1
|
Yan B, Lv Z, Chen S, Xiang L, Gong L, Xiang J, Fan H, Zeng H. Probing Anion - π interactions between fluoroarene and carboxylate anion in aqueous solutions. J Colloid Interface Sci 2022; 615:778-785. [PMID: 35176544 DOI: 10.1016/j.jcis.2022.01.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Despite the much progress in developing π-conjugated fluoroarene moieties based functional materials in which anion - π interactions are commonly involved, it remains challenging to quantitatively characterize the nanomechanical interaction mechanism of these anion - π systems, particularly in aqueous solutions. In this study, we reported the first experimental quantification of the nanomechanics of anion - π interactions between π-conjugated fluoroarene moieties and carboxylate anions in aqueous solutions through direct molecular force measurements, with a special focus on the impact of the anion species, concentration and of the substitution effect of aromatic side group. The results using surface forces apparatus (SFA) and single-molecule force spectroscopy (SMFS) provide complementary evidences to demonstrate that the robust and reversible adhesion measured between the fluoroarene π systems and carboxylate anions was mainly attributed to anion - π interaction. Moreover, their nanomechanical properties were also systematically scrutinized, with the interaction strength being found to be significantly determined by the contact time, the type of fluoroarene systems (PFST > DFST) and the type of anions and ion concentration (HPO42- > CO32- > I- > Cl- ≈ NO3- > F-).
Collapse
Affiliation(s)
- Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zezhong Lv
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jun Xiang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Haojun Fan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
2
|
Hansen KA, Chambers LC, Eing M, Barner-Kowollik C, Fairfull-Smith KE, Blinco JP. A Methoxyamine-Protecting Group for Organic Radical Battery Materials-An Alternative Approach. CHEMSUSCHEM 2020; 13:2386-2393. [PMID: 32202387 DOI: 10.1002/cssc.201903529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/16/2020] [Indexed: 06/10/2023]
Abstract
An alternative synthetic route towards the widely employed electroactive poly(TEMPO methacrylate) (PTMA) via a thermally robust methoxyamine-protecting group is demonstrated herein. Protection of the radical moiety of hydroxy-TEMPO with a methyl functionality and subsequent esterification with methacrylic anhydride allows the high-yielding formation of the novel monomer methyl-TEMPO methacrylate (MTMA). The polymerization of MTMA to poly(MTMA) (PMTMA) is investigated via free radical polymerization and reversible addition-fragmentation chain-transfer polymerization (RAFT), a reversible-deactivation radical polymerization technique. Cleavage of the temperature-stable methoxyamine functionality by oxidative treatment of PMTMA with meta-chloroperbenzoic acid (mCPBA) releases the electroactive PTMA. The redox activity of PTMA was confirmed by cyclic voltammetry in lithium-ion coin cells.
Collapse
Affiliation(s)
- Kai-Anders Hansen
- Soft Matter Materials Laboratory, Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Lewis C Chambers
- Soft Matter Materials Laboratory, Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Matthias Eing
- Soft Matter Materials Laboratory, Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Soft Matter Materials Laboratory, Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Kathryn E Fairfull-Smith
- Soft Matter Materials Laboratory, Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - James P Blinco
- Soft Matter Materials Laboratory, Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
3
|
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angew Chem Int Ed Engl 2020; 59:4294-4298. [DOI: 10.1002/anie.201913430] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Ayuko Tsuruoka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Akira Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
4
|
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayuko Tsuruoka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Akira Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
5
|
Zhao X, Wang N, Chen H, Bai L, Xu H, Wang W, Yang H, Wei D, Yang L, Cheng Z. Preparation of a novel sandwich-type electrochemical immunosensor for AFP detection based on an ATRP and click chemistry technique. Polym Chem 2020. [DOI: 10.1039/c9py01279f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is extremely important to explore the synthesis methodology and application scope of functional polymer brush-based nanocomposites.
