1
|
Yano K, Matsuie Y, Sato A, Okada M, Akimoto T, Sugimoto I. Characterization of plasma polymerized acetonitrile film for fluorescence enhancement and its application to aptamer-based sandwich assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5311-5320. [PMID: 39028106 DOI: 10.1039/d4ay00795f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Among biosensing systems for sensitive diagnoses fluorescence enhancement techniques have attracted considerable attention. This study constructed a simple multilayered structure comprising a plane metal mirror coated with a plasma-polymerized film (PPF) as an optical interference layer on a glass slide for fluorescence enhancement. Plasma polymerization enables the easy deposition of organic thin films containing functional groups, such as amino groups. This study prepared PPFs using acetonitrile as a monomer, and the influences of washing and the output powers of plasma polymerization on PPF thickness were examined by Fourier transform infrared spectroscopy. This is because controlling the PPF thickness is vital in fluorescence enhancement. Multilayered glass slides prepared using a silver layer with 84 nm-thick acetonitrile PPFs exhibited 11- and 281-fold fluorescence enhancements compared with those obtained from the substrates with a bare surface and only modified by the silver layer, respectively. Oligonucleotides labeled with a thiol group and cyanine5 were successfully immobilized on the multilayered substrates, and the fluorescence of the acetonitrile PPFs was superior to that of the allylamine and cyclopropylamine PPFs. Furthermore, an aptamer-based sandwich assay targeting thrombin was performed on the multilayered glass slides, resulting in an approximately 5.1-fold fluorescence enhancement compared with that obtained from the substrate with a bare surface. Calibration curves revealed the relationship between fluorescence intensity and thrombin concentration of 10-1000 nM. This study demonstrates that PPFs can function as materials for fluorescence enhancement, immobilization for biomaterials, and aptamer-based sandwich assays.
Collapse
Affiliation(s)
- Kazuyoshi Yano
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Yutaro Matsuie
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Ayaka Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Maiko Okada
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Takuo Akimoto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Iwao Sugimoto
- Graduate School of Computer Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
2
|
Zhang R, Lu H, Zong S, Lu C, Yun B, Hu G, Zhu L, Cui Y. Silicon-assisted surface enhanced fluorescence toward improved assay performances. NANOTECHNOLOGY 2021; 32:125201. [PMID: 33254158 DOI: 10.1088/1361-6528/abcef4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel scheme of silicon-assisted surface enhanced fluorescence (SEF) is presented for SEF-based assays, where the blank signal suppression and the fluorescence signal enhancement is combined. The P-doped, (100) oriented silicon substrate is used to quench the fluorescence of Rose Bengal (RB) molecules attached to it, resulting in an effectively suppressed background signal, which is useful for a lower limit of detection (LOD). When a proper quantity of silver nanoparticles (AgNPs) is deposited on the RB-attached silicon substrate, a significant fluorescence enhancement of up to around 290 fold is obtained, which helps to improve the sensitivity in fluorescence-based assays. Besides, conventional gold nanoparticles (AuNPs) have also been demonstrated to exhibit excellent SEF effect using the presented scheme, providing improved stability and biocompatibility. The mechanism of the observed SEF effect has been investigated, and both the decreased apparent quantum yield and the silicon-induced electric field redistribution are considered to play important roles. The experimental results suggest that the presented scheme holds great potential in the SEF-based assays aiming at higher sensitivity and lower LOD.
Collapse
Affiliation(s)
- Ruohu Zhang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Hui Lu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Changgui Lu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Binfeng Yun
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Guohua Hu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Li Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Fluorescence Enhancement on Silver-Plated Plasma Micro-Nanostructured 3D Polymeric Microarray Substrates for Multiplex Mycotoxin Detection. Processes (Basel) 2021. [DOI: 10.3390/pr9020392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oxygen plasma micro-nanostructured poly(methyl methacrylate) (PMMA) slides were modified through silver microparticle deposition to create microarray substrates that enhance the emitted fluorescence intensity. Silver deposition relied on a commercially available reagent and was completed in two 30-min incubation cycles of the substrate with the reagent. The fluorescence enhancement achieved using these substrates over flat PMMA slides was determined through the development of a microarray for the multiplexed detection of four mycotoxins, aflatoxin B1, ochratoxin A, fumonisin B1, and deoxynivalenol. It was shown that the implementation of silver-plated oxygen plasma micro-nanotextured PMMA substrates increased the signals obtained for aflatoxin B1 and ochratoxin A by approximately 2.8 times, 5.6 times for deoxynivalenol, and 16-times for fumonisin B1, compared to flat PMMA substrates. Most notably, this signal increase was not accompanied by a significant increase in the non-specific signal. In addition, the spot repeatability both across a single slide as well as between different slides was high, with coefficients of variation lower than 12%. The slides were also stable for at least three months, thus offering a microarray substrate with improved properties compared to standard glass slides, regarding both the absolute spot fluorescence intensity and between spots repeatability.
Collapse
|
4
|
Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate. Polymers (Basel) 2020; 13:polym13010048. [PMID: 33375587 PMCID: PMC7795982 DOI: 10.3390/polym13010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 11/17/2022] Open
Abstract
A simple and cost-effective method is proposed herein for a plasmonic nanoantenna array (PNAA) for the fabrication of metal-enhanced fluorescence (MEF) substrates in which fluorophores interact with the enhanced electromagnetic field generated by a localized surface plasmon to provide a higher fluorescence signal. The PNAA is fabricated by the deposition of a silver (Ag) layer on an ultraviolet (UV) nanoimprinted nanodot array with a pitch of 400 nm, diameter of 200 nm, and height of 100 nm. During deposition, raised Ag nanodisks and a lower Ag layer are, respectively, formed on the top and bottom of the imprinted nanodot array, and the gap between these Ag layers acts as a plasmonic nanoantenna. Since the thickness of the gap within the PNAA is influenced by the thickness of Ag deposition, the effects of the latter upon the geometrical properties of the fabricated PNAA are examined, and the electromagnetic field intensity distributions of PNAAs with various Ag thicknesses are simulated. Finally, the fluorescence enhancement factor (FEF) of the fabricated PNAA MEF substrate is measured using spotted Cy5-conjugated streptavidin to indicate a maximum enhancement factor of ~22× for the PNAA with an Ag layer thickness of 75 nm. The experimental results are shown to match the simulated results.
Collapse
|
5
|
Sultangaziyev A, Bukasov R. Review: Applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing. SENSING AND BIO-SENSING RESEARCH 2020; 30:100382. [PMID: 33101976 PMCID: PMC7566769 DOI: 10.1016/j.sbsr.2020.100382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/05/2022] Open
Abstract
Surface-enhanced fluorescence (SEF) is rapidly becoming one of the main spectroscopic techniques for the detection of a variety of biomolecules and biomarkers. The main reasons for this trend are the high sensitivity and selectivity, robustness, and speed of this analytical method. Each year, the number of applications that utilize this phenomenon increases and with each such work, the complexity and novelty of the used substrates, procedures, and analytes rises. To obtain a clearer view of this phenomenon and research area, we decided to combine 76 valuable research articles from a variety of different research groups into this mini-review. We present and describe these works concisely and clearly, with a particular interest in the quantitative parameters of the experiment. These sources are classified according to the nature of the analyte, on the contrary to most reviews, which sort them by substrate nature. This point of view gives us insight into the development of this research area and the consequent increase in the complexity of the analyte nature. Moreover, this type of sorting can show possible future routes for the expansion of this research area. Along with the analytes, we can also pay attention to the substrates used for each situation and how the development of substrates affects the direction of research and subsequently, the choice of an analyte. About 108 sources and several interesting trends in the SEF research area over the past 25 years are discussed in this mini-review.
Collapse
Affiliation(s)
| | - Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
6
|
Abbas N, Lu X, Badshah MA, In JB, Heo WI, Park KY, Lee MK, Kim CH, Kang P, Chang WJ, Kim SM, Seo SJ. Development of a Protein Microarray Chip with Enhanced Fluorescence for Identification of Semen and Vaginal Fluid. SENSORS 2018; 18:s18113874. [PMID: 30423842 PMCID: PMC6263525 DOI: 10.3390/s18113874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023]
Abstract
The detection of body fluids has been used to identify a suspect and build a criminal case. As the amount of evidence collected at a crime site is limited, a multiplex identification system for body fluids using a small amount of sample is required. In this study, we proposed a multiplex detection platform using an Ag vertical nanorod metal enhanced fluorescence (MEF) substrate for semen and vaginal fluid (VF), which are important evidence in cases of sexual crime. The Ag nanorod MEF substrate with a length of 500 nm was fabricated by glancing angle deposition, and amino functionalization was conducted to improve binding ability. The effect of incubation time was analyzed, and an incubation time of 60 min was selected, at which the fluorescence signal was saturated. To assess the performance of the developed identification chip, the identification of semen and VF was carried out. The developed sensor could selectively identify semen and VF without any cross-reactivity. The limit of detection of the fabricated microarray chip was 10 times better than the commercially available rapid stain identification (RSID) Semen kit.
Collapse
Affiliation(s)
- Naseem Abbas
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Xun Lu
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Mohsin Ali Badshah
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Jung Bin In
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Won Il Heo
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Cho Hee Kim
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Korea.
| | - Pilwon Kang
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Korea.
| | - Woo-Jin Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N Cramer St, Milwaukee, WI 53211, USA.
| | - Seok-Min Kim
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| |
Collapse
|
7
|
Liu X, Li H, Zhao Y, Yu X, Xu D. Multivalent aptasensor array and silver aggregated amplification for multiplex detection in microfluidic devices. Talanta 2018; 188:417-422. [DOI: 10.1016/j.talanta.2018.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 01/01/2023]
|
8
|
Cao C, Zhang F, Goldys EM, Gao F, Liu G. Advances in structure-switching aptasensing towards real time detection of cytokines. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Zhu Z, Yuan P, Li S, Garai M, Hong M, Xu QH. Plasmon-Enhanced Fluorescence in Coupled Nanostructures and Applications in DNA Detection. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhijun Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Department of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, China 266071
| | - Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Shuang Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Monalisa Garai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Minghui Hong
- Department of Electric and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore117583
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
10
|
Wen S, Zhang G, Zhang R, Zhang L, Liu L. Enhanced fluorescence properties of terbium complex/poly-l-lactic acid superfine fibers sensitized by the LSPR effect of silver nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra02401k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to the LSPR effect of Ag-NPs, the fluorescence intensity, quantum efficiency of Tb-complex in the composite fibers were improved.
Collapse
Affiliation(s)
- Shipeng Wen
- Beijing Engineering Research Centre of Advanced Elastomers
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Guiming Zhang
- Beijing Engineering Research Centre of Advanced Elastomers
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Rong Zhang
- Beijing Engineering Research Centre of Advanced Elastomers
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Liqun Zhang
- Beijing Engineering Research Centre of Advanced Elastomers
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Li Liu
- Beijing Engineering Research Centre of Advanced Elastomers
- Beijing University of Chemical Technology
- Beijing 100029
- China
- State Key Laboratory of Chemical Resource Engineering
| |
Collapse
|
11
|
Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films. SENSORS 2016; 17:s17010037. [PMID: 28029144 PMCID: PMC5298610 DOI: 10.3390/s17010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023]
Abstract
A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection.
Collapse
|
12
|
Yuan B, Jiang X, Yao C, Bao M, Liu J, Dou Y, Xu Y, He Y, Yang K, Ma Y. Plasmon-enhanced fluorescence imaging with silicon-based silver chips for protein and nucleic acid assay. Anal Chim Acta 2016; 955:98-107. [PMID: 28088285 DOI: 10.1016/j.aca.2016.11.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/30/2022]
Abstract
Metal-enhanced fluorescence shows great potential for improving the sensitivity of fluoroscopy, which has been widely used in protein and nucleic acid detection for biosensor and bioassay applications. In comparison with the traditional glass-supported metal nanoparticles (MNPs), the introduction of a silicon substrate has been shown to provide an increased surface-enhanced Raman scattering (SERS) effect due to the coupling between the MNPs and the semiconducting silicon substrate. In this work, we further study the fluorescence-enhanced effect of the silicon-supported silver-island (Ag@Si) plasmonic chips. In particular, we investigate their practical application of improving the traditional immunoassay such as the biotin-streptavidin-based protein assay and the protein-/nucleic acid-labeled cell and tissue samples. The protein assay shows a wavelength-dependent enhancement effect of the Ag@Si chip, with an enhancement factor ranging from 1.2 (at 532 nm) to 57.3 (at 800 nm). Moreover, for the protein- and nucleic acid-labeled cell and tissue samples, the Ag@Si chip provides a fluorescence enhancement factor of 3.0-4.1 (at 800 nm) and a significant improvement in the signal/background ratio for the microscopy images. Such a ready accommodation of the fluorescence-enhanced effect for the immunoassay samples with simple manipulations indicates broad potential for applications of the Ag@Si chip not only in biological studies but also in the clinical field.
Collapse
Affiliation(s)
- Bing Yuan
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, PR China; Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, PR China.
| | - Xiangxu Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Chu Yao
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, PR China; Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, PR China
| | - Meimei Bao
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, PR China; Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, PR China
| | - Jiaojiao Liu
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, PR China; Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, PR China
| | - Yujiang Dou
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, PR China
| | - Yinze Xu
- School of Engineering, University of Guelph, Guelph N1G 2W1, Canada
| | - Yao He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China.
| | - Kai Yang
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, PR China; Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, PR China.
| | - Yuqiang Ma
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, PR China; Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, PR China; National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
13
|
Li Y, Liu S, Zhao Z, Zheng Y, Wang Z. Binding induced strand displacement amplification for homogeneous protein assay. Talanta 2016; 164:196-200. [PMID: 28107917 DOI: 10.1016/j.talanta.2016.11.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 12/31/2022]
Abstract
An ultrasensitive and homogenous strategy for protein assay was established based upon binding-induced strand displacement amplification (BI-SDA). Binding-Induced DNA strand-displacement occurred between Apt-T•signal DNA and Apt-C, and release of signal DNA upon addition of platelet-derived growth factor (PDGF BB). The released signal DNA further hybridized with multifunctional hairpin DNA probe and induced the strand-displacement amplification in the presence of Klenow Fragment (exo-) and dNTPs. The BI-SDA product contain G-quaruplex DNA, which could be recognized and reported by the fluorescence of fluorochrome N-methyl porphyrin propionic acid IX (NMM). The fluorescence intensity was proportional to the concentration of PDGF-BB over the range of 1.0×10-11mol/L -2.0×10-9mol/L, with a detection limit of 3.6pmol/L. This proposed strategy showed good selectivity and practicality, and might be applied to other proteins in the future.
Collapse
Affiliation(s)
- Yubin Li
- College of Science, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Sheng Liu
- College of Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zike Zhao
- College of Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yuner Zheng
- College of Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zirui Wang
- College of Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| |
Collapse
|
14
|
Shen Y, He T, Wang W, Zhan Y, Hu X, Yuan B, Zhou X. Fluorescence enhancement on silver nanoplates at the single- and sub-nanoparticle level. NANOSCALE 2015; 7:20132-41. [PMID: 26567844 DOI: 10.1039/c5nr06146f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The fluorescence intensity of a fluorescent molecule can be strongly enhanced when the molecule is near a metal nanoparticle. Hence, fluorescence enhancement has a lot of applications in the fields of biology and medical science. It is necessary to understand the mechanism for such an attractive effect, if we intend to develop better materials to improve the enhancement. In this paper, we directly image the diverse patterns of fluorescence enhancement on single Ag nanoplates by super-resolution microscopy. The research reveals that the edges or tips of the Ag nanoplate usually show a much higher ability of fluorescence enhancement than the mid part. The spatial distribution of fluorescence enhancement strongly depends on the size of the Ag nanoplate as well as the angle between the Ag nanoplate and the incident light. The experimental results above are essentially consistent with the simulated electric field by the theory of localized surface plasmon resonance (LSPR), but some irregularities still exist. We also find that fluorescence enhancement on small Ag nanoplates is mainly due to in-plane dipole plasmon resonance, while the enhancement on large Ag nanoplates is mainly due to in-plane quadrupole plasmon resonance. Furthermore, in-plane quadrupole resonance of large plates has a higher ability to enhance the fluorescence signal than the in-plane dipole plasmon resonance. This research provides many valuable insights into the fluorescence enhancement at the single- and sub-nanoparticle level, and will be very helpful in developing better relevant materials.
Collapse
Affiliation(s)
- Yangbin Shen
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang Y, Li H, Xu D. Aptamers-based sandwich assay for silver-enhanced fluorescence multiplex detection. Anal Chim Acta 2015; 905:149-55. [PMID: 26755149 DOI: 10.1016/j.aca.2015.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 12/26/2022]
Abstract
In this work, aptamers-modified silver nanoparticles (AgNPs) were prepared as capture substrate, and fluorescent dyes-modified aptamers were synthesized as detection probes. The sandwich assay was based on dual aptamers, which was aimed to accomplish the highly sensitive detection of single protein and multiplex detection of proteins on one-spot. We found that aptamers-modified AgNPs based microarray was much superior to the aptamer based microarray in fluorescence detection of proteins. The result shows that the detection limit of the sandwich assay using AgNPs probes for thrombin or platelet-derived growth factor-BB (PDGF-BB) is 80 or 8 times lower than that of aptamers used directly. For multiplex detection of proteins, the detection limit was 625 pM for PDGF-BB and 21 pM for thrombin respectively. The sandwich assay based on dual aptamers and AgNPs was sensitive and specific.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China; School of Environmental Science, Nanjing Xiaozhuang University, China.
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| |
Collapse
|
16
|
Krizkova S, Heger Z, Zalewska M, Moulick A, Adam V, Kizek R. Nanotechnologies in protein microarrays. Nanomedicine (Lond) 2015; 10:2743-55. [PMID: 26039143 DOI: 10.2217/nnm.15.81] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Zbynek Heger
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Marta Zalewska
- Department of Biomedical & Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland, European Union
| | - Amitava Moulick
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Rene Kizek
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| |
Collapse
|
17
|
Li H, Hu H, Xu D. Silver decahedral nanoparticles-enhanced fluorescence resonance energy transfer sensor for specific cell imaging. Anal Chem 2015; 87:3826-33. [PMID: 25764443 DOI: 10.1021/ac5045274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report on a silver decahedral nanoparticles (Ag10NPs)-based FRET (fluorescence resonance energy transfer) sensor for target cell imaging. Fluorophores-functionalized aptamers (Sgc8-FITC) were bound with Ag10NPs via the SH group on the aptamer to form Ag10-Sgc8-FITC. Then, quencher-carrying strands (BHQ-1) were hybridized with Sgc8-FITC to form a Ag10NPs-based FRET sensor (Ag10-Sgc8-F/Q). The sensor interacted with membrane protein tyrosine kinase-7 (PTK-7) on the CCRF-CEM (CCL-119, T-cell line, human acute lymphoblastic leukemia) cell surface to attain fluorescence imaging of CCRF-CEM cells. The addition of CCRF-CEM cells resulted in many sensors binding with cells membrane and the displacement of BHQ-1, thus disrupting the FRET effect and the enhanced fluorescence intensity of FITC. It was found that Ag10NPs largely enhanced the fluorescence intensity of FITC. The results also showed that the Ag10NPs-based FRET sensor (Ag10-Sgc8-F/Q) was not only superior to the bare FRET sensor (Sgc8-F/Q) and sