate immune receptors. The discovery of novel immunostimulatory molecules would enhance the repertoire of tools available for interrogating innate immune effector mechanisms, and provide additional venues for vaccine adjuvant development. A multiplexed, reporter gene-based high-throughput assay capable of detecting agonists of TLR2, TLR3, TLR4, TLR5, TLR7, TLR8, TLR9, NOD1 and NOD2 was utilized in screening 123,943 compounds, in which amphotericin B (AmpB) and nystatin were identified as prominent hits. The polyene antifungal agents act as TLR2- and TLR4-agonists. The TLR4-stimulatory activity of AmpB was similar to that of monophosphoryl lipid A, suggestive of TRIF-biased signaling. The adjuvantic activity of AmpB, at a dose of 100 micrograms, was comparable to several other candidate adjuvants in rabbit models of immunization. These results point to its potential applicability as a safe and effective adjuvant for human vaccines.
Collapse
Affiliation(s)
- Alex C. D. Salyer
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States of America
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Giuseppe Caruso
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Karishma K. Khetani
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Lauren M. Fox
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Subbalakshmi S. Malladi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
36
|
Affiliation(s)
- Bakr F. Abdel-Wahab
- Faculty of Science, Shaqra University, Al-Dawadami, Saudi Arabia, and Applied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt
| |
Collapse
|
37
|
Beesu M, Caruso G, Salyer ACD, Khetani KK, Sil D, Weerasinghe M, Tanji H, Ohto U, Shimizu T, David SA. Structure-Based Design of Human TLR8-Specific Agonists with Augmented Potency and Adjuvanticity. J Med Chem 2015; 58:7833-49. [PMID: 26351878 PMCID: PMC4601487 DOI: 10.1021/acs.jmedchem.5b01087] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Human
Toll-like receptor 8 (hTLR8) is expressed in myeloid dendritic cells,
monocytes, and monocyte-derived dendritic cells. Engagement by TLR8
agonists evokes a distinct cytokine profile which favors the development
of type 1 helper T cells. Crystal structures of the ectodomain of
hTLR8 cocrystallized with two regioisomers of a dual TLR7/8-agonistic
N1-substituted imidazoquinolines showed subtle differences in their
interactions in the binding site of hTLR8. We hypothesized that the
potency of a previously reported best-in-class pure TLR8 agonist,
3-pentylquinoline-2-amine, could be further enhanced by “designing
in” functional groups that would mimic key intermolecular interactions
that we had observed in the crystal structures. We performed a focused
exploration of decorating the quinoline core with alkylamino groups
at all possible positions. These studies have led to the identification
of a novel TLR8 agonist that was ∼20-fold more potent than
the parent compound and displays prominent adjuvantic activity in
a rabbit model of immunization.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Giuseppe Caruso
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Alex C D Salyer
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Karishma K Khetani
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Diptesh Sil
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Mihiri Weerasinghe
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo 113-0033, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo 113-0033, Japan
| | - Sunil A David
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| |
Collapse
|
38
|
Pei F, Jin H, Zhou X, Xia J, Sun L, Liu Z, Zhang L. Enrichment assessment of multiple virtual screening strategies for Toll-like receptor 8 agonists based on a maximal unbiased benchmarking data set. Chem Biol Drug Des 2015; 86:1226-41. [PMID: 26017460 DOI: 10.1111/cbdd.12590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/29/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
Toll-like receptor 8 agonists, which activate adaptive immune responses by inducing robust production of T-helper 1-polarizing cytokines, are promising candidates for vaccine adjuvants. As the binding site of toll-like receptor 8 is large and highly flexible, virtual screening by individual method has inevitable limitations; thus, a comprehensive comparison of different methods may provide insights into seeking effective strategy for the discovery of novel toll-like receptor 8 agonists. In this study, the performance of knowledge-based pharmacophore, shape-based 3D screening, and combined strategies was assessed against a maximum unbiased benchmarking data set containing 13 actives and 1302 decoys specialized for toll-like receptor 8 agonists. Prior structure-activity relationship knowledge was involved in knowledge-based pharmacophore generation, and a set of antagonists was innovatively used to verify the selectivity of the selected knowledge-based pharmacophore. The benchmarking data set was generated from our recently developed 'mubd-decoymaker' protocol. The enrichment assessment demonstrated a considerable performance through our selected three-layer virtual screening strategy: knowledge-based pharmacophore (Phar1) screening, shape-based 3D similarity search (Q4_combo), and then a Gold docking screening. This virtual screening strategy could be further employed to perform large-scale database screening and to discover novel toll-like receptor 8 agonists.
Collapse
Affiliation(s)
- Fen Pei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Xin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Jie Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China.,Molecular Modeling and Drug Discovery Core for District of Columbia Developmental Center for AIDS Research (DC D-CFAR), Laboratory of Cheminfomatics and Drug Design, Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC, 20059, USA
| | - Lidan Sun
- The Institute of Molecular Biology, Medical School of China Three Gorges University, 8 Daxue Road, Yichang, 443002, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| |
Collapse
|
39
|
Chen X, Wu Y, Xu J, Yao H, Lin A, Huang Y. Rh(iii)-catalyzed cyclization reaction of azoles with alkynes: efficient synthesis of azole-fused-pyridines. Org Biomol Chem 2015; 13:9186-9. [DOI: 10.1039/c5ob01338k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(iii)-catalyzed cyclization of azoles with alkynes has been developed to construct azole-fused-pyridines in good to excellent yields.
Collapse
Affiliation(s)
- Xuebing Chen
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Youzhi Wu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Yue Huang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P. R. China
- Department of Organic Chemistry
| |
Collapse
|
40
|
Yoo E, Salunke D, Sil D, Guo X, Salyer ACD, Hermanson AR, Kumar M, Malladi SS, Balakrishna R, Thompson W, Tanji H, Ohto U, Shimizu T, David SA. Determinants of activity at human Toll-like receptors 7 and 8: quantitative structure-activity relationship (QSAR) of diverse heterocyclic scaffolds. J Med Chem 2014; 57:7955-70. [PMID: 25192394 PMCID: PMC4191598 DOI: 10.1021/jm500744f] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toll-like receptor (TLR) 7 and 8 agonists are potential vaccine adjuvants, since they directly activate APCs and enhance Th1-driven immune responses. Previous SAR investigations in several scaffolds of small molecule TLR7/8 activators pointed to the strict dependence of the selectivity for TLR7 vis-à-vis TLR8 on the electronic configurations of the heterocyclic systems, which we sought to examine quantitatively with the goal of developing "heuristics" to define structural requisites governing activity at TLR7 and/or TLR8. We undertook a scaffold-hopping approach, entailing the syntheses and biological evaluations of 13 different chemotypes. Crystal structures of TLR8 in complex with the two most active compounds confirmed important binding interactions playing a key role in ligand occupancy and biological activity. Density functional theory based quantum chemical calculations on these compounds followed by linear discriminant analyses permitted the classification of inactive, TLR8-active, and TLR7/8 dual-active compounds, confirming the critical role of partial charges in determining biological activity.
Collapse
Affiliation(s)
- Euna Yoo
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States
| | - Deepak
B. Salunke
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States
| | - Diptesh Sil
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States
| | - Xiaoqiang Guo
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States
| | - Alex C. D. Salyer
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States
| | - Alec R. Hermanson
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States
| | - Manoj Kumar
- Department
of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, United States
| | - Subbalakshmi S. Malladi
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States
| | - Rajalakshmi Balakrishna
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States
| | - Ward
H. Thompson
- Department
of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, United States
| | - Hiromi Tanji
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Umeharu Ohto
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sunil A. David
- Department
of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, Kansas 66047, United
States,Phone: 785-864-1610. Fax: 785-864-1961. E-mail:
| |
Collapse
|
41
|
Beesu M, Malladi SS, Fox LM, Jones CD, Dixit A, David SA. Human Toll-like receptor 8-selective agonistic activities in 1-alkyl-1H-benzimidazol-2-amines. J Med Chem 2014; 57:7325-41. [PMID: 25102141 PMCID: PMC4161153 DOI: 10.1021/jm500701q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Toll-like
receptor (TLR)-8 agonists strongly induce the production
of T helper 1-polarizing cytokines and may therefore serve as promising
candidate vaccine adjuvants, especially for the very young and the
elderly. Earlier structure-based ligand design led to the identification
of 3-pentyl-quinoline-2-amine as a novel, human TLR8-specific agonist.
Comprehensive structure–activity relationships in ring-contracted
1-alkyl-1H-benzimidazol-2-amines were undertaken,
and the best-in-class compound, 4-methyl-1-pentyl-1H-benzo[d]imidazol-2-amine, was found to be a pure
TLR8 agonist, evoking strong proinflammatory cytokine and Type II
interferon responses in human PBMCs, with no attendant CD69 upregulation
in natural lymphocytic subsets. The 1-alkyl-1H-benzimidazol-2-amines
represent a novel, alternate chemotype with pure TLR8-agonistic activities
and will likely prove useful not only in understanding TLR8 signaling
but also perhaps as a candidate vaccine adjuvant.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | | | | | | | | | | |
Collapse
|
42
|
Deng F, Ma S, Xie M, Zhang X, Li P, Zhai H. Study on the agonists for the human Toll-like receptor-8 by molecular modeling. MOLECULAR BIOSYSTEMS 2014; 10:2202-14. [DOI: 10.1039/c4mb00183d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Mancini RJ, Stutts L, Ryu KA, Tom JK, Esser-Kahn AP. Directing the immune system with chemical compounds. ACS Chem Biol 2014; 9:1075-85. [PMID: 24690004 PMCID: PMC5674983 DOI: 10.1021/cb500079s] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonists of immune cell receptors direct innate and adaptive immunity. These agonists range in size and complexity from small molecules to large macromolecules. Here, agonists of a class of immune cell receptors known as the Toll-like receptors (TLRs) are highlighted focusing on the distinctive molecular moieties that pertain to receptor binding and activation. How the structure and combined chemical signals translate into a variety of immune responses remain major questions in the field. In this structure-focused review, we outline potential areas where the tools of chemical biology could help decipher the emerging molecular codes that direct immune stimulation.
Collapse
Affiliation(s)
- Rock J Mancini
- Department of Chemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California Irvine , 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | | | | | | | | |
Collapse
|
44
|
Kokatla HP, Sil D, Tanji H, Ohto U, Malladi SS, Fox LM, Shimizu T, David SA. Structure-based design of novel human Toll-like receptor 8 agonists. ChemMedChem 2014; 9:719-23. [PMID: 24474703 PMCID: PMC4105021 DOI: 10.1002/cmdc.201300573] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/12/2022]
Abstract
Toll-like receptor (TLR)-8 agonists activate adaptive immune responses by inducing robust production of T helper 1-polarizing cytokines, suggesting that TLR8-active compounds might be promising candidate vaccine adjuvants. Recently, a C2-butyl furo[2,3-c]quinoline was reported with purely TLR8 agonistic activity. This compound was successfully co-crystallized with the human TLR8 ectodomain, and the co-crystal structure revealed ligand-induced reorganization of the binding pocket of TLR8. The loss of a key hydrogen bond between the oxygen atom of the furanyl ring of the agonist and Thr 574 in TLR8 suggested that the furan ring is dispensable. Employing a disconnection strategy, 3- and 4-substituted aminoquinolines were investigated. Focused structure-based ligand design studies led to the identification of 3-pentyl-quinoline-2-amine as a novel, structurally simple, and highly potent human TLR8-specific agonist (EC50 =0.2 μM). Preliminary evaluation of this compound in ex vivo human blood assay systems revealed that it retains prominent cytokine-inducing activity. Together, these results indicate the suitability of this compound as a novel vaccine adjuvant, warranting further investigation.
Collapse
Affiliation(s)
- Hari Prasad Kokatla
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence KS 66047, USA
| | - Diptesh Sil
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence KS 66047, USA
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and CREST, JST., Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and CREST, JST., Japan
| | - Subbalakshmi S. Malladi
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence KS 66047, USA
| | - Lauren M. Fox
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence KS 66047, USA
| | - Toshiyoki Shimizu
- Graduate School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and CREST, JST., Japan
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence KS 66047, USA
| |
Collapse
|
45
|
Kokatla HP, Sil D, Malladi SS, Balakrishna R, Hermanson AR, Fox LM, Wang X, Dixit A, David SA. Exquisite selectivity for human toll-like receptor 8 in substituted furo[2,3-c]quinolines. J Med Chem 2013; 56:6871-85. [PMID: 23899291 DOI: 10.1021/jm400694d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptor (TLR)-8 agonists activate adaptive immune responses by inducing robust production of T helper 1-polarizing cytokines, suggesting that TLR8-active compounds may be promising candidate adjuvants. We synthesized and evaluated hitherto unexplored furo[2,3-c]quinolines and regioisomeric furo[3,2-c]quinolines derived via a tandem, one-pot Sonogashira coupling and intramolecular 5-endo-dig cyclization strategy in a panel of primary screens. We observed a pure TLR8-agonistic activity profile in select furo[2,3-c]quinolines, with maximal potency conferred by a C2-butyl group (EC50 = 1.6 μM); shorter, longer, or substituted homologues as well as compounds bearing C1 substitutions were inactive, which was rationalized by docking studies using the recently described crystal structure of human TLR8. The best-in-class compound displayed prominent proinflammatory cytokine induction (including interleukin-12 and interleukin-18), but was bereft of interferon-α inducing properties, confirming its high selectivity for human TLR8.
Collapse
Affiliation(s)
- Hari Prasad Kokatla
- Department of Medicinal Chemistry and ‡Genomics Facility, University of Kansas , Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yoo E, Crall BM, Balakrishna R, Malladi SS, Fox LM, Hermanson AR, David SA. Structure–activity relationships in Toll-like receptor 7 agonistic 1H-imidazo[4,5-c]pyridines. Org Biomol Chem 2013; 11:6526-45. [DOI: 10.1039/c3ob40816g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|