1
|
Landrini M, Patel R, Tyrrell-Thrower J, Macchioni A, Hughes DL, Tensi L, Hrobárik P, Rocchigiani L. Exploring Ligand Effects on Structure, Bonding, and Photolytic Hydride Transfer of Cationic Gold(I) Bridging Hydride Complexes of Molybdocene and Tungstenocene. Inorg Chem 2024; 63:13525-13545. [PMID: 38989543 DOI: 10.1021/acs.inorgchem.4c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A diverse family of heterobimetallic bridging hydride adducts of the type [LAu(μ-H)2MCp2][X] (L = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene, IPr; 1,3-bis(1-adamantyl)imidazole-2-ylidene, IAd; 1,3-bis(2,6-di-iso-propylphenyl)-5,5-dimethyl-4,6-diketopyrimidinyl-2-ylidene, DippDAC; triphenylphosphine, PPh3; 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl, tBuXPhos; X = SbF6-, BF4- or TfO-) was synthesized by reacting group VI metallocene dihydrides Cp2MH2 (Cp = cyclopentadienyl anion; M = Mo, W) with cationic gold(I) complexes [LAu(NCMe)][X]. Trimetallic [L'Au2(μ-H)2WCp2][X]2 and tetrametallic [L'Au2{(μ-H)2WCp2}2] [X]2 complexes (L' = rac-2,2'-bis(diphenylphosphino)-1,1'-binaphthalene or bis(diphenylphosphinomethane)) were obtained by reacting digold [L'{Au(NCMe)}2][X]2 with Cp2WH2 in a 1:1 and a 1:2 stoichiometry. Accessing such a broad structural diversity allowed us to pinpoint roles played by the ancillary ligands and group VI metals on the bonding properties of this family of bridging hydrides. In particular, a clear effect of the ligand on the interaction energy and electronic structure was observed, with important implications on photolytic reactivity. UV or visible light irradiation, indeed, leads to the selective cleavage of the heterobimetallic Au(μ-H)2M arrangement and formation of molecular gold hydrides. The photolysis was found to be chromoselective (wavelength-dependent), which can be ascribed to different charge redistributions upon excitation to the first (Kasha's reactivity) and higher (anti-Kasha's reactivity) excited states.
Collapse
Affiliation(s)
- Martina Landrini
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Rohan Patel
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Joshua Tyrrell-Thrower
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Luca Rocchigiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| |
Collapse
|
2
|
Coles SJ, McCormick McPherson LJ, Platt AWG, Singh K. Solid State and Solution Structures of Lanthanide Nitrate Complexes of Tris-(1-napthylphosphine oxide). Molecules 2024; 29:2580. [PMID: 38893455 PMCID: PMC11173986 DOI: 10.3390/molecules29112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Coordination complexes of lanthanide metals with tris-1-naphthylphosphine oxide (Nap3PO, L) have not been previously reported in the literature. We describe here the formation of lanthanide(III) nitrate complexes Ln(NO3)3L4 (Ln = Eu to Lu) and the structures of [Ln(NO3)3L2]·2L (Ln = Eu, Dy, Ho, Er) and L. The core structure of the complexes is an eight-coordinate [Ln(NO3)3L2] with the third and fourth ligands H-bonded via their oxygen atoms to one of the naphthyl rings. The structures are compared with those of the analogous complexes of triphenylphosphine oxide and show that the Ln-O(P) bond in the Nap3PO complexes is slightly longer than expected on the basis of differences in coordination numbers. The reaction solutions, investigated by 31P and 13C NMR spectroscopy in CD3CN, show that coordination of L occurs across the lanthanide series, even though complexes can only be isolated from Eu onwards. Analysis of the 31P NMR paramagnetic shifts shows that there is a break in the solution structures with a difference between the lighter lanthanides (La-Eu) and heavier metals (Tb-Lu) which implies a minor difference in structures. The isolated complexes are very poorly soluble, but in CDCl3, NMR measurements show dissociation into [Ln(NO3)3L2] and 2L occurs.
Collapse
Affiliation(s)
- Simon J. Coles
- UK National Crystallography Service, Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (S.J.C.); (L.J.M.M.)
| | - Laura J. McCormick McPherson
- UK National Crystallography Service, Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (S.J.C.); (L.J.M.M.)
| | - Andrew W. G. Platt
- School of Health, Education, Policing and Sciences, Staffordshire University, Science Centre, Stoke-on-Trent ST4 2DF, UK
| | - Kuldip Singh
- Chemistry Department, The University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
3
|
Alkhaibari I, Zhang X, Zhao J, Stonelake TM, Knighton RC, Horton PN, Coles SJ, Buurma NJ, Richards E, Pope SJA. Tuning Excited State Character in Iridium(III) Photosensitizers and Its Influence on TTA-UC. Inorg Chem 2024; 63:9931-9940. [PMID: 38738860 PMCID: PMC11134496 DOI: 10.1021/acs.inorgchem.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 μs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.
Collapse
Affiliation(s)
- Ibrahim
S. Alkhaibari
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
- Department
of Chemistry, College of Science, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Xue Zhang
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Thomas M. Stonelake
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Richard C. Knighton
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Peter N. Horton
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Niklaas J. Buurma
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Emma Richards
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Simon J. A. Pope
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| |
Collapse
|
4
|
Payce EN, Knighton RC, Platts JA, Horton PN, Coles SJ, Pope SJA. Luminescent Pt(II) Complexes Using Unsymmetrical Bis(2-pyridylimino)isoindolate Analogues. Inorg Chem 2024; 63:8273-8285. [PMID: 38656154 PMCID: PMC11080048 DOI: 10.1021/acs.inorgchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
A series of ligands based upon a 1,3-diimino-isoindoline framework have been synthesized and investigated as pincer-type (N∧N∧N) chelates for Pt(II). The synthetic route allows different combinations of heterocyclic moieties (including pyridyl, thiazole, and isoquinoline) to yield new unsymmetrical ligands. Pt(L1-6)Cl complexes were obtained and characterized using a range of spectroscopic and analytical techniques: 1H and 13C NMR, IR, UV-vis and luminescence spectroscopies, elemental analyses, high-resolution mass spectrometry, electrochemistry, and one example via X-ray crystallography which showed a distorted square planar environment at Pt(II). Cyclic voltammetry on the complexes showed one irreversible oxidation between +0.75 and +1 V (attributed to Pt2+/3+ couple) and a number of ligand-based reductions; in four complexes, two fully reversible reductions were noted between -1.4 and -1.9 V. Photophysical studies showed that Pt(L1-6)Cl absorbs efficiently in the visible region through a combination of ligand-based bands and metal-to-ligand charge-transfer features at 400-550 nm, with assignments supported by DFT calculations. Excitation at 500 nm led to luminescence (studied in both solutions and solid state) in all cases with different combinations of the heterocyclic donors providing tuning of the emission wavelength around 550-678 nm.
Collapse
Affiliation(s)
- Ellie N Payce
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Richard C Knighton
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - James A Platts
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| |
Collapse
|
5
|
Stokes EC, Shoetan IO, Gillman AM, Horton PN, Coles SJ, Woodbury SE, Fallis IA, Pope SJA. Alkyl chain functionalised Ir(iii) complexes: synthesis, properties and behaviour as emissive dopants in microemulsions. RSC Adv 2024; 14:6987-6997. [PMID: 38414995 PMCID: PMC10897649 DOI: 10.1039/d3ra06764e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Six iridium(iii) complexes of the general form [Ir(C^N)2(N^N)]X (where C^N = cyclometalating ligand; N^N = disubstituted 2,2'-bipyridine), and incorporating alkyl chains of differing lengths (C8, C10, C12), have been synthesised and characterised. The complexes have been characterised using a variety of methods including spectroscopies (NMR, IR, UV-Vis, luminescence) and analytical techniques (high resolution mass spectrometry, cyclic voltammetry, X-ray diffraction). Two dodecyl-functionalised complexes were studied for their behaviour in aqueous solutions. Although the complexes did not possess sufficient solubility to determine their critical micelle concentrations (CMC) in water, they were amenable for use as emissive dopants in a N-methyl C12 substituted imidazolium salt microemulsion carrier system with a CMC = 36.5 mM. The investigation showed that the metal doped microemulsions had increased CMCs of 40.4 and 51.3 mM and luminescent properties characterised by the dopant.
Collapse
Affiliation(s)
- Emily C Stokes
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Ibrahim O Shoetan
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Alice M Gillman
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Peter N Horton
- Chemistry, UK National Crystallographic Service, Faculty of Natural and Environmental Sciences, University of Southampton Highfield Southampton SO17 1BJ England UK
| | - Simon J Coles
- Chemistry, UK National Crystallographic Service, Faculty of Natural and Environmental Sciences, University of Southampton Highfield Southampton SO17 1BJ England UK
| | - Simon E Woodbury
- National Nuclear Laboratory, Central Laboratory Sellafield, Seascale Cumbria CA20 1PG UK
| | - Ian A Fallis
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Simon J A Pope
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| |
Collapse
|
6
|
Yang G, Liu KY, Cao JY, Yu JY, Sun DL, Wang CZ, Zhao WX, Elsegood MRJ, Teat SJ, Zhu CC, Yamato T. A comparative study on optical properties of pyrene-fused [4]helicenes and vinyl precursors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123529. [PMID: 37864978 DOI: 10.1016/j.saa.2023.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Polycyclic aromatic hydrocarbon-fused [n]helicene derivatives (PAH-fused [n]helicenes) have been widely investigated due to their excellent photoelectric and chiroptical properties. Herein, a series of pyrene-fused helicenes were synthesized by a photocyclization reaction and characterized by 1H/13C NMR spectroscopy and single crystal X-ray diffraction. All compounds and their vinyl precursors were studied as emitting materials. The experimental results reveal that these compounds possess reasonable emission efficiency (ΦFL = 97% for 3a) and tunable optical properties, and a wide emission band from bluish violet for 3c (401 nm) to green-yellow for 4c (530 nm) was observed. The detailed investigation indicated that an efficient, structure-controlled strategy was established to develop pyrene-based [n]helicene materials.
Collapse
Affiliation(s)
- Guang Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Kai-Yue Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Jing-Yi Cao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Jia-Ying Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - De-Li Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Chuan-Zeng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China; Department of Applied Chemistry, Faculty of Science and Engineering, Saga University Honjo-machi 1, Saga 840-8502, Japan
| | - Wen-Xuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Mark R J Elsegood
- Chemistry Department, Loughborough University, Loughborough LE11 3TU, UK
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Cheng-Chen Zhu
- Xinfa Pharmaceutical Co., Ltd, Dongying City 257500, PR China
| | - Takehiko Yamato
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University Honjo-machi 1, Saga 840-8502, Japan
| |
Collapse
|
7
|
Grantham H, Lee RJ, Wardas GM, Mistry JR, Elsegood MRJ, Wright IA, Pritchard GJ, Kimber MC. Transition-Metal-Free Continuous-Flow Synthesis of 2,5-Diaryl Furans: Access to Medicinal Building Blocks and Optoelectronic Materials. J Org Chem 2024; 89:484-497. [PMID: 38143311 PMCID: PMC10777415 DOI: 10.1021/acs.joc.3c02237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
The direct transformation of 1,3-dienes into valuable 2,5-diarylfurans using transition-metal-free conditions is presented. By employing a simple oxidation─dehydration sequence on readily accessible 1,3-dienes, important 2,5-diarylfuran building blocks frequently used in medicinal and material chemistry are prepared. The oxidation step is realized using singlet oxygen, and the intermediate endoperoxide is dehydrated under metal-free conditions and at ambient temperature using the Appel reagent. Notably, this sequence can be streamlined into continuous flow, thereby eliminating the isolation of the intermediate, often unstable endoperoxide. This leads to a significant improvement in isolated yields (ca. 27% average increase) of the 2,5-diarylfurans while also increasing safety and reducing waste. Our transition-metal-free synthetic approach to 2,5-diarylfurans delivers several important furan building blocks used commonly in medicinal chemistry and as optoelectronic materials, including short-chain linearly conjugated furan oligomers. Consequently, we also complete a short study of the optical and electrochemical properties of a selection of these novel materials.
Collapse
Affiliation(s)
- Helena
F. Grantham
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Robert J. Lee
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Grzegorz M. Wardas
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Jai-Ram Mistry
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Mark R. J. Elsegood
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Iain A. Wright
- The
School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, U.K.
| | - Gareth J. Pritchard
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Marc C. Kimber
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| |
Collapse
|
8
|
Fitzgerald SA, Payce EN, Horton PN, Coles SJ, Pope SJA. 2-(Thienyl)quinoxaline derivatives and their application in Ir(III) complexes yielding tuneable deep red emitters. Dalton Trans 2023; 52:16480-16491. [PMID: 37874197 DOI: 10.1039/d3dt02193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The synthesis and characterisation of eleven different 2-(thienyl)quinoxaline species that incorporate different points of functionality, including at the thiophene or quinoxaline rings, are described. These species display variable fluorescence properties in the visible region (λem = 401-491 nm) depending upon the molecular structures and extent of conjugation. The series of 2-(thienyl)quinoxaline species were then investigated as cyclometalating agents for Ir(III) to yield [Ir(C^N)2(bipy)]PF6 (where C^N = the cyclometalated ligand; bipy = 2,2'-bipyridine). Eight complexes were successfully isolated and fully characterised by an array of spectroscopic and analytical techniques. Two Ir(III) examples were structurally characterised in the solid state using single crystal X-ray diffraction; both structures confirmed the proposed formulations and coordination spheres in each case showing that the thiophene coordinates via a Ir-C bond. The photophysical properties of the complexes revealed that each complex is luminescent under ambient conditions with a range of emission wavelengths observed (665-751 nm) indicating that electronic tuning can be achieved via both the thienyl and quinoxaline moieties.
Collapse
Affiliation(s)
- Sophie A Fitzgerald
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| | - Ellie N Payce
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
9
|
McGown A, Nafie J, Otayfah M, Hassell-Hart S, Tizzard GJ, Coles SJ, Banks R, Marsh GP, Maple HJ, Kostakis GE, Proietti Silvestri I, Colbon P, Spencer J. Chirality: a key parameter in chemical probes. RSC Chem Biol 2023; 4:716-721. [PMID: 37799583 PMCID: PMC10549247 DOI: 10.1039/d3cb00082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023] Open
Abstract
Many small molecule bioactive and marketed drugs are chiral. They are often synthesised from commercially available chiral building blocks. However, chirality is sometimes incorrectly assigned by manufacturers with consequences for the end user ranging from: experimental irreproducibility, wasted time on synthesising the wrong product and reanalysis, to the added cost of purchasing the precursor and resynthesis of the correct stereoisomer. Further on, this could lead to loss of reputation, loss of funding, to safety and ethical concerns due to potential in vivo administration of the wrong form of a drug. It is our firm belief that more stringent control of chirality be provided by the supplier and, if needed, requested by the end user, to minimise the potential issues mentioned above. Certification of chirality would bring much needed confidence in chemical structure assignment and could be provided by a variety of techniques, from polarimetry, chiral HPLC, using known chiral standards, vibrational circular dichroism, and x-ray crystallography. A few case studies of our brushes with wrong chirality assignment are shown as well as some examples of what we believe to be good practice.
Collapse
Affiliation(s)
- Andrew McGown
- Department of Chemistry, School of Life Sciences, University of Sussex Falmer BN1 9QJ UK
- Sussex Drug Discovery Centre, Department of Chemistry, School of Life Sciences, University of Sussex Falmer BN1 9QJ UK
| | - Jordan Nafie
- Biotools, Inc., 17546 Beeline Highway Jupiter Florida 33458 USA
| | - Mohammed Otayfah
- Department of Chemistry, School of Life Sciences, University of Sussex Falmer BN1 9QJ UK
| | - Storm Hassell-Hart
- Department of Chemistry, School of Life Sciences, University of Sussex Falmer BN1 9QJ UK
| | - Graham J Tizzard
- National Crystallography Service, School of Chemistry, University of Southampton Southampton SO17 1BJ UK
| | - Simon J Coles
- National Crystallography Service, School of Chemistry, University of Southampton Southampton SO17 1BJ UK
| | - Rebecca Banks
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road Avonmouth Bristol BS11 9QD UK
| | - Graham P Marsh
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road Avonmouth Bristol BS11 9QD UK
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road Avonmouth Bristol BS11 9QD UK
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex Falmer BN1 9QJ UK
| | | | - Paul Colbon
- Liverpool ChiroChem Ltd, The Heath Business & Technical Park Runcorn Cheshire WA7 4QX UK
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex Falmer BN1 9QJ UK
- Sussex Drug Discovery Centre, Department of Chemistry, School of Life Sciences, University of Sussex Falmer BN1 9QJ UK
| |
Collapse
|
10
|
Essien NB, Galvácsi A, Kállay C, Al-Hilaly Y, González-Méndez R, Akien GR, Tizzard GJ, Coles SJ, Besora M, Kostakis GE. Fluorine-based Zn salan complexes. Dalton Trans 2023; 52:4044-4057. [PMID: 36880418 DOI: 10.1039/d2dt04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We synthesised and characterised the racemic and chiral versions of two Zn salan fluorine-based complexes from commercially available materials. The complexes are susceptible to absorbing H2O from the atmosphere. In solution (DMSO-H2O) and at the millimolar level, experimental and theoretical studies identify that these complexes exist in a dimeric-monomeric equilibrium. We also investigated their ability to sense amines via19F NMR. In CDCl3 or d6-DMSO, strongly coordinating molecules (H2O or DMSO) are the limiting factor in using these easy-to-make complexes as chemosensory platforms since their exchange with analytes requires an extreme excess of the latter.
Collapse
Affiliation(s)
- Nsikak B Essien
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Antal Galvácsi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Youssra Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.,Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ramón González-Méndez
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo, 1, 43007 Tarragona, Spain.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
11
|
Fitzgerald SA, Xiao X, Zhao J, Horton PN, Coles SJ, Knighton RC, Ward BD, Pope SJA. Organometallic Platinum(II) Photosensitisers that Demonstrate Ligand-Modulated Triplet-Triplet Annihilation Energy Upconversion Efficiencies. Chemistry 2023; 29:e202203241. [PMID: 36394514 PMCID: PMC10107691 DOI: 10.1002/chem.202203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/18/2022]
Abstract
A series of 2-phenylquinoxaline ligands have been synthesised that introduce either CF3 or OCF3 electron-withdrawing groups at different positions of the phenyl ring. These ligands were investigated as cyclometalating reagents for platinum(II) to give neutral complexes of the form [Pt(C^N)(acac)] (in which C^N=cyclometalating ligand; acac=acetyl acetonate). X-ray crystallographic studies on three examples showed that the complexes adopt an approximate square planar geometry. All examples revealed strong Pt-Pt linear contacts of 3.2041(6), 3.2199(3) and 3.2586(2) Å. The highly coloured complexes display efficient visible absorption at 400-500 nm (ϵ ≈5000 M-1 cm-1 ) and orange red photoluminescent characteristics (λem =603-620 nm; Φem ≤37 %), which were subtly tuned by the ligand. Triplet emitting character was confirmed by microsecond luminescence lifetimes and the photogeneration of singlet oxygen with quantum efficiencies up to 57 %. Each complex was investigated as a photosensitiser for triplet-triplet annihilation energy upconversion using 9,10-diphenylanthracene as the annihilator species: a range of good upconversion efficiencies (ΦUC 5.9-14.1 %) were observed and shown to be strongly influenced by the ligand structure in each case.
Collapse
Affiliation(s)
| | - Xiao Xiao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Peter N. Horton
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Simon J. Coles
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | | | - Benjamin D. Ward
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| | - Simon J. A. Pope
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| |
Collapse
|
12
|
Audsley G, Carpenter H, Essien NB, Lai-Morrice J, Al-Hilaly Y, Serpell LC, Akien GR, Tizzard GJ, Coles SJ, Ulldemolins CP, Kostakis GE. Chiral Co 3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorg Chem 2023; 62:2680-2693. [PMID: 36716401 PMCID: PMC9930122 DOI: 10.1021/acs.inorgchem.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.
Collapse
Affiliation(s)
- Gabrielle Audsley
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Harry Carpenter
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Nsikak B. Essien
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - James Lai-Morrice
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Youssra Al-Hilaly
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK,Chemistry
Department, College of Science, Mustansiriyah
University, Baghdad 10001, Iraq
| | - Louise C. Serpell
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK
| | - Geoffrey R. Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | | | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK,
| |
Collapse
|
13
|
Fernando S, Landrini M, Macchioni A, Hughes DL, Budzelaar PHM, Rocchigiani L. Tweaking the bridge in metallocene Zr(IV)/W(IV) bimetallic hydrides. Dalton Trans 2023; 52:394-408. [PMID: 36519954 DOI: 10.1039/d2dt03833a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zirconocene cations react with Cp2WH2 affording the bimetallic [Cp2Zr(μ-H)(μ-η1:η5-C5H4)WHCp]+ bridging hydride 1 (Cp = cyclopentadienyl anion, C5H5-) via σ-bond metathesis. Complex 1 features an atypical out of plane Zr(μ-H)W moiety, where no intermetallic interaction is involved, and a fluxional core. Coordination geometry and bond distances of the bridging hydride interaction can be modulated upon reaction with Lewis bases and unsaturated substrates. PMe3, P(p-tol)3, 3,5-dimethylpyridine and THF bind to 1 and shift the hydride bridge on the coordination plane of Zr. Insertion of olefins and alkynes into the Zr-C bond of 1 leads instead to alkyl and vinyl species where the Zr and W coordination planes are perpendicular to each other. Such alterations of the Zr(μ-H)W arrangement are reflected in the average 1H NMR chemical shift values of the hydride, which correlate linearly with computed Zr-H distances. Reactivity experiments with H2 showed that the bridging hydride interaction prevents bimetallic cooperativity and that σ-bond metathesis between Zr-C and H-H bonds is the preferred pathway for all the investigated complexes.
Collapse
Affiliation(s)
- Selwin Fernando
- School of Chemistry, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK
| | - Martina Landrini
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, I-06123, Perugia, Italy.
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, I-06123, Perugia, Italy.
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK
| | - Peter H M Budzelaar
- Department of Chemistry, University of Naples Federico II, Via Cintia, I-80126, Naples, Italy.
| | - Luca Rocchigiani
- School of Chemistry, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK.,Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, I-06123, Perugia, Italy.
| |
Collapse
|
14
|
Powell RE, Lees MR, Tizzard GJ, Coles SJ, Yuan Q, van Koningsbruggen PJ. Fe III in the high-spin state in dimethylammonium bis[3-ethoxysalicylaldehyde thiosemicarbazonato(2-)-κ 3O 2,N 1,S]ferrate(III). Acta Crystallogr C Struct Chem 2023; 79:18-24. [PMID: 36602017 PMCID: PMC9813924 DOI: 10.1107/s2053229622011597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The synthesis and crystal structure (100 K) of the title compound, [(CH3)2NH2][Fe(C10H11O2N3S)2], are reported. The asymmetric unit consists of an octahedral [FeIII(L)2]- fragment, where L2- is 3-ethoxysalicylaldehyde thiosemicarbazonate(2-), and a dimethylammonium cation. Each L2- ligand binds with the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions, and mutually trans N atoms. The FeIII ion is in the high-spin state at 100 K. The variable-temperature magnetic susceptibility measurements (5-320 K) are consistent with the presence of a high-spin FeIII ion with D = 0.83 (1) cm-1 and g = 2.
Collapse
Affiliation(s)
- Robyn E. Powell
- College of Engineering and Physical Sciences, School of Infrastructure and Sustainable Engineering, Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, West Midlands, B4 7ET, United Kingdom
| | - Martin R. Lees
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Graham J. Tizzard
- National Crystallography Service, Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Simon J. Coles
- National Crystallography Service, Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Qingchun Yuan
- Energy and Bioproducts Research Institute, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Petra J. van Koningsbruggen
- College of Engineering and Physical Sciences, School of Infrastructure and Sustainable Engineering, Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, West Midlands, B4 7ET, United Kingdom
| |
Collapse
|
15
|
Owen Bonello R, Pitak MB, Tizzard GJ, Coles SJ, Fallis IA, Pope SJ. Aryl, bi-functionalised imidazo[4,5-f]-1,10-phenanthroline ligands and their luminescent rhenium(I) complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Price TW, Renard I, Prior TJ, Kubíček V, Benoit DM, Archibald SJ, Seymour AM, Hermann P, Stasiuk GJ. Bn2DT3A, a Chelator for 68Ga Positron Emission Tomography: Hydroxide Coordination Increases Biological Stability of [ 68Ga][Ga(Bn 2DT3A)(OH)] . Inorg Chem 2022; 61:17059-17067. [PMID: 36251390 DOI: 10.1021/acs.inorgchem.2c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chelator Bn2DT3A was used to produce a novel 68Ga complex for positron emission tomography (PET). Unusually, this system is stabilized by a coordinated hydroxide in aqueous solutions above pH 5, which confers sufficient stability for it to be used for PET. Bn2DT3A complexes Ga3+ in a hexadentate manner, forming a mer-mer complex with log K([Ga(Bn2DT3A)]) = 18.25. Above pH 5, the hydroxide ion coordinates the Ga3+ ion following dissociation of a coordinated amine. Bn2DT3A radiolabeling displayed a pH-dependent speciation, with [68Ga][Ga(Bn2DT3A)(OH)]- being formed above pH 5 and efficiently radiolabeled at pH 7.4. Surprisingly, [68Ga][Ga(Bn2DT3A)(OH)]- was found to show an increased stability in vitro (for over 2 h in fetal bovine serum) compared to [68Ga][Ga(Bn2DT3A)]. The biodistribution of [68Ga][Ga(Bn2DT3A)(OH)]- in healthy rats showed rapid clearance and excretion via the kidneys, with no uptake seen in the lungs or bones.
Collapse
Affiliation(s)
- Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, U.K.,Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, U.K.,Positron Emission Tomography Research Center, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Isaline Renard
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, U.K.,Positron Emission Tomography Research Center, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Timothy J Prior
- Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, Czech Republic
| | - David M Benoit
- E.A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Stephen J Archibald
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, U.K.,Positron Emission Tomography Research Center, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Anne-Marie Seymour
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, Czech Republic
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, U.K
| |
Collapse
|
17
|
Panther LA, Guest DP, McGown A, Emerit H, Tareque RK, Jose A, Dadswell CM, Coles SJ, Tizzard GJ, González‐Méndez R, Goodall CAI, Bagley MC, Spencer J, Greenland BW. Solvent‐Free Synthesis of Core‐Functionalised Naphthalene Diimides by Using a Vibratory Ball Mill: Suzuki, Sonogashira and Buchwald–Hartwig Reactions. Chemistry 2022; 28:e202201444. [PMID: 35621283 PMCID: PMC9544761 DOI: 10.1002/chem.202201444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/07/2022]
Abstract
Solvent‐free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’‐bis(2‐ethylhexyl)‐2,6‐dibromo‐1,4,5,8‐naphthalenetetracarboxylic acid (Br2‐NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light‐emitting diodes (OLEDs), organic field‐effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real‐world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.
Collapse
Affiliation(s)
- Lydia A. Panther
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Daniel P. Guest
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Andrew McGown
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Hugo Emerit
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Raysa Khan Tareque
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Arathy Jose
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Chris M. Dadswell
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Simon J. Coles
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Graham J. Tizzard
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Ramón González‐Méndez
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Charles A. I. Goodall
- Faculty of Engineering & Science FES Engineering & Science School Operations University of Greenwich Old Royal Naval College Park Row London SE10 9LS UK
| | - Mark C. Bagley
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - John Spencer
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
- Sussex Drug Discovery Centre School of Life Sciences University of Sussex Falmer, Brighton BN1 9QG UK
| | - Barnaby W. Greenland
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| |
Collapse
|
18
|
Al-Riyahee A, Horton PN, Coles SJ, Amoroso AJ, J. A. Pope S. Ni(II), Cu(II) and Zn(II) complexes of functionalised thiosemicarbazone ligands: syntheses and reactivity, characterization and structural studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Huckvale R, Harnden AC, Cheung KMJ, Pierrat OA, Talbot R, Box GM, Henley AT, de Haven Brandon AK, Hallsworth AE, Bright MD, Akpinar HA, Miller DSJ, Tarantino D, Gowan S, Hayes A, Gunnell EA, Brennan A, Davis OA, Johnson LD, de Klerk S, McAndrew C, Le Bihan YV, Meniconi M, Burke R, Kirkin V, van Montfort RLM, Raynaud FI, Rossanese OW, Bellenie BR, Hoelder S. Improved Binding Affinity and Pharmacokinetics Enable Sustained Degradation of BCL6 In Vivo. J Med Chem 2022; 65:8191-8207. [PMID: 35653645 PMCID: PMC9234961 DOI: 10.1021/acs.jmedchem.1c02175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/30/2022]
Abstract
The transcriptional repressor BCL6 is an oncogenic driver found to be deregulated in lymphoid malignancies. Herein, we report the optimization of our previously reported benzimidazolone molecular glue-type degrader CCT369260 to CCT373566, a highly potent probe suitable for sustained depletion of BCL6 in vivo. We observed a sharp degradation SAR, where subtle structural changes conveyed the ability to induce degradation of BCL6. CCT373566 showed modest in vivo efficacy in a lymphoma xenograft mouse model following oral dosing.
Collapse
Affiliation(s)
- Rosemary Huckvale
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alice C. Harnden
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Kwai-Ming J. Cheung
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivier A. Pierrat
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rachel Talbot
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Gary M. Box
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | | | - Albert E. Hallsworth
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Michael D. Bright
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Hafize Aysin Akpinar
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Daniel S. J. Miller
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Dalia Tarantino
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Sharon Gowan
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Emma A. Gunnell
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K.
| | - Alfie Brennan
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Owen A. Davis
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Louise D. Johnson
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Selby de Klerk
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Craig McAndrew
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Yann-Vaï Le Bihan
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K.
| | - Mirco Meniconi
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Vladimir Kirkin
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K.
| | - Florence I. Raynaud
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivia W. Rossanese
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Benjamin R. Bellenie
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Swen Hoelder
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
20
|
da Silva Rebelo Gomes LM, Früchtl H, Low JN, van Mourik T, Pinheiro AC, de Souza MVN, Wardell JL. Crystal structure of N‐(1,3‐benzothiazol‐2‐yl)‐4‐iodobenzene‐1‐sulfonohydrazide: the importance of unusual N‐H···π and I···π interactions on the supramolecular arrangement. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Herbert Früchtl
- University of St Andrews, School of Chemistry, St Andrews KY16 9ST, Fife, Scotland, UK. PORTUGAL
| | - John N. Low
- University of Aberdeen, Department of Chemistry, Old Aberdeen AB24 3UE, Scotland, UK. PORTUGAL
| | - Tanja van Mourik
- University of St Andrews, School of Chemistry, St Andrews KY16 9ST, Fife, Scotland, UK. PORTUGAL
| | - Alessandra C. Pinheiro
- Fiocruz–Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos – Farmanguinhos. Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, Brazil. PORTUGAL
| | - Marcus V. N. de Souza
- Fiocruz–Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos – Farmanguinhos. Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, Brazil. PORTUGAL
| | - James L. Wardell
- University of Aberdeen, Department of Chemistry, Old Aberdeen AB24 3UE, Scotland, UK. PORTUGAL
| |
Collapse
|
21
|
Edmonds AK, Oakes CS, Hassell-Hart S, Bruyère D, Tizzard GJ, Coles SJ, Felix R, Maple HJ, Marsh GP, Spencer J. Scale-up and optimization of the synthesis of dual CBP/BRD4 inhibitor ISOX-DUAL. Org Biomol Chem 2022; 20:4021-4029. [PMID: 35506991 DOI: 10.1039/d2ob00609j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ISOX-DUAL is a dual inhibitor of CBP/p300 (IC50 = 0.65 μM) and BRD4 (IC50 = 1.5 μM) bromodomains, and a useful chemical probe for epigenetic research. Aspects of the published synthetic route to this compound and its analogues are small-scale, poor-yielding or simply unamenable to scale-up without optimization. Herein we describe the development of a refined synthesis that circumvents the challenges of the original report, with notable improvements to several of the key synthetic transformations. Moreover, a general Suzuki Miyaura protocol for the late stage installation of alternative dimethyl-isoxazole acetyl-lysine (KAc) binding motifs is presented.
Collapse
Affiliation(s)
- Anthony K Edmonds
- Chemistry Department, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.
| | - Catherine S Oakes
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol, BS11 9QD, UK
| | - Storm Hassell-Hart
- Chemistry Department, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.
| | - Didier Bruyère
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol, BS11 9QD, UK
| | - Graham J Tizzard
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Robert Felix
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol, BS11 9QD, UK
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol, BS11 9QD, UK
| | - Graham P Marsh
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol, BS11 9QD, UK
| | - John Spencer
- Chemistry Department, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK. .,Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| |
Collapse
|
22
|
Sawicka N, Craze CJ, Horton PN, Coles SJ, Richards E, Pope SJA. Long-lived, near-IR emission from Cr(III) under ambient conditions. Chem Commun (Camb) 2022; 58:5733-5736. [PMID: 35438119 DOI: 10.1039/d2cc01434c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bis-terdentate (N^N^N) ligands coordinated to Cr(III) yield complexes that display near-IR emission under aerated solvent conditions at room temperature.
Collapse
Affiliation(s)
- Natalia Sawicka
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Chloe J Craze
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, England, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, England, UK
| | - Emma Richards
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
23
|
Jose A, Guest D, LeGay R, Tizzard GJ, Coles SJ, Derveni M, Wright E, Marrison L, Lee AA, Morris A, Robinson M, von Delft F, Fearon D, Koekemoer L, Matviuk T, Aimon A, Schofield CJ, Malla TR, London N, Greenland BW, Bagley MC, Spencer J, The Covid Moonshot Consortium. Expanding the Repertoire of Low-Molecular-Weight Pentafluorosulfanyl-Substituted Scaffolds. ChemMedChem 2022; 17:e202100641. [PMID: 35191598 PMCID: PMC9305131 DOI: 10.1002/cmdc.202100641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Indexed: 11/19/2022]
Abstract
The pentafluorosulfanyl (-SF5 ) functional group is of increasing interest as a bioisostere in medicinal chemistry. A library of SF5 -containing compounds, including amide, isoxazole, and oxindole derivatives, was synthesised using a range of solution-based and solventless methods, including microwave and ball-mill techniques. The library was tested against targets including human dihydroorotate dehydrogenase (HDHODH). A subsequent focused approach led to synthesis of analogues of the clinically used disease modifying anti-rheumatic drugs (DMARDs), Teriflunomide and Leflunomide, considered for potential COVID-19 use, where SF5 bioisostere deployment led to improved inhibition of HDHODH compared with the parent drugs. The results demonstrate the utility of the SF5 group in medicinal chemistry.
Collapse
Affiliation(s)
- Arathy Jose
- Chemistry DepartmentSchool of Life Sciences, FalmerBrightonBN1 9QJUK
| | - Daniel Guest
- Chemistry DepartmentSchool of Life Sciences, FalmerBrightonBN1 9QJUK
| | - Remi LeGay
- Normandie UniversitéLaboratoire de Chimie Moléculaire et ThioorganiqueLCMT UMR 6507 ENSICAEN, UNICAEN, CNRS6 Bd. Du Marechal Juin, 14050CaenFrance
| | - Graham J. Tizzard
- National Crystallography Service, School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Simon J. Coles
- National Crystallography Service, School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | | | - Edward Wright
- BiochemistrySchool of Life Sciences, FalmerBrightonBN1 9QGUK
| | - Lester Marrison
- eMolecules, 3430Carmel Mountain Road, Suite 250San DiegoCA 92121USA
| | - Alpha A. Lee
- PostEra Inc., 2 Embarcadero CentreSan FrancisoCA 94111USA
| | - Aaron Morris
- PostEra Inc., 2 Embarcadero CentreSan FrancisoCA 94111USA
| | - Matt Robinson
- PostEra Inc., 2 Embarcadero CentreSan FrancisoCA 94111USA
| | - Frank von Delft
- Diamond Light Source (DLS)Harwell Science and Innovation CampusDidcotOX11 0DEUK
- Centre of Medicines Discovery (CMD)University of OxfordDepartment of BiochemistryOxfordOX1 3QUUK
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006South Africa
| | - Daren Fearon
- Diamond Light Source (DLS)Harwell Science and Innovation CampusDidcotOX11 0DEUK
| | - Lizbé Koekemoer
- Centre of Medicines Discovery (CMD)University of OxfordDepartment of BiochemistryOxfordOX1 3QUUK
| | | | - Anthony Aimon
- Diamond Light Source (DLS)Harwell Science and Innovation CampusDidcotOX11 0DEUK
| | - Christopher J. Schofield
- Chemistry Research LaboratoryThe Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield RoadOX1 3TAOxfordUK
| | - Tika R. Malla
- Chemistry Research LaboratoryThe Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield RoadOX1 3TAOxfordUK
| | - Nir London
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovot76100Israel
| | | | - Mark C. Bagley
- Chemistry DepartmentSchool of Life Sciences, FalmerBrightonBN1 9QJUK
| | - John Spencer
- Chemistry DepartmentSchool of Life Sciences, FalmerBrightonBN1 9QJUK
| | | |
Collapse
|
24
|
Sweet JS, Wang R, Manesiotis P, Dingwall P, Knipe PC. Atropselective synthesis of N-aryl pyridones via dynamic kinetic resolution enabled by non-covalent interactions. Org Biomol Chem 2022; 20:2392-2396. [PMID: 35257135 DOI: 10.1039/d2ob00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamic kinetic resolution of C-N atropisomeric pyridones was achieved via asymmetric phase-transfer catalysis, exploiting a rotational barrier-lowering hydrogen bond in the starting materials. X-ray and NMR experiments revealed the presence of a barrier-raising ground state CH⋯π interaction in the product, supported by DFT calculations. A co-crystal of the quinidine-derived phase-transfer catalyst and substrate reveals key substrate-catalyst non-covalent interactions.
Collapse
Affiliation(s)
- Jamie S Sweet
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| | - Ruichen Wang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| | - Paul Dingwall
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| | - Peter C Knipe
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| |
Collapse
|
25
|
Al-Riyahee AAA, Horton PN, Coles SJ, Berry C, Horrocks PD, Pope SJA, Amoroso AJ. N, N'-Substituted thioureas and their metal complexes: syntheses, structures and electronic properties. Dalton Trans 2022; 51:3531-3545. [PMID: 35142775 DOI: 10.1039/d1dt04091j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The synthesis of six N,N'-substituted thiourea ligands (L1a-L3b) was achieved in two steps. A corresponding extensive series of Cu(I), Cu(II), Ni(II) and Zn(II) complexes (1-24) with varying formulations were synthesised from these ligands by the reaction of a 1 : 1 or a 1 : 2 mixture of Cu(II), Ni(II) and Zn(II) perchlorate or chloride salts. Complexes 1-24 have been comprehensively characterised by mass spectrometry, elemental analysis, UV-vis., IR, and 1H and 13C{1H} NMR spectroscopies where applicable. The X-ray crystal structures were obtained for eight examples: [(L1a)2Cu]ClO4 (1), [(L1c)2Zn](ClO4)2 (4), [(L2a)2Cu]ClO4 (6), [(L2c)2Ni](ClO4)2 (7), [(L1b)2Cu](ClO4) (15), [(L1b)CuCl] (16), [(L4)2CuCl2] (19) and [(L3b)CuClO4] (21). These studies reveal that L1c and L2c represent ligands that have undergone cleavage during reaction with the metal salt; L4 represents an intramolecular rearrangement (via a Hugershoff reaction) of L2b; and in most cases Cu(II) is reduced to Cu(I) during the ligand reaction. The X-ray crystal structures also reveal that 1, 4, 6, 15 and 16 are monometallic species in the solid state; that Cu(I) in 1, 6, 15 and 16 and Zn(II) in 4 are arranged in a distorted tetrahedral geometry; that Cu(I) in 21 adopts a trigonal planar geometry; and that in 7 and 19 the Ni(II) and Cu(II) centres, respectively, possess square planar geometry. Preliminary studies on the biological activity (using the Malaria Sybr Green I Fluorescence assay) of the thiourea containing complexes suggests that the d10 complexes, and increased ligand stoichiometries, may afford higher potency.
Collapse
Affiliation(s)
- Ali A A Al-Riyahee
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Colin Berry
- School of Biosciences, Cardiff University, CF10 3AT, UK
| | - Paul D Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| | - Angelo J Amoroso
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
26
|
Yan B, Horton PN, Weston SC, Wedge CJ, Russell AE, Grossel MC. Architectural diversity in the solid-state behaviour of crown ether and [2.2.2]-cryptand complexes of K +TCNQ˙ − salts. CrystEngComm 2022. [DOI: 10.1039/d2ce00773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionophore complexes of K(TCNQ˙−)(TCNQ0)n adopt a variety of stacking motifs such as wave-like infinite TCNQ columns separated by K+-cryptates (left) and K+-π-dimerised cation complexes separated by infinite slipped TCNQ stacks (right).
Collapse
Affiliation(s)
- Bingjia Yan
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Peter N. Horton
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon C. Weston
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Christopher J. Wedge
- Department of Chemical Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Andrea E. Russell
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Martin C. Grossel
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
27
|
Powell RE, Lees MR, Tizzard GJ, Koningsbruggen PJV. Fe III in a high-spin state in bis(5-bromosalicylaldehyde 4-ethylthiosemicarbazonato-κ 3O,N 1,S)ferrate(III) nitrate monohydrate, the first example of such a cationic Fe III complex unit. Acta Crystallogr C 2022; 78:63-69. [PMID: 34982050 DOI: 10.1107/s2053229621013462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL- is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1-) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL- ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5-320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm-1.
Collapse
Affiliation(s)
- Robyn E Powell
- College of Engineering and Physical Sciences, School of Infrastructure and Sustainable Engineering, Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, West Midlands, B4 7ET, UK
| | - Martin R Lees
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Graham J Tizzard
- National Crystallography Service, Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Petra J van Koningsbruggen
- College of Engineering and Physical Sciences, School of Infrastructure and Sustainable Engineering, Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, West Midlands, B4 7ET, UK
| |
Collapse
|
28
|
Warnock TMC, Rajkumar S, Fitzpatrick MP, Serpell CJ, Dingwall P, Knipe PC. Chiral, sequence-definable foldamer-derived macrocycles. Chem Sci 2021; 12:15632-15636. [PMID: 35003593 PMCID: PMC8654020 DOI: 10.1039/d1sc05021d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Nature's oligomeric macromolecules have been a long-standing source of inspiration for chemists producing foldamers. Natural systems are frequently conformationally stabilised by macrocyclisation, yet this approach has been rarely adopted in the field of foldamer chemistry. Here we present a new class of chiral cyclic trimers and tetramers formed by macrocyclisation of open-chain foldamer precursors. Symmetrical products are obtained via a [2 + 2] self-assembly approach, while full sequence control is demonstrated through linear synthesis and cyclisation of an unsymmetrical trimer. Structural characterisation is achieved through a combined X-ray and DFT approach, which indicates the tetramers adopt a near-planar conformation, while the trimers adopt a shallow bowl-like shape. Finally, a proof-of-concept experiment is conducted to demonstrate the macrocycles' capacity for cation binding. Dipole-controlled pre-organization enables the cyclization of sequence-defined foldamers into macrocycles. The structure and properties of trimeric and tetrameric macrocycles are explored, and their ability to bind cationic guests is demonstrated.![]()
Collapse
Affiliation(s)
- Toyah M C Warnock
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building Belfast BT9 5AG UK
| | | | - Matthew P Fitzpatrick
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building Belfast BT9 5AG UK
| | - Christopher J Serpell
- School of Physical Sciences, University of Kent Ingram Building Canterbury Kent CT2 7NH UK
| | - Paul Dingwall
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building Belfast BT9 5AG UK
| | - Peter C Knipe
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building Belfast BT9 5AG UK
| |
Collapse
|
29
|
Blade H, Horton PN, Morrison JA, Orton JB, Sullivan RA, Coles SJ. Tautomerism troubles: proton transfer modifies the stereochemical assignments in diastereoisomeric structures of spiro-cyclic 5-methyl-2 H-imidazol-4-amine dimers. Acta Crystallogr E Crystallogr Commun 2021; 77:1311-1315. [PMID: 34925905 PMCID: PMC8647748 DOI: 10.1107/s205698902100668x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022]
Abstract
During the racemization of a novel pharmaceutical spiro-cyclic imidazole-amine compound, namely, 6'-bromo-N-(6'-bromo-4-meth-oxy-4''-methyl-3'H-di-spiro[cyclo-hexane-1,2'-indene-1',2''-imidazol]-5''-yl)-4-meth-oxy-4''-methyl-3'H-di-spiro-[cyclo-hexane-1,2'-indene-1',2''-imidazol]-5''-imine, C36H41Br2N5O2, two impurities were isolated. These impurities were clearly dimers from mass spectroscopic analysis, however single-crystal diffraction characterization was required for the assignment of stereochemistry. The single-crystal diffraction results revealed subtly different structures to those proposed, due to an unexpected proton transfer. The dimers contain four stereocentres, but two of primary inter-est, and are centrosymmetric, so after careful structure refinement and close inspection it was possible to unambiguously assign the stereochemistry of both the homochiral [(S),(S)- and (R),(R)-] and the heterochiral [(S),(R)- and (R),(S)-] compounds.
Collapse
Affiliation(s)
- Helen Blade
- AstraZeneca, Oral Product Development, Pharmaceutical Technology & Development, Operations, Macclesfield, United Kingdom
| | - Peter N. Horton
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - James A. Morrison
- AstraZeneca, Chemical Development, Pharmaceutical Technology & Development, Operations, Macclesfield, United Kingdom
| | - James B. Orton
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Rachel A. Sullivan
- AstraZeneca, Chemical Development, Pharmaceutical Technology & Development, Operations, Macclesfield, United Kingdom
| | - Simon J. Coles
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
30
|
Devonport J, Sully L, Boudalis AK, Hassell-Hart S, Leech MC, Lam K, Abdul-Sada A, Tizzard GJ, Coles SJ, Spencer J, Vargas A, Kostakis GE. Room-Temperature Cu(II) Radical-Triggered Alkyne C-H Activation. JACS AU 2021; 1:1937-1948. [PMID: 34841411 PMCID: PMC8611675 DOI: 10.1021/jacsau.1c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
A dimeric Cu(II) complex [Cu(II)2L2(μ2-Cl)Cl] (1) built from an asymmetric tridentate ligand (2-(((2-aminocyclohexyl)imino)methyl)-4,6-di-tert-butylphenol) and weakly coordinating anions has been synthesized and structurally characterized. In dichloromethane solution, 1 exists in a monomeric [Cu(II)LCl] (1') (85%)-dimeric (1) (15%) equilibrium, and cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) studies indicate structural stability and redox retention. Addition of phenylacetylene to the CH2Cl2 solution populates 1' and leads to the formation of a transient radical species. Theoretical studies support this notion and show that the radical initiates an alkyne C-H bond activation process via a four-membered ring (Cu(II)-O···H-Calkyne) intermediate. This unusual C-H activation method is applicable for the efficient synthesis of propargylamines, without additives, within 16 h, at low loadings and in noncoordinating solvents including late-stage functionalization of important bioactive molecules. Single-crystal X-ray diffraction studies, postcatalysis, confirmed the framework's stability and showed that the metal center preserves its oxidation state. The scope and limitations of this unconventional protocol are discussed.
Collapse
Affiliation(s)
- Jack Devonport
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Lauren Sully
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Athanassios K. Boudalis
- Institut
de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université
de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
- Université
de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux
de Strasbourg (IPCMS), UMR 7504, F-67000 Strasbourg, France
| | - Storm Hassell-Hart
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Matthew C. Leech
- School
of Science, Department of Pharmaceutical Chemical and Environmental
Sciences, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, U.K.
| | - Kevin Lam
- School
of Science, Department of Pharmaceutical Chemical and Environmental
Sciences, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, U.K.
| | - Alaa Abdul-Sada
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K.
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Alfredo Vargas
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
31
|
Fitzgerald SA, Otaif HY, Elgar CE, Sawicka N, Horton PN, Coles SJ, Beames JM, Pope SJA. Polysubstituted Ligand Framework for Color Tuning Phosphorescent Iridium(III) Complexes. Inorg Chem 2021; 60:15467-15484. [PMID: 34605234 DOI: 10.1021/acs.inorgchem.1c02121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of ligands have been synthesized based upon a polysubstituted 2-phenylquinoxaline core structure. These ligands introduce different combinations of fluorine and methyl substituents on both the phenyl and quinoxaline constituent rings. The resultant investigation of these species as cyclometalating agents for Ir(III) gave cationic complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N = cyclometalating ligand; bipy = 2,2'-bipyridine). X-ray crystallographic studies were conducted on four complexes and each revealed the expected distorted octahedral geometry based upon a cis-C,C and trans-N,N ligand arrangement at Ir(III). Supporting computational studies predict that each of the complexes share the same general descriptions for the frontier orbitals. TD-DFT calculations suggest MLCT contributions to the lowest energy absorption and a likely MLCT/ILCT/LLCT nature to the emitting state. Experimentally, the complexes display tunable luminescence across the yellow-orange-red part of the visible spectrum (λem = 579-655 nm).
Collapse
Affiliation(s)
- Sophie A Fitzgerald
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Haleema Y Otaif
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Christopher E Elgar
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Natalia Sawicka
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, United Kingdom
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, United Kingdom
| | - Joseph M Beames
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| |
Collapse
|
32
|
Devonport J, Spencer J, Kostakis GE. Breaking the symmetry: C1-salans with (N-H) backbones. Dalton Trans 2021; 50:12069-12073. [PMID: 34373864 DOI: 10.1039/d1dt01950c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclose a synthetic route that providess an unprecedented library of C1 salan ligands endowed with (N-H) backbones, previously limited to N-methylated backbones. Efforts to identify a generic complexation protocol to yield the corresponding Cu(II)-salan complexes demonstrate the scope and limitations of this approach.
Collapse
Affiliation(s)
- Jack Devonport
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| |
Collapse
|
33
|
Makin S, Vaqueiro P. A Discrete Ligand-Free T3 Supertetrahedral Cluster of Gallium Sulfide. Molecules 2021; 26:5415. [PMID: 34500852 PMCID: PMC8434533 DOI: 10.3390/molecules26175415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Large discrete supertetrahedral clusters of metal chalcogenides are rare due to the difficulty of crystallizing solids in which the negative charge of the cluster is balanced by the positive charges of the countercations. Here, we describe a discrete ligand-free T3 supertetrahedral cluster, [Ga10S16(SH)4]6-, which was successfully synthesized in the presence of the superbase 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) using the neutral surfactant polyethyleneglycol (PEG)-400 as the reaction solvent. Protonated DBUH+ cations are incorporated into the crystal structure of the product, which can be formulated as [C9H17N2]6[Ga10S16(SH)4]. This compound, which represents the first example of a discrete ligand-free T3 cluster of gallium sulfide, was fully characterized by single-crystal and powder X-ray diffraction, elemental analysis, infrared spectroscopy, thermogravimetric analysis, and ultraviolet-visible diffuse reflectance. The results presented here indicate that the use of surfactants as solvents offers potential for the preparation of new compounds containing supertetrahedral clusters.
Collapse
Affiliation(s)
| | - Paz Vaqueiro
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK;
| |
Collapse
|
34
|
O’Neil AT, Zhang N, Harrison JA, Goldup SM, Kitchen JA. Synthesis, photophysical and assembly studies of novel luminescent lanthanide(III) complexes of 1,2,3-triazolyl-pyridine-2,6-dicarboxamide-based ligands. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1955120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alex T. O’Neil
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| | - Ningjin Zhang
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - John A. Harrison
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| | - Stephen M. Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Jonathan A. Kitchen
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| |
Collapse
|
35
|
Roesner S, Beadle JD, Tam LKB, Wilkening I, Clarkson GJ, Raubo P, Shipman M. Development of oxetane modified building blocks for peptide synthesis. Org Biomol Chem 2021; 18:5400-5405. [PMID: 32618315 DOI: 10.1039/d0ob01208d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and use of oxetane modified dipeptide building blocks in solution and solid-phase peptide synthesis (SPPS) is reported. The preparation of building blocks containing non-glycine residues at the N-terminus in a stereochemically controlled manner is challenging. Here, a practical 4-step route to such building blocks is demonstrated, through the synthesis of dipeptides containing contiguous alanine residues. The incorporation of these new derivatives at specific sites along the backbone of an alanine-rich peptide sequence containing eighteen amino acids is demonstrated via solid-phase peptide synthesis. Additionally, new methods to enable the incorporation of all 20 of the proteinogenic amino acids into such dipeptide building blocks are reported through modifications of the synthetic route (for Cys and Met) and by changes to the protecting group strategy (for His, Ser and Thr).
Collapse
Affiliation(s)
- Stefan Roesner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Jonathan D Beadle
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Leo K B Tam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Ina Wilkening
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Piotr Raubo
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Michael Shipman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
36
|
|
37
|
Synthesis and biological evaluation of benzodiazepines containing a pentafluorosulfanyl group. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Laverick RJ, Zhang N, Reid E, Kim J, Kilpin KJ, Kitchen JA. Solution processible Co(III) quinoline-thiosemicarbazone complexes: synthesis, structure extension, and Langmuir-Blodgett deposition studies. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1879384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Ningjin Zhang
- Department of Chemistry, University of Southampton, Southampton, UK
| | - Eleanor Reid
- Department of Chemistry, University of Southampton, Southampton, UK
| | - Jaehwan Kim
- Department of Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Kelly J. Kilpin
- Department of Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Jonathan A. Kitchen
- Department of Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
39
|
Mittapalli RR, Coles SJ, Klooster WT, Dobbs AP. A Stereoselective aza-Prins Reaction: Rapid Access to Enantiopure Piperidines and Pipecolic Acids. J Org Chem 2021; 86:2076-2089. [PMID: 33417453 DOI: 10.1021/acs.joc.0c01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aza-Prins reaction is a widely employed and highly efficient method for the preparation of saturated nitrogen-containing heterocycles. Its major drawback has always been a lack of diastereoselectivity and the formation of racemic products. Herein, we address these problems and report, for the first time, the synthesis of both diastereomerically and enantiopure multiply substituted piperidines via the aza-Prins reaction. This method is widely applicable for natural product synthesis and is exemplified here by the synthesis of enantiopure pipecolic acid derivatives.
Collapse
Affiliation(s)
| | - Simon J Coles
- UK National Crystallography Service, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Wim T Klooster
- UK National Crystallography Service, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Adrian P Dobbs
- School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
40
|
[Cr III8Ni II6] n+ Heterometallic Coordination Cubes. Molecules 2021; 26:molecules26030757. [PMID: 33540541 PMCID: PMC7867156 DOI: 10.3390/molecules26030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022] Open
Abstract
Three new heterometallic [CrIII8NiII6] coordination cubes of formulae [CrIII8NiII6L24(H2O)12](NO3)12 (1), [CrIII8NiII6L24(MeCN)7(H2O)5](ClO4)12 (2), and [CrIII8NiII6L24Cl12] (3) (where HL = 1-(4-pyridyl)butane-1,3-dione), were synthesised using the paramagnetic metalloligand [CrIIIL3] and the corresponding NiII salt. The magnetic skeleton of each capsule describes a face-centred cube in which the eight CrIII and six NiII ions occupy the eight vertices and six faces of the structure, respectively. Direct current magnetic susceptibility measurements on (1) reveal weak ferromagnetic interactions between the CrIII and NiII ions, with JCr-Ni = + 0.045 cm-1. EPR spectra are consistent with weak exchange, being dominated by the zero-field splitting of the CrIII ions. Excluding wheel-like structures, examples of large heterometallic clusters containing both CrIII and NiII ions are rather rare, and we demonstrate that the use of metalloligands with predictable bonding modes allows for a modular approach to building families of related polymetallic complexes. Compounds (1)-(3) join the previously published, structurally related family of [MIII8MII6] cubes, where MIII = Cr, Fe and MII = Cu, Co, Mn, Pd.
Collapse
|
41
|
Elgar CE, Otaif HY, Zhang X, Zhao J, Horton PN, Coles SJ, Beames JM, Pope SJA. Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA-UC Performance. Chemistry 2021; 27:3427-3439. [PMID: 33242225 DOI: 10.1002/chem.202004146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII , yielding complexes of the form [Ir(C^N)2 (bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2'-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668-693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet-triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6-6.7 %.
Collapse
Affiliation(s)
- Christopher E Elgar
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Haleema Y Otaif
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Joseph M Beames
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Simon J A Pope
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| |
Collapse
|
42
|
Otaif HY, Adams SJ, Horton PN, Coles SJ, Beames JM, Pope SJA. Bis-cyclometalated iridium( iii) complexes with terpyridine analogues: syntheses, structures, spectroscopy and computational studies. RSC Adv 2021; 11:39718-39727. [PMID: 35494133 PMCID: PMC9044569 DOI: 10.1039/d1ra07213g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Two ligands based upon a 2,6-disubstituted pyridine bridge introduce bis-quinoxalinyl units in a fashion that yields analogues to the archetypal terdentate ligand, 2,2′:6′,2′′-terpyridine. The ligands were synthesised from the key intermediate 2,6-bis(bromoacetyl)pyridine: a new, high-yielding route is described for this reagent. Two ligand variants (differentiated by H/Me substituents on the quinoxaline ring) were explored as coordinating moieties for iridium(iii) in the development of luminescent complexes. Computational studies (DFT approaches employing B3LYP, B3LYP/LANL2DZ, and M062X/LANL2DZ levels) were used to investigate the geometric and coordination mode preferences of the new ligands and two possibilities arose from theoretical investigations: [Ir(N^N^N)2]3+ and [Ir(N^N^C)2]+, with the former predicted to be more energetically favourable. Upon synthesis and isolation of the Ir(iii) complexes, X-ray crystallographic studies revealed coordination spheres that were cyclometalated, the structures both showing a [Ir(N^N^C)2]PF6 arrangement. Further spectroscopic characterization via NMR confirmed the ligand arrangements in the complexes, and photophysical studies, supported by DFT, showed that a mixture of metal-to-ligand charge transfer (MLCT) and intra-ligand charge transfer (ILCT) character is likely to contribute to the emission features of the complexes, which phosphoresce orange-red (λem = 580–618 nm). The emission wavelength was influenced by the substituents on the quinoxaline ring (H vs. Me), thereby implying further tuneability is possible with future ligand iterations. Bis-terdentate Ir(iii) complexes incorporate two cyclometalated N^N^C bis-quinoxalinyl type ligands derived from the condensation of 2,6-bis(bromoacetyl)pyridine and different o-phenylenediamines.![]()
Collapse
Affiliation(s)
- Haleema Y. Otaif
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK
| | - Samuel J. Adams
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK
| | - Peter N. Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, England
| | - Simon J. Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, England
| | - Joseph M. Beames
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK
| | - Simon J. A. Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
43
|
Yan B, Horton PN, Weston SC, Russell AE, Grossel MC. Novel TCNQ-stacking motifs in (12-crown-4)-complexes of alkali metal TCNQ salts. CrystEngComm 2021. [DOI: 10.1039/d1ce01075a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unusual crossed dimer motif is present in the solid state in the infinite TCNQ˙− columns of the bis-12-crown-4 complexes of Li and NaTCNQ.
Collapse
Affiliation(s)
- Bingjia Yan
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Peter N. Horton
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon C. Weston
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Andrea E. Russell
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Martin C. Grossel
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
44
|
Abstract
This article discusses the formation of trimesic acid (TMA) solvates with ethanol, isopropyl alcohol and dimethylformamide via liquid-assisted grinding and slurry experiments. Through the use of X-ray diffraction methods, we highlight the formation of a new ethanol solvate of TMA that completes the series of alcohol solvates observed, a temperature-induced phase transition in the isopropyl alcohol solvate between 233 K and 243 K, and a transient 1:3 solvate with dimethylformamide that mimics a previously identified dimethylsulfoxide solvate. The alcohol structures possess a TMA framework that is geometrically similar where the intermolecular energies between TMA molecules are equivalent. We have observed that increasing the length of the alcohol induces an increase in the distortion of the TMA framework to accommodate the longer alkyl tails.
Collapse
|
45
|
Hooper CAJ, Cardo L, Craig JS, Melidis L, Garai A, Egan RT, Sadovnikova V, Burkert F, Male L, Hodges NJ, Browning DF, Rosas R, Liu F, Rocha FV, Lima MA, Liu S, Bardelang D, Hannon MJ. Rotaxanating Metallo-supramolecular Nano-cylinder Helicates to Switch DNA Junction Binding. J Am Chem Soc 2020; 142:20651-20660. [DOI: 10.1021/jacs.0c07750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Catherine A. J. Hooper
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lucia Cardo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - James S. Craig
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lazaros Melidis
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Aditya Garai
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ross T. Egan
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Viktoriia Sadovnikova
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Florian Burkert
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nikolas J. Hodges
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille 13007, France
| | - Fengbo Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Fillipe V. Rocha
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Mauro A. Lima
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | | | - Michael J. Hannon
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
46
|
Kuo Y, Da Costa RC, Sparkes HA, Haddow MF, Owen GR. Palladium and Platinum Complexes Containing Diphenyl‐2‐(3‐methyl)indolylphosphine. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu‐Ying Kuo
- School of Chemistry University of Bristol Cantock's Close BS8 1TS Bristol UK
| | | | - Hazel. A. Sparkes
- School of Chemistry University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Mairi F. Haddow
- School of Chemistry University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Gareth R. Owen
- School of Chemistry University of Bristol Cantock's Close BS8 1TS Bristol UK
- School of Applied Science University of South Wales CF37 4AT Treforest UK
| |
Collapse
|
47
|
Amemiya E, Loo A, Shlian DG, Parkin G. Rhenium versus cadmium: an alternative structure for a thermally stable cadmium carbonyl compound. Chem Sci 2020; 11:11763-11776. [PMID: 34123203 PMCID: PMC8162458 DOI: 10.1039/d0sc04596a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
An alternative description is provided for the previously reported novel tetranuclear cadmium carbonyl compound, [Cd(CO)3(C6H3Cl)]4. Specifically, consideration of single crystal X-ray diffraction data indicates that the compound is better formulated as the rhenium compound, [Re(CO)3(C4N2H3S)]4. Furthermore, density functional theory calculations predict that, if it were to exist, [Cd(CO)3(C6H3Cl)]4 would have a very different structure to that reported. While it is well known that X-ray diffraction may not reliably distinguish between atoms of similar atomic number (e.g. N/C and Cl/S), it is not generally recognized that two atoms with very different atomic numbers could be misassigned. The misidentification of two elements as diverse as Re and Cd (ΔZ = 27) is unexpected and serves as an important caveat for structure determinations.
Collapse
Affiliation(s)
- Erika Amemiya
- Department of Chemistry, Columbia University New York 10027 USA
| | - Aaron Loo
- Department of Chemistry, Columbia University New York 10027 USA
| | - Daniel G Shlian
- Department of Chemistry, Columbia University New York 10027 USA
| | - Gerard Parkin
- Department of Chemistry, Columbia University New York 10027 USA
| |
Collapse
|
48
|
Gardner HC, Kennedy AR, McCarney KM, Staunton E, Stewart H, Teat SJ. Structures of five salt forms of disulfonated monoazo dyes. Acta Crystallogr C Struct Chem 2020; 76:972-981. [PMID: 33016268 PMCID: PMC7533915 DOI: 10.1107/s2053229620012735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
The structures of five s-block metal salt forms of three disulfonated monoazo dyes are presented. These are poly[di-μ-aqua-diaqua[μ4-3,3'-(diazane-1,2-diyl)bis(benzenesulfonato)]disodium(I)], [Na2(C12H8N2O6S2)(H2O)4]n, (I), catena-poly[[tetraaquacalcium(II)]-μ-3,3'-(diazane-1,2-diyl)bis(benzenesulfonato)], [Ca(C12H8N2O6S2)(H2O)4]n, (II), catena-poly[[[diaquacalcium(II)]-μ-2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium] dihydrate], {[Na(C12H10N3O6S2)(H2O)2]·2H2O}n, (III), hexaaquamagnesium bis[2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium] octahydrate, [Mg(H2O)6](C12H10N3O6S2)2·8H2O, (IV), and poly[[{μ2-4-[2-(4-amino-2-methyl-5-methoxyphenyl)diazen-1-yl]benzene-1,3-disulfonato}di-μ-aqua-diaquabarium(II)] dihydrate], {[Ba(C14H13N3O7S2)(H2O)4]·2H2O}n, (V). Compound (III) is that obtained on crystallizing the commercial dyestuff Acid Yellow 9 [74543-21-8]. The Mg species is a solvent-separated ion-pair structure and the others are all coordination polymers with bonds from the metal atoms to sulfonate groups. Compound (I) is a three-dimensional coordination polymer, (V) is a two-dimensional coordination polymer and both (II) and (III) are one-dimensional coordination polymers. The coordination behaviour of the azo ligands and the water ligands, the dimensionality of the coordination polymers and the overall packing motifs of these five structures are contrasted to those of monosulfonate monoazo congers. It is found that (I) and (II) adopt similar structural types to those of monosulfonate species but that the other three structures do not.
Collapse
Affiliation(s)
- Heather C. Gardner
- Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Alan R. Kennedy
- Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Karen M. McCarney
- Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Edward Staunton
- Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Heather Stewart
- Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Simon J. Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Dodds CA, Kennedy AR. Formation of a nona-nuclear copper(II) cluster with 3,5-di-methyl-pyrazolate starting from an NHC complex of copper(I) chloride. Acta Crystallogr E Crystallogr Commun 2020; 76:1486-1490. [PMID: 32939305 PMCID: PMC7472752 DOI: 10.1107/s2056989020011275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022]
Abstract
The complete nona-nuclear cluster in bis-[1,3-bis-(2,6-di-methyl-phen-yl)imid-azol-ium] di-μ-chlorido-tetra-chlorido-octa-kis-(μ-3,5-di-methyl-pyrazolato)hexa-μ3-hydroxido-nona-copper(II) chloro-form disolvate, [HIXy]2[Cu9(μ-pz*)8(μ3-OH)6(μ2-Cl)2Cl4]·2CHCl3 or (C19H21N2)2[Cu9(C5H7N2)8Cl6(OH)6]·2CHCl3, where pz* is the 3,5-di-methyl-pyrazolyl anion, C5H7N2 -, and HIXy is the 1,3-bis-(2,6-di-methyl-phen-yl)imidazolium cation, C19H21N2 +, is generated by a crystallographic centre of symmetry with a square-planar CuII ion bound to four μ3-OH ions lying on the inversion centre. Of the four remaining unique CuII atoms, three adopt CuN2O2Cl square-pyramidal coordination geometries with the chloride ion in the apical position and one has a distorted CuN2OCl tetra-hedral geometry. The dianionic nona-nuclear core can be described as a 24-membered [CuNN]8 ring that contains a Cu9O6Cl6 core. The cluster features three intra-molecular O-H⋯Cl hydrogen bonds. In the crystal, weak C-H⋯N and C-H⋯Cl inter-actions link the components. Polynuclear paramagnetic clusters of this type are of considerable inter-est due to their relevance to both the bioinorganic and single-mol-ecule magnets research fields.
Collapse
Affiliation(s)
- Christopher A. Dodds
- Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Alan R. Kennedy
- Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| |
Collapse
|
50
|
Wilson CS, Prior TJ, Sandland J, Savoie H, Boyle RW, Murray BS. Homo‐ and Hetero‐dinuclear Arene‐Linked Osmium(II) and Ruthenium(II) Organometallics: Probing the Impact of Metal Variation on Reactivity and Biological Activity. Chemistry 2020; 26:11593-11603. [DOI: 10.1002/chem.202002052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/31/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher S. Wilson
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Timothy J. Prior
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Jordon Sandland
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Huguette Savoie
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Ross W. Boyle
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Benjamin S. Murray
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| |
Collapse
|