Collapse
|
6
|
Goldmann AS, Boase NRB, Michalek L, Blinco JP, Welle A, Barner-Kowollik C. Adaptable and Reprogrammable Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902665. [PMID: 31414512 DOI: 10.1002/adma.201902665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Establishing control over chemical reactions on interfaces is a key challenge in contemporary surface and materials science, in particular when introducing well-defined functionalities in a reversible fashion. Reprogrammable, adaptable and functional interfaces require sophisticated chemistries to precisely equip them with specific functionalities having tailored properties. In the last decade, reversible chemistries-both covalent and noncovalent-have paved the way to precision functionalize 2 or 3D structures that provide both spatial and temporal control. A critical literature assessment reveals that methodologies for writing and erasing substrates exist, yet are still far from reaching their full potential. It is thus critical to assess the current status and to identify avenues to overcome the existing limitations. Herein, the current state-of-the-art in the field of reversible chemistry on surfaces is surveyed, while concomitantly identifying the challenges-not only synthetic but also in current surface characterization methods. The potential within reversible chemistry on surfaces to function as true writeable memories devices is identified, and the latest developments in readout technologies are discussed. Finally, we explore how spatial and temporal control over reversible, light-induced chemistries has the potential to drive the future of functional interface design, especially when combined with powerful laser lithographic applications.
Collapse
Affiliation(s)
- Anja S Goldmann
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Nathan R B Boase
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Lukas Michalek
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - James P Blinco
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Alexander Welle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
7
|
Laun J, Marchal W, Trouillet V, Welle A, Hardy A, Van Bael MK, Barner-Kowollik C, Junkers T. Reversible Surface Engineering via Nitrone-Mediated Radical Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3244-3255. [PMID: 29457981 DOI: 10.1021/acs.langmuir.7b03167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Efficient and simple polymer conjugation reactions are critical for introducing functionalities on surfaces. For polymer surface grafting, postpolymerization modifications are often required, which can impose a significant synthetic hurdle. Here, we report two strategies that allow for reversible surface engineering via nitrone-mediated radical coupling (NMRC). Macroradicals stemming from the activation of polymers generated by copper-mediated radical polymerization are grafted via radical trapping with a surface-immobilized nitrone or a solution-borne nitrone. Since the product of NMRC coupling features an alkoxyamine linker, the grafting reactions can be reversed or chain insertions can be performed via nitroxide-mediated polymerization (NMP). Poly( n-butyl acrylate) ( Mn = 1570 g·mol-1, D̵ = 1.12) with a bromine terminus was reversibly grafted to planar silicon substrates or silica nanoparticles as successfully evidenced via X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry, and grazing angle attenuated total reflection Fourier-transform infrared spectroscopy (GAATR-FTIR). NMP chain insertions of styrene are evidenced via GAATR-FTIR. On silica nanoparticles, an NMRC grafting density of close to 0.21 chains per nm2 was determined by dynamic light scattering and thermogravimetric analysis. Concomitantly, a simple way to decorate particles with nitroxide radicals with precise control over the radical concentration is introduced. Silica microparticles and zinc oxide, barium titanate, and silicon nanoparticles were successfully functionalized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering , Queensland University of Technology (QUT) , 2 George Street , QLD 4000 , Brisbane , Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie , Karlsruhe Institute of Technology (KIT) , Engesserstraße 18 , 76128 Karlsruhe , Germany
| | | |
Collapse
|
8
|
Reorganizable and stimuli-responsive polymers based on dynamic carbon–carbon linkages in diarylbibenzofuranones. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Lerond M, Bélanger D, Skene WG. Surface immobilized azomethine for multiple component exchange. SOFT MATTER 2017; 13:6639-6646. [PMID: 28926070 DOI: 10.1039/c7sm01456b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diazonium chemistry concomitant with in situ electrochemical reduction was used to graft an aryl aldehyde to indium-tin oxide (ITO) coated glass substrates. This served as an anchor for preparing electroactive azomethines that were covalently bonded to the transparent electrode. The immobilized azomethines could undergo multiple step-wise component exchanges with different arylamines. The write-erase-write sequences were electrochemically confirmed. The azomethines could also be reversibly hydrolyzed. This was exploited for multiple azomethine-hydrolysis cycles resulting in discrete electroactive immobilized azomethines. The erase-rewrite sequences were also electrochemically confirmed.
Collapse
Affiliation(s)
- Michael Lerond
- Laboratoire de caractérisation photophysique des matériaux conjugués, Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | | | | |
Collapse
|
10
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
García F, Smulders MMJ. Dynamic covalent polymers. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2016; 54:3551-3577. [PMID: 27917019 PMCID: PMC5129565 DOI: 10.1002/pola.28260] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
Abstract
This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer-based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli-responsive or self-healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3551-3577.
Collapse
Affiliation(s)
- Fátima García
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708 WE WageningenThe Netherlands
| | - Maarten M. J. Smulders
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708 WE WageningenThe Netherlands
| |
Collapse
|
12
|
Yoneyama R, Sato T, Imato K, Kosuge T, Ohishi T, Higaki Y, Takahara A, Otsuka H. Autonomously Substitutable Organosilane Thin Films Based on Dynamic Covalent Diarylbibenzofuranone Units. CHEM LETT 2016. [DOI: 10.1246/cl.150917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Tomoya Sato
- Graduate School of Engineering, Kyushu University
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Keiichi Imato
- Graduate School of Engineering, Kyushu University
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Takahiro Kosuge
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Tomoyuki Ohishi
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Yuji Higaki
- Graduate School of Engineering, Kyushu University
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Atsushi Takahara
- Graduate School of Engineering, Kyushu University
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Hideyuki Otsuka
- Graduate School of Engineering, Kyushu University
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
13
|
Zhou Y, Li L, Ye H, Zhang L, You L. Quantitative Reactivity Scales for Dynamic Covalent and Systems Chemistry. J Am Chem Soc 2015; 138:381-9. [DOI: 10.1021/jacs.5b11361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuntao Zhou
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Lijie Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hebo Ye
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Ling Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Lei You
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
14
|
Sato T, Ohishi T, Higaki Y, Takahara A, Otsuka H. Radical crossover reactions of alkoxyamine-based dynamic covalent polymer brushes on nanoparticles and the effect on their dispersibility. Polym J 2015. [DOI: 10.1038/pj.2015.94] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
SATO T, AKAMINE K, TAKAHARA A, OTSUKA H. Macromolecular Design of Alkoxyamine-Containing Radically Reactive Polymers Based on Dynamic Covalent Chemistry. KOBUNSHI RONBUNSHU 2015. [DOI: 10.1295/koron.2015-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomoya SATO
- Graduate School of Engineering, Kyushu University
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | | | - Atsushi TAKAHARA
- Institute for Materials Chemistry and Engineering, Kyushu University
- Graduate School of Engineering, Kyushu University
| | - Hideyuki OTSUKA
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| |
Collapse
|
16
|
Su J, Imato K, Sato T, Ohishi T, Takahara A, Otsuka H. Plasticizer-Promoted Thermal Crosslinking of a Dynamic Covalent Polymer with Complementarily Reactive Alkoxyamine Units in the Side Chain under Bulk Conditions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20140147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jing Su
- Graduate School of Engineering, Kyushu University
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Keiichi Imato
- Graduate School of Engineering, Kyushu University
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Tomoya Sato
- Graduate School of Engineering, Kyushu University
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Tomoyuki Ohishi
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Atsushi Takahara
- Graduate School of Engineering, Kyushu University
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Hideyuki Otsuka
- Graduate School of Engineering, Kyushu University
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| |
Collapse
|
17
|
Sato T, Amamoto Y, Ohishi T, Higaki Y, Takahara A, Otsuka H. Radical crossover reactions of a dynamic covalent polymer brush for reversible hydrophilicity control. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Su J, Amamoto Y, Sato T, Kume M, Inada T, Ohishi T, Higaki Y, Takahara A, Otsuka H. Reversible cross-linking reactions of alkoxyamine-appended polymers under bulk conditions for transition between flow and rubber-like states. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.01.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Wang G, Huang J. Versatility of radical coupling in construction of topological polymers. Polym Chem 2014. [DOI: 10.1039/c3py00872j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Wang X, Wang L, Yang S, Zhao H, Liu L. Multi-responsive protein nanocarriers from an anionic dynamic covalent copolymer. Polym Chem 2014. [DOI: 10.1039/c4py00117f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PIC micelles were formed through electrostatic interactions between the anionic dynamer and lysozyme, and the micelles possessed pH-, salt-, and enzyme-responsive features.
Collapse
Affiliation(s)
- Xiaobei Wang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Lin Wang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Shixia Yang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
21
|
Otsuka H. Reorganization of polymer structures based on dynamic covalent chemistry: polymer reactions by dynamic covalent exchanges of alkoxyamine units. Polym J 2013. [DOI: 10.1038/pj.2013.17] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Jin J, Liu J, Lian X, Sun P, Zhao H. Dynamic polymer brushes on the surface of silica particles. RSC Adv 2013. [DOI: 10.1039/c3ra40227d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|