1
|
Song A, Kim MJ, Yi DJ, Kwon S, Kim DW, Kim S, Bae JH, Park S, Rim YS, Jeong KS, Chung KB. Control of sensitivity in metal oxide electrolyte gated field-effect transistor-based glucose sensor by electronegativity modulation. Sci Rep 2024; 14:27251. [PMID: 39516503 PMCID: PMC11549364 DOI: 10.1038/s41598-024-76885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, the sensitivity of electrolyte-gated field-effect transistor-based glucose sensors using oxide semiconductor materials was controlled via electronegativity modulation. By controlling the enzymatic reaction between glucose and glucose oxidase, which is affected by the surface potential, the sensitivity of the glucose sensor can be effectively adjusted. To evaluate the sensitivity characteristics of the glucose sensor according to electronegativity control, devices were fabricated based on InO through Ga and Zn doping. The results confirmed that the specific sensitivity range could be adjusted by increasing the electronegativity. In addition, density functional theory calculations, confirmed that the attachment energy of the surface-functionalized material and the enzyme binding energy in the surface-functionalized thin film can be modulated depending on the electronegativity difference. The dissociation constant was controlled in both directions by doping with metal cations with larger(Ga, 1.81) or smaller(Zn, 1.65) electronegativities in InO(In, 1.78). We expect that this study will provide a simple method for the gradual and bidirectional control of the glucose sensitivity region.
Collapse
Affiliation(s)
- Aeran Song
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Min Jung Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Dong-Joon Yi
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Soyeong Kwon
- Department of Physics, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dong-Wook Kim
- Department of Physics, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seunghwan Kim
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jee-Hwan Bae
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soohyung Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - You Seung Rim
- Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone, Department of Semiconductor Systems Engineering, Sejong University, Seoul, 05006, Republic of Korea.
| | - Kwang-Sik Jeong
- Division of AI Semiconductor, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Kwun-Bum Chung
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 100-715, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Wei S, Xiong E, Hu J, Zhang X, Wang Y, Zhang J, Yan J, Zhang Z, Yin H, Zhang Q. Ultrasensitive 3D Stacked Silicon Nanosheet Field-Effect Transistor Biosensor with Overcoming Debye Shielding Effect for Detection of DNA. BIOSENSORS 2024; 14:144. [PMID: 38534249 DOI: 10.3390/bios14030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings.
Collapse
Affiliation(s)
- Yinglu Li
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| | - Shuhua Wei
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Enyi Xiong
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Jiawei Hu
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Xufang Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Yanrong Wang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Jing Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Jiang Yan
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Zhaohao Zhang
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| | - Huaxiang Yin
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| | - Qingzhu Zhang
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
3
|
Li H, Li D, Chen H, Yue X, Fan K, Dong L, Wang G. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. SENSORS (BASEL, SWITZERLAND) 2023; 23:6808. [PMID: 37571591 PMCID: PMC10422280 DOI: 10.3390/s23156808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
As a new type of one-dimensional semiconductor nanometer material, silicon nanowires (SiNWs) possess good application prospects in the field of biomedical sensing. SiNWs have excellent electronic properties for improving the detection sensitivity of biosensors. The combination of SiNWs and field effect transistors (FETs) formed one special biosensor with high sensitivity and target selectivity in real-time and label-free. Recently, SiNW-FETs have received more attention in fields of biomedical detection. Here, we give a critical review of the progress of SiNW-FETs, in particular, about the reversible surface modification methods. Moreover, we summarized the applications of SiNW-FETs in DNA, protein, and microbial detection. We also discuss the related working principle and technical approaches. Our review provides an extensive discussion for studying the challenges in the future development of SiNW-FETs.
Collapse
Affiliation(s)
- Huiping Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huiyi Chen
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaojie Yue
- The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
4
|
Li H, Wang S, Li X, Cheng C, Shen X, Wang T. Dual-Channel Detection of Breast Cancer Biomarkers CA15-3 and CEA in Human Serum Using Dialysis-Silicon Nanowire Field Effect Transistor. Int J Nanomedicine 2022; 17:6289-6299. [PMID: 36536938 PMCID: PMC9758920 DOI: 10.2147/ijn.s391234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/03/2022] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignant tumors and the leading cause of cancer deaths among women. The early diagnosis and treatment of BC are effective measures that can increase survival rates and reduce mortality. Carbohydrate antigens 15-3 (CA15-3) and carcinoma embryonic antigens (CEA) have been regarded as the most two valuable tumor markers of BC. The combined detection of CA15-3 and CEA could improve the sensitivity and accuracy of early diagnosis for BC. METHODS The multi-channel double-gate silicon nanowire field effect transistor (SiNW-FET) biosensors were fabricated by using the top-down semiconductor manufacturing technology. By surface modification of the different SiNW surfaces with monoclonal CA15-3 and CEA antibodies separately, the prepared SiNW-FET was processed into biosensor for dual-channel detection of CA15-3 and CEA. RESULTS The prepared SiNW-FET biosensors were proved to have high sensitivity and specificity for the dual-channel detection of CA15-3 and CEA, and the detection limit is as low as 0.1U/mL CA15-3 and 0.01 ng/mL CEA. Moreover, the SiNW-FET biosensors were able to detect CA15-3 and CEA in serum by connecting a miniature hemodialyzer. CONCLUSION The present study reported a SiNW-FET biosensor for dual-channel detection of breast cancer biomarkers CA15-3 and CEA in serum, which has potential clinical application value for the early diagnosis and curative effect observation of BC.
Collapse
Affiliation(s)
- Hang Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Shuai Wang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiaosong Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Cong Cheng
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiping Shen
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Tong Wang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu Province, People’s Republic of China
| |
Collapse
|
5
|
Barbhuiya RI, Tinoco NN, Ramalingam S, Elsayed A, Subramanian J, Routray W, Singh A. A review of nanoparticle synthesis and application in the suppression of diseases in fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:4477-4499. [PMID: 36343386 DOI: 10.1080/10408398.2022.2142511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fruits and vegetables are an integral part of our diet attributed to their appealing taste, flavor, and health-promoting characteristics. However, due to their high-water activity, they are susceptible to microbial spoilage and diseases at any step in the food supply chain, from pre-harvest treatment to post-harvest storage and transportation. As a result, food researchers and engineers are developing innovative technologies that can be used to reduce the loss of fruits and vegetables on-farm and during postharvest processing. The purpose of this study was to gather and discuss the scientific data on the disease-suppressive activity of nanoparticles against plant pathogens. The progress and limitations of innovative approaches for improving nanoparticles' efficiency and dependability have been studied to develop effective substitutes for synthetic chemical fungicides and pesticides, in managing disease in fruits and vegetables. The findings of this study strongly suggests that nanotechnology has the required ability for disease suppression in fruits and vegetables. Applications of specific nanoparticles under specified conditions can enhance nutrition delivery to plants, provide better antibacterial and disease suppression activity. Nanoparticles can also lessen the quantity of agrichemicals/metals released into the environment as compared to standard formulations, which is one of the most impressive advances.
Collapse
Affiliation(s)
| | | | | | - Abdallah Elsayed
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | | | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Chen H, Deng L, Sun J, Li H, Zhu X, Wang T, Jiang Y. Dynamic Detection of HbA1c Using a Silicon Nanowire Field Effect Tube Biosensor. BIOSENSORS 2022; 12:916. [PMID: 36354424 PMCID: PMC9688244 DOI: 10.3390/bios12110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
As an emerging diabetes diagnostic indicator and a dynamic change index, HbA1c can not only reflect the average blood glucose level over a period of time but can also well predict the incidence of related microvascular complications. It is important to develop a detection method that can dynamically characterize HbA1c. Silicon nanowire (SiNW) devices were mass-produced using top-down sputtering technology, and a microdialyzer was installed in a SiNW field effect tube biosensor detection system. Finally, the detection system was used to detect HbA1c levels quantitatively and dynamically in experimental rabbits. Various measurements showed that mass-produced SiNW devices have ideal dimensions, stable structures, and good performance. A series of microscopy results showed that the SiNW surface can be functionalized for intermolecular interactions. The addition of a dialysis device can effectively overcome Debye shielding, making the blood test similar to the pure standard test. Finally, the dynamic detection of HbA1c within 40 h was realized. SiNW biosensors are capable of the dynamic detection of biomolecules, and dynamic observation of the interaction between blood glucose and HbA1c provides new ideas for the diagnosis and treatment of patients with diabetes. Therefore, the SiNW biosensor can reflect the dynamic changes in HbA1c in a shorter time, which has a certain potential value in the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Hang Chen
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lijuan Deng
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jialin Sun
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Hang Li
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Xiaoping Zhu
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tong Wang
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Yanfeng Jiang
- Internet of Things Institute, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Eswaran M, Chokkiah B, Pandit S, Rahimi S, Dhanusuraman R, Aleem M, Mijakovic I. A Road Map toward Field-Effect Transistor Biosensor Technology for Early Stage Cancer Detection. SMALL METHODS 2022; 6:e2200809. [PMID: 36068169 DOI: 10.1002/smtd.202200809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Field effect transistor (FET)-based nanoelectronic biosensor devices provide a viable route for specific and sensitive detection of cancer biomarkers, which can be used for early stage cancer detection, monitoring the progress of the disease, and evaluating the effectiveness of therapies. On the road to implementation of FET-based devices in cancer diagnostics, several key issues need to be addressed: sensitivity, selectivity, operational conditions, anti-interference, reusability, reproducibility, disposability, large-scale production, and economic viability. To address these well-known issues, significant research efforts have been made recently. An overview of these efforts is provided here, highlighting the approaches and strategies presently engaged at each developmental stage, from the design and fabrication of devices to performance evaluation and data analysis. Specifically, this review discusses the multistep fabrication of FETs, choice of bioreceptors for relevant biomarkers, operational conditions, measurement configuration, and outlines strategies to improve the sensing performance and reach the level required for clinical applications. Finally, this review outlines the expected progress to the future generation of FET-based diagnostic devices and discusses their potential for detection of cancer biomarkers as well as biomarkers of other noncommunicable and communicable diseases.
Collapse
Affiliation(s)
- Muthusankar Eswaran
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Bavatharani Chokkiah
- Nanoelectrochemistry Lab, Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, India
| | - Santosh Pandit
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Ragupathy Dhanusuraman
- Nanoelectrochemistry Lab, Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, India
| | - Mahaboobbatcha Aleem
- Department of Electrical Engineering, City College of New York, New York, 10031, USA
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
8
|
Ma J, Jiang G, Ma Q, Du M, Wang H, Wu J, Wang C, Xie X, Li T, Chen S, Zhang L, Wu M. Portable immunosensor directly and rapidly detects Mycobacterium tuberculosis in sputum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:438-448. [PMID: 35022623 DOI: 10.1039/d1ay01561c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tuberculosis (TB) remains a public health problem that cannot be ignored. The portable and efficient detection of Mycobacterium tuberculosis (MTB) is important for the effective control of this disease. However, current detection techniques do not meet the requirements for MTB detection in the actual environment and often require cumbersome detection steps that are time consuming and inflexible. In this study, a portable immunosensor to detect MTB in sputum was prepared and then subjected to interface characterizations, such as scanning electron microscopy, hydrophilic angle test, and fluorescence characterization. The source and gate voltage of the device were optimized and tested using a non-contact photoresponse. The results showed that the sensitivity of the sensor to luminance increases with the decrease in source voltage. The gate voltage can substantially improve the response of the immunosensor to the normalized current of protein and amplify the signal at least 1.6 times. The optimal voltage detection conditions of source voltage (0.3 V) and gate voltage (0.1 V) were also determined. Several common proteins present in simulated saliva were used for anti-interference tests, and the sensor exhibited good specificity. Finally, the dilution gradient of an actual TB sputum sample was optimized. In the absence of preconditioning, a double-blind experiment was used to distinguish between the sputum from patients with TB and healthy individuals to shorten the TB detection time to a few minutes. Compared with the hospital's conventional detection method using cultures, the proposed method can complete the detection in a shorter time. This study provides a new strategy for the portable diagnosis of TB.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Guanyu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Qingqing Ma
- Department of Respiratory Medicine, Shandong Public Health Clinical Center (Shandong Province Chest Hospital), Jinan, 250013, PR China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Jianguo Wu
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- National Bio-Protection Engineering Center, Tianjin, 300161, PR China
| | - Tie Li
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Shixing Chen
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Lixia Zhang
- Tianjin Haihe Hospital, Tianjin, 300350, PR China
| | - Min Wu
- Tianjin Haihe Hospital, Tianjin, 300350, PR China
| |
Collapse
|
9
|
Aljabali AAA, Pal K, Serrano-Aroca A, Takayama K, Dua K, Tambuwala MM. Clinical utility of novel biosensing platform: Diagnosis of coronavirus SARS-CoV-2 at point of care. MATERIALS LETTERS 2021; 304:130612. [PMID: 34381287 PMCID: PMC8343387 DOI: 10.1016/j.matlet.2021.130612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Early detection is the first step in the fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, an efficient, rapid, selective, specific, and inexpensive SARS-CoV-2 diagnostic method is the need of the hour. The reverse transcription-polymerase chain reaction (RT-PCR) technology is massively utilized to detect infection with SARS-CoV-2. However, scientists continue to strive to create enhanced technology while continually developing nanomaterial-enabled biosensing methods that can provide new methodologies, potentially fulfilling the present demand for rapid and early identification of coronavirus disease 2019 (COVID-19) patients. Our review presents a summary of the recent diagnosis of SARS-CoV-2 of COVID-19 pandemic and nanomaterial-available biosensing methods. Although limited research on nanomaterials-based nanosensors has been published, allowing for biosensing approaches for diagnosing SARS-CoV-2, this study highlights nanomaterials that provide an enhanced biosensing strategy and potential processes that lead to COVID-19 diagnosis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University-Faculty of Pharmacy, Irbid 566, Jordan
| | - Kaushik Pal
- Federal University of Rio de Janeiro, Cidade Universitária, Laboratório de Biopolímeros e Sensores/LaBioS Centro de Tecnologia - Cidade Universitária, Rio de Janeiro, RJ 21941-901, Brazil
| | - Angel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente M'artir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
10
|
A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA. Biosens Bioelectron 2021; 181:113147. [PMID: 33773219 DOI: 10.1016/j.bios.2021.113147] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
Cancer has become one of the major diseases threatening human health and life. Circulating tumor DNA (ctDNA) testing, as a practical liquid biopsy technique, is a promising method for cancer diagnosis, targeted therapy and prognosis. Here, for the first time, a field effect transistor (FET) biosensor based on uniformly sized high-response silicon nanowire (SiNW) array was studied for real-time, label-free, super-sensitive detection of PIK3CA E542K ctDNA. High-response 120-SiNWs array was fabricated on a (111) silicon-on-insulator (SOI) by the complementary metal oxide semiconductor (CMOS)-compatible microfabrication technology. To detecting ctDNA, we modified the DNA probe on the SiNWs array through silanization. The experimental results demonstrated that the as-fabricated biosensor had significant superiority in ctDNA detection, which achieved ultralow detection limit of 10 aM and had a good linearity under the ctDNA concentration range from 0.1 fM to 100 pM. This biosensor can recognize complementary target ctDNA from one/two/full-base mismatched DNA with high selectivity. Furthermore, the fabricated SiNW-array FET biosensor successfully detected target ctDNA in human serum samples, indicating a good potential in clinical applications in the future.
Collapse
|
11
|
Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. Trends Analyt Chem 2020; 133:116067. [PMID: 33052154 PMCID: PMC7545218 DOI: 10.1016/j.trac.2020.116067] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of field-Effect-Transistor (FET) type biosensing arrangements has been highlighted by researchers in the field of early biomarker detection and drug screening. Their non-metalized gate dielectrics that are exposed to an electrolyte solution cover the semiconductor material and actively transduce the biological changes on the surface. The efficiency of these novel devices in detecting different biomolecular analytes in a real-time, highly precise, specific, and label-free manner has been validated by numerous research studies. Considerable progress has been attained in designing FET devices, especially for biomedical diagnosis and cell-based assays in the past few decades. The exceptional electronic properties, compactness, and scalability of these novel tools are very desirable for designing rapid, label-free, and mass detection of biomolecules. With the incorporation of nanotechnology, the performance of biosensors based on FET boosts significantly, particularly, employment of nanomaterials such as graphene, metal nanoparticles, single and multi-walled carbon nanotubes, nanorods, and nanowires. Besides, their commercial availability, and high-quality production on a large-scale, turn them to be one of the most preferred sensing and screening platforms. This review presents the basic structural setup and working principle of different types of FET devices. We also focused on the latest progression regarding the use of FET biosensors for the recognition of viruses such as, recently emerged COVID-19, Influenza, Hepatitis B Virus, protein biomarkers, nucleic acids, bacteria, cells, and various ions. Additionally, an outline of the development of FET sensors for investigations related to drug development and the cellular investigation is also presented. Some technical strategies for enhancing the sensitivity and selectivity of detection in these devices are addressed as well. However, there are still certain challenges which are remained unaddressed concerning the performance and clinical use of transistor-based point-of-care (POC) instruments; accordingly, expectations about their future improvement for biosensing and cellular studies are argued at the end of this review.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Dept. of Elecrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada
| |
Collapse
|
12
|
Hsieh YL, Chen CW, Lin WH, Li BR. Construction of the Nickel Oxide Nanocoral Structure on Microscope Slides for Total Self-Assembly-Oriented Probe Immobilization and Signal Enhancement. ACS APPLIED BIO MATERIALS 2020; 3:3304-3312. [PMID: 35025373 DOI: 10.1021/acsabm.0c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Proper orientation of probes and the binding capacity of surfaces will determine the performance of bio-applications. It has been reported that immobilizing through bio-/chemical affinity is an efficient but gentle strategy to solve the above-mentioned issue. Herein, we introduce a total self-assembly approach via the strong affinity of nickel oxide (NiO) to the polyhistidine-tag (His-tag). It allows the efficient immobilizing His-tagged proteins with orientation. Furthermore, we find that the nanocoral structure can be formed after applying rapid thermal annealing at 1100 °C, which could increase the His-tagged protein binding capacity efficiently by the enhanced surface-to-volume ratio. Lastly, we demonstrate the NiO thin film with the nanocoral structure, which has great potential for universal biosensing with a wide range of biomolecules, including DNA, protein, and bacteria. Through His-tagged monomer streptavidin (His6-mSA) or His-tagged protein G (His6-protein G), the biotinylated DNA or antibody could be immobilized with proper orientation on the surface consequently to complete a sensitive biomolecule detection. Moreover, the NiO nanocoral structure has the advantages of high hydrophilicity, transmittance, and pH stability that are promising to develop into several kinds of bio-applications in the near future.
Collapse
Affiliation(s)
- Yu-Ling Hsieh
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| | - Chien-Wei Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan.,Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| | - Wan-Hsuan Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan.,Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| |
Collapse
|
13
|
Lin PH, Li BR. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2020; 145:1110-1120. [DOI: 10.1039/c9an02017a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A review presented recent development of antifouling strategies in electrochemical sensors and biosensors based on the modification methods.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering
- College of Electrical and Computer Engineering
- National Chiao Tung University
- Hsinchu
- Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering
- College of Electrical and Computer Engineering
- National Chiao Tung University
- Hsinchu
- Taiwan
| |
Collapse
|
14
|
Revon Liu B, Huang YW, Lee HJ. Hypotoxic Fluorescent Nanoparticles Delivery by Cell-Penetrating Peptides in Multiple Organisms: From Prokaryotes to Mammalians Cells. Biotechnol Bioeng 2019. [DOI: 10.5772/intechopen.83818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Ultrasensitive label-free detection of circulating tumor cells using conductivity matching of two-dimensional semiconductor with cancer cell. Biosens Bioelectron 2019; 142:111520. [PMID: 31330418 DOI: 10.1016/j.bios.2019.111520] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 01/23/2023]
Abstract
The excellent conductivity matching of two-dimensional (2D) semiconductor nanomaterials (e.g. MoS2) with cancer cell plays an important role in ultrasensitive label-free impedimetric detection of circulating tumor cells (CTC) (<1 cell/mL). Firstly, 2D semiconductor materials (e.g. 2D MoS2) exfoliated by folic acid (FA) is used to construct MoS2/FA-modified gold electrode (AuE/MoS2/FA). Then, the fabricated electrode is applied for HeLa cell detection in a linear range from 1 to 105 cell/mL with a detection limit of 0.43 cell/mL (S/N = 3). The detection mechanism of high sensitivity might be owing to the electric conductivity matching of MoS2 (0.14 S/m) to cancer cell (0.13-0.23 S/m). A negligible conductivity change induced by cancer cell will produce a large impedance change of semiconductor electrode. Furthermore, HeLa cells dispersed in healthy blood samples are detected by suggested cytosensor in a linear range from 50 to 105 cell/mL with a detection limit of 52.24 cell/mL (S/N = 2). Finally, we demonstrate that the cytosensor is capable of differentiating patients of cervical and liver cancers by the real CTC analysis from healthy control.
Collapse
|
16
|
Chen H, Zhao X, Xi Z, Zhang Y, Li H, Li Z, Shi H, Huang L, Shen R, Tao J, Wang T. A new biosensor detection system to overcome the Debye screening effect: dialysis-silicon nanowire field effect transistor. Int J Nanomedicine 2019; 14:2985-2993. [PMID: 31118617 PMCID: PMC6505467 DOI: 10.2147/ijn.s198734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background: A silicon nanowire field effect transistor biosensor has four advantages in the detection of small biomolecules. It is mark-free, immediately responsive, highly sensitive, and specific. However, because of environments with a high salt concentration, the Debye screening effect has been a major issue in biological detection. Objective: To overcome Debye screening effect, realize the clinical application of silicon nanowire field effect transistor and verify its specificity and sensitivity. Materials and methods: The test solution was desalted by miniature blood dialyzer, and then the tumor markers were detected by silicon nanowire field effect transistor. Results: Tumor markers in serum were detected successfully and their sensitivity and specificity were verified. Conclusion: This method was found to effectively promote the development of semiconductor materials in biological solution detection.
Collapse
Affiliation(s)
- Hang Chen
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Xiaoqian Zhao
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Zhong Xi
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Ye Zhang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Hang Li
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Zengyao Li
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Haoze Shi
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Longchang Huang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Renhui Shen
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Jianxin Tao
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Tong Wang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, People's Republic of China
| |
Collapse
|
17
|
Moon J, Byun J, Kim H, Jeong J, Lim E, Jung J, Cho S, Cho WK, Kang T. Surface‐Independent and Oriented Immobilization of Antibody via One‐Step Polydopamine/Protein G Coating: Application to Influenza Virus Immunoassay. Macromol Biosci 2019; 19:e1800486. [DOI: 10.1002/mabi.201800486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jeong Moon
- Department of Chemical and Biomolecular EngineeringKAIST Daejeon 34141 Korea
- Bionanotechnology Research CenterKRIBB Daejeon 34141 Korea
| | - Jihyun Byun
- Bionanotechnology Research CenterKRIBB Daejeon 34141 Korea
| | - Hongki Kim
- Bionanotechnology Research CenterKRIBB Daejeon 34141 Korea
| | - Jinyoung Jeong
- Environmental Disease Research CenterKRIBB Daejeon 34141 Korea
- Department of NanobiotechnologyKRIBB School of Biotechnology UST Daejeon 34113 Korea
| | - Eun‐Kyung Lim
- Bionanotechnology Research CenterKRIBB Daejeon 34141 Korea
- Department of NanobiotechnologyKRIBB School of Biotechnology UST Daejeon 34113 Korea
| | - Juyeon Jung
- Bionanotechnology Research CenterKRIBB Daejeon 34141 Korea
- Department of NanobiotechnologyKRIBB School of Biotechnology UST Daejeon 34113 Korea
| | - Soojeong Cho
- Department of ChemistryChungnam National University Daejeon 34134 Republic of Korea
| | - Woo Kyung Cho
- Department of ChemistryChungnam National University Daejeon 34134 Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research CenterKRIBB Daejeon 34141 Korea
- Department of NanobiotechnologyKRIBB School of Biotechnology UST Daejeon 34113 Korea
| |
Collapse
|
18
|
Flexible electrical aptasensor using dielectrophoretic assembly of graphene oxide and its subsequent reduction for cardiac biomarker detection. Sci Rep 2019; 9:5970. [PMID: 30979922 PMCID: PMC6461687 DOI: 10.1038/s41598-019-42506-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/01/2019] [Indexed: 01/03/2023] Open
Abstract
Cardiac troponin T (cTnT) is considered a clinical standard for its high specificity and sensitivity when diagnosing acute myocardial infarction; however, most studies on the electrical sensors of cardiac troponin biomarkers have focused on cTnI rather than cTnT. This study presents label-free, low-cost, transparent, and flexible aptamer-based immunosensors for the electrical detection of cTnT using reduced graphene oxide (rGO) sheets. GO was first deposited by AC dielectrophoresis between two predefined source and drain electrodes on a 3-aminopropyltriethoxylsilane-modified polyethylene terephthalate substrate. The GO was then reduced using hydrazine vapour without damaging the substrate, resulting in uniform, controlled, and stable deposition of rGO sheets, and demonstrating more stability than those directly deposited by dielectrophoresis. Amine-modified single-strand DNA aptamers against cTnT were immobilized onto the rGO channels. The relative resistance change of this sensor owing to the attachment of cTnT was quantified as the cTnT concentration decreased from 10 ng/mL to 1 pg/mL in phosphate buffered saline (PBS) and 10-fold diluted human serum in PBS, with the limits of detection being 1.2 pg/mL and 1.7 pg/mL, respectively, which is sufficiently sensitive for clinical applications. High-yield and rapid fabrication of the present rGO sensors will have significant influences on scaled-up fabrication of graphene-based sensors.
Collapse
|
19
|
Hu Z, Suo Z, Liu W, Zhao B, Xing F, Zhang Y, Feng L. DNA conformational polymorphism for biosensing applications. Biosens Bioelectron 2019; 131:237-249. [PMID: 30849723 DOI: 10.1016/j.bios.2019.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
In this mini review, we will briefly introduce the rapid development of DNA conformational polymorphism in biosensing field, including canonical DNA duplex, triplex, quadruplex, DNA origami, as well as more functionalized DNAs (aptamer, DNAzyme etc.). Various DNA structures are adopted to play important roles in sensor construction, through working as recognition receptor, signal reporter or linking staple for signal motifs, etc. We will mainly summarize their recent developments in DNA-based electrochemical and fluorescent sensors. For the electrochemical sensors, several types will be included, e.g. the amperometric, electrochemical impedance, electrochemiluminescence, as well as field-effect transistor sensors. For the fluorescent sensors, DNA is usually modified with fluorescent molecules or novel nanomaterials as report probes, excepting its core recognition function. Finally, general conclusion and future perspectives will be discussed for further developments.
Collapse
Affiliation(s)
- Ziheng Hu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Zhiguang Suo
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Wenxia Liu
- Department of Chemistry, College of Science, Shanghai University, 200444 Shanghai, China
| | - Biying Zhao
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Feifei Xing
- Department of Chemistry, College of Science, Shanghai University, 200444 Shanghai, China
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China.
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China.
| |
Collapse
|
20
|
Effective Construction of a High-Capacity Boronic Acid Layer on a Quartz Crystal Microbalance Chip for High-Density Antibody Immobilization. SENSORS 2018; 19:s19010028. [PMID: 30577674 PMCID: PMC6339082 DOI: 10.3390/s19010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023]
Abstract
Boronic acids (BAs) provide strong potential in orientation immobilization of antibody and the modification method is crucial for efficiency optimization. A highly effective method has been developed for rapid antibody immobilization on gold electrodes through the electrodeposition of a BA–containing linker in this study. Aniline-based BA forms a condense layer while antibody could automatically immobilize on the surface of the electrode. Compare to traditional self-assembled monolayer method, the electrodeposition process dramatically reduces the modification time from days to seconds. It also enhances the immobilized efficiency from 95 to 408 (ng/cm2) with a strong preference being exhibited for shorter aniline-based linkers.
Collapse
|
21
|
Nategh M, Mahdiyar H, Malayeri MR, Binazadeh M. Impact of Asphaltene Surface Energy on Stability of Asphaltene-Toluene System: A Parametric Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13845-13854. [PMID: 30299968 DOI: 10.1021/acs.langmuir.8b02566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Asphaltene is a complex macromolecule whose abundance strongly affects the physical and interfacial properties of crude oil. Asphaltene molecules may precipitate during crude oil production/transportation, which may lead to plugging/clogging of wellbores, pipelines, and equipment. In this study, the solubility of asphaltene in toluene has been investigated by calculation of noncovalent interaction energies between asphaltenes in toluene medium. The results of this study revealed that the main interactions in the asphaltene-toluene system are Lifshitz-van der Waals and Lewis acid-base interactions, whereas the electrostatic double layer is of lower comparative order of significance specifically at lower separation distances and lower ζ potentials. However, the repulsive electrostatic double-layer interactions may assist in stabilizing the asphaltene-toluene system based on the comparative values of Lifshitz-van der Waals, Lewis acid-base, and electrostatic double-layer interactions. This is the case especially at higher separation distances and/or higher temperatures where asphaltene particles have greater values of ζ-potential. Furthermore, it is illustrated that when asphaltene has a lower electron-donor parameter, i.e., a lower basicity than toluene, then Lewis acid-base interactions between asphaltenes in toluene are repulsive. This repulsive Lewis acid-base interaction may compensate for the attractive van der Waals interactions between asphaltene particles at low asphaltene basicity. Finally, the electron donor/acceptor component of the surface energy strongly determines the fate of asphaltene in crude oil colloidal system.
Collapse
Affiliation(s)
| | | | - Mohammad Reza Malayeri
- Institute of Process Engineering and Environmental Technology , Technical University of Dresden , George-Bähr Street 3b , 01069 Dresden , Saxony , Germany
| | - Mojtaba Binazadeh
- Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering , University of Alberta , Edmonton, Alberta T6G 2W2 , Canada
| |
Collapse
|
22
|
Rani D, Pachauri V, Madaboosi N, Jolly P, Vu XT, Estrela P, Chu V, Conde JP, Ingebrandt S. Top-Down Fabricated Silicon Nanowire Arrays for Field-Effect Detection of Prostate-Specific Antigen. ACS OMEGA 2018; 3:8471-8482. [PMID: 31458975 PMCID: PMC6644640 DOI: 10.1021/acsomega.8b00990] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/18/2018] [Indexed: 05/16/2023]
Abstract
Highly sensitive electrical detection of biomarkers for the early stage screening of cancer is desired for future, ultrafast diagnostic platforms. In the case of prostate cancer (PCa), the prostate-specific antigen (PSA) is of prime interest and its detection in combination with other PCa-relevant biomarkers in a multiplex approach is advised. Toward this goal, we demonstrate the label-free, potentiometric detection of PSA with silicon nanowire ion-sensitive field-effect transistor (Si NW-ISFET) arrays. To realize the field-effect detection, we utilized the DNA aptamer-receptors specific for PSA, which were covalently and site-specifically immobilized on Si NW-ISFETs. The platform was used for quantitative detection of PSA and the change in threshold voltage of the Si NW-ISEFTs was correlated with the concentration of PSA. Concentration-dependent measurements were done in a wide range of 1 pg/mL to 1 μg/mL, which covers the clinical range of interest. To confirm the PSA-DNA aptamer binding on the Si NW surfaces, a sandwich-immunoassay based on chemiluminescence was implemented. The electrical approach using the Si NW-ISFET platform shows a lower limit of detection and a wide dynamic range of the assay. In future, our platform should be utilized to detect multiple biomarkers in one assay to obtain more reliable information about cancer-related diseases.
Collapse
Affiliation(s)
- Dipti Rani
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
| | - Vivek Pachauri
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
| | - Narayanan Madaboosi
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - Pawan Jolly
- Department
of Electronic and Electrical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Xuan-Thang Vu
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
- Institute
of Physics I, RWTH Aachen University, Sommerfeldstr. 14, 52074 Aachen, Germany
| | - Pedro Estrela
- Department
of Electronic and Electrical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Virginia Chu
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - João Pedro Conde
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - Sven Ingebrandt
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
- E-mail:
| |
Collapse
|
23
|
Anand A, Chi CH, Banerjee S, Chou MY, Tseng FG, Pan CY, Chen YT. The Extracellular Zn 2+ Concentration Surrounding Excited Neurons Is High Enough to Bind Amyloid-β Revealed by a Nanowire Transistor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704439. [PMID: 29770576 DOI: 10.1002/smll.201704439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/07/2018] [Indexed: 06/08/2023]
Abstract
The Zn2+ stored in the secretory vesicles of glutamatergic neurons is coreleased with glutamate upon stimulation, resulting in the elevation of extracellular Zn2+ concentration (CZn2+ex). This elevation of CZn2+ex regulates the neurotransmission and facilitates the fibrilization of amyloid-β (Aβ). However, the exact CZn2+ex surrounding neurons under (patho)physiological conditions is not clear and the connection between CZn2+ex and the Aβ fibrilization remains obscure. Here, a silicon nanowire field-effect transistor (SiNW-FET) with the Zn2+ -sensitive fluorophore, FluoZin-3 (FZ-3), to quantify the CZn2+ex in real time is modified. This FZ-3/SiNW-FET device has a dissociation constant of ≈12 × 10-9 m against Zn2+ . By placing a coverslip seeded with cultured embryonic cortical neurons atop an FZ-3/SiNW-FET, the CZn2+ex elevated to ≈110 × 10-9 m upon stimulation with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Blockers against the AMPA receptor or exocytosis greatly suppress this elevation, indicating that the Zn2+ stored in the synaptic vesicles is the major source responsible for this elevation of CZn2+ex. In addition, a SiNW-FET modified with Aβ could bind Zn2+ with a dissociation constant of ≈633 × 10-9 m and respond to the Zn2+ released from AMPA-stimulated neurons. Therefore, the CZn2+ex can reach a level high enough to bind Aβ and the Zn2+ homeostasis can be a therapeutic strategy to prevent neurodegeneration.
Collapse
Affiliation(s)
- Ankur Anand
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Chih-Hung Chi
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Subhasree Banerjee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yit-Tsong Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
24
|
Iskierko Z, Noworyta K, Sharma PS. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosens Bioelectron 2018. [PMID: 29525669 DOI: 10.1016/j.bios.2018.02.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose. A FET combined with a biological material offers the potential to overcome many challenges approached in sensing. However, low stability of biological materials under measurement conditions is a serious problem. To circumvent this problem, synthetic receptors were integrated with the gate surface of FETs to provide robust performance. In the present critical review, the approach utilized to devise chemosensors integrating synthetic receptors and FET transduction is discussed in detail. The progress in this field was summarized and important outcome was provided.
Collapse
Affiliation(s)
- Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
25
|
Rani D, Pachauri V, Ingebrandt S. Silicon Nanowire Field-Effect Biosensors. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2018. [DOI: 10.1007/5346_2017_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Ren R, Zhang Y, Nadappuram BP, Akpinar B, Klenerman D, Ivanov AP, Edel JB, Korchev Y. Nanopore extended field-effect transistor for selective single-molecule biosensing. Nat Commun 2017; 8:586. [PMID: 28928405 PMCID: PMC5605549 DOI: 10.1038/s41467-017-00549-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022] Open
Abstract
There has been a significant drive to deliver nanotechnological solutions to biosensing, yet there remains an unmet need in the development of biosensors that are affordable, integrated, fast, capable of multiplexed detection, and offer high selectivity for trace analyte detection in biological fluids. Herein, some of these challenges are addressed by designing a new class of nanoscale sensors dubbed nanopore extended field-effect transistor (nexFET) that combine the advantages of nanopore single-molecule sensing, field-effect transistors, and recognition chemistry. We report on a polypyrrole functionalized nexFET, with controllable gate voltage that can be used to switch on/off, and slow down single-molecule DNA transport through a nanopore. This strategy enables higher molecular throughput, enhanced signal-to-noise, and even heightened selectivity via functionalization with an embedded receptor. This is shown for selective sensing of an anti-insulin antibody in the presence of its IgG isotype. Efficient detection of single molecules is vital to many biosensing technologies, which require analytical platforms with high selectivity and sensitivity. Ren et al. combine a nanopore sensor and a field-effect transistor, whereby gate voltage mediates DNA and protein transport through the nanopore.
Collapse
Affiliation(s)
- Ren Ren
- Department of Medicine, Imperial College London, London, W12 0NN, UK.,Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Yanjun Zhang
- Department of Medicine, Imperial College London, London, W12 0NN, UK. .,Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping Qu, 300052, China.
| | | | - Bernice Akpinar
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | - Joshua B Edel
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London, W12 0NN, UK.,National University of Science & Technology MISIS, Moscow, 119049, Russia
| |
Collapse
|
27
|
Melzer K, Bhatt VD, Jaworska E, Mittermeier R, Maksymiuk K, Michalska A, Lugli P. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors. Biosens Bioelectron 2016; 84:7-14. [DOI: 10.1016/j.bios.2016.04.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
|
28
|
Nuzaihan M.N. M, Hashim U, Md Arshad M, Kasjoo S, Rahman S, Ruslinda A, Fathil M, Adzhri R, Shahimin M. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. Biosens Bioelectron 2016; 83:106-14. [DOI: 10.1016/j.bios.2016.04.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022]
|
29
|
Rani D, Pachauri V, Mueller A, Vu XT, Nguyen TC, Ingebrandt S. On the Use of Scalable NanoISFET Arrays of Silicon with Highly Reproducible Sensor Performance for Biosensor Applications. ACS OMEGA 2016; 1:84-92. [PMID: 30023473 PMCID: PMC6044623 DOI: 10.1021/acsomega.6b00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/31/2016] [Indexed: 05/22/2023]
Abstract
As a prerequisite to the development of real label-free bioassay applications, a high-throughput top-down nanofabrication process is carried out with a combination of nanoimprint lithography, anisotropic wet-etching, and photolithography methods realizing nanoISFET arrays that are then analyzed for identical sensor characteristics. Here, a newly designed array-based sensor chip exhibits 32 high aspect ratio silicon nanowires (SiNWs) laid out in parallel with 8 unit groups that are connected to a very highly doped, Π-shaped common source and individual drain contacts. Intricately designed contact lines exert equal feed-line resistances and capacitances to homogenize the sensor response as well as to minimize parasitic transport effects and to render easy integration of a fluidic layer on top. The scalable nanofabrication process as outlined in this article casts out a total of 2496 nanowires (NWs) on a 4 inch p-type silicon-on-insulator (SOI) wafer, yielding 78 sensor chips based on nanoISFET arrays. The sensor platform exhibiting high-performance transistor characteristics in buffer solutions is thoroughly characterized using state-of-the-art surface and electrical measurement techniques. Deploying a pH sensor in liquid buffers after high-quality gas-phase silanization, nanoISEFT arrays demonstrate typical pH sensor behavior with sensitivity as high as 43 ± 3 mV·pH-1 and a device-to-device variation of 7% at the wafer scale. Demonstration of a high-density sensor platform with uniform characteristics such as nanoISFET arrays of silicon (Si) in a routine and refined nanofabrication process may serve as an ideal solution deployable for real assay-based applications.
Collapse
Affiliation(s)
- Dipti Rani
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
| | - Vivek Pachauri
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- E-mail:
| | - Achim Mueller
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| | - Xuan Thang Vu
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| | | | - Sven Ingebrandt
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| |
Collapse
|
30
|
Chen KI, Pan CY, Li KH, Huang YC, Lu CW, Tang CY, Su YW, Tseng LW, Tseng KC, Lin CY, Chen CD, Lin SS, Chen YT. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor. Sci Rep 2015; 5:17375. [PMID: 26616332 PMCID: PMC4663627 DOI: 10.1038/srep17375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/29/2015] [Indexed: 02/08/2023] Open
Abstract
Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3′-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions.
Collapse
Affiliation(s)
- Kuan-I Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Keng-Hui Li
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ying-Chih Huang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chuan-Yi Tang
- Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ya-Wen Su
- National Nano Device Laboratories, Hsinchu 300, Taiwan
| | - Ling-Wei Tseng
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kun-Chang Tseng
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan
| | - Chi-Yun Lin
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chii-Dong Chen
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yit-Tsong Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan
| |
Collapse
|
31
|
Kim BY, Sohn IY, Lee D, Han GS, Lee WI, Jung HS, Lee NE. Ultrarapid and ultrasensitive electrical detection of proteins in a three-dimensional biosensor with high capture efficiency. NANOSCALE 2015; 7:9844-9851. [PMID: 25965056 DOI: 10.1039/c5nr00909j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The realization of a high-throughput biosensor platform with ultrarapid detection of biomolecular interactions and an ultralow limit of detection in the femtomolar (fM) range or below has been retarded due to sluggish binding kinetics caused by the scarcity of probe molecules on the nanostructures and/or limited mass transport. Here, as a new method for the highly efficient capture of biomolecules at extremely low concentration, we tested a three-dimensional (3D) platform of a bioelectronic field-effect transistor (bio-FET) with vertically aligned and highly dense one-dimensional (1D) ZnO nanorods (NRs) as a sensing surface capped by an ultrathin TiO2 layer for improved electrolytic stability on a chemical-vapor-deposited graphene (Gr) channel. The ultrarapid detection capability with a very fast response time (∼1 min) at the fM level of proteins in the proposed 3D bio-FET is primarily attributed to the fast binding kinetics of the probe-target proteins due to the small diffusion length of the target molecules to reach the sensor surface and the substantial number of probe molecules available on the largely increased surface area of the vertical ZnO NRs. This new 3D electrical biosensor platform can be easily extended to other electrochemical nanobiosensors and has great potential for practical applications in miniaturized biosensor integrated systems.
Collapse
Affiliation(s)
- Bo-Yeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhao L, Cao D, Gao Z, Mi B, Huang W. Label-Free DNA Sensors Based on Field-Effect Transistors with Semiconductor of Carbon Materials. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Nanoparticles selectively immobilized onto large arrays of gold micro and nanostructures through surface chemical functionalizations. J Colloid Interface Sci 2015; 447:152-8. [PMID: 25490855 DOI: 10.1016/j.jcis.2014.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 11/20/2022]
Abstract
Latex nanoparticles (100nm and 200nm diameter) were precisely located onto the gold regions of micro and nanopatterned gold/silica substrates through surface chemical functionalizations. The gold patterns were selectively functionalized with alkylthiols bearing biotin or amine headgroups. This selective functionalization allowed the trapping of streptavidin- or carboxy-functionalized latex nanoparticles onto the gold structures with very little non-specific adsorption onto the surrounding silica. Quantitative data of nanoparticle capture on gold and silica, obtained through SEM image analysis, showed a one to two order of magnitude increase on gold with a similar low coverage on silica (non-specific adsorption) thanks to chemical functionalizations. Single nanoparticles were captured at the gap of dimer gold nanostructures.
Collapse
|
34
|
Shen MY, Li BR, Li YK. Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens Bioelectron 2014; 60:101-11. [PMID: 24787124 DOI: 10.1016/j.bios.2014.03.057] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/13/2014] [Accepted: 03/23/2014] [Indexed: 02/03/2023]
Abstract
Silicon nanowire field effect transistors (SiNW-FETs) have shown great promise as biosensors in highly sensitive, selective, real-time and label-free measurements. While applications of SiNW-FETs for detection of biological species have been described in several publications, less attention has been devoted to summarize the conjugating methods involved in linking organic bio-receptors with the inorganic transducer and the strategies of improving the sensitivity of devices. This article attempts to focus on summarizing the various organic immobilization approaches and discussing various sensitivity improving strategies, that include (I) reducing non-specific binding, (II) alignment of the probes, (III) enhancing signals by charge reporter, (IV) novel architecture structures, and (V) sensing in the sub-threshold regime.
Collapse
Affiliation(s)
- Mo-Yuan Shen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Bor-Ran Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan.
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
35
|
Li BR, Shen MY, Yu HH, Li YK. Rapid construction of an effective antifouling layer on a Au surface via electrodeposition. Chem Commun (Camb) 2014; 50:6793-6. [DOI: 10.1039/c4cc01329h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An electrodeposited zwitterion layer enables reduction of non-specific adsorption up to 95% on a gold surface from fetal bovine serum.
Collapse
Affiliation(s)
- Bor-Ran Li
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Taiwan
| | - Mo-Yuan Shen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Taiwan
| | - Hsiao-hua Yu
- Institute of Chemistry
- Academia Sinica
- Taipei, Taiwan
| | - Yaw-Kuen Li
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Taiwan
| |
Collapse
|
36
|
Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmström J. Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2014; 2:4593-4609. [DOI: 10.1039/c4tb00598h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fabrication of conductive polymer nanowires and their sensing of nucleic acids, proteins and pathogens is reviewed in this feature article.
Collapse
Affiliation(s)
- J. Travas-Sejdic
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - N. Aydemir
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - B. Kannan
- Revolution Fibres Ltd
- , New Zealand
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
| | - D. E. Williams
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - J. Malmström
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| |
Collapse
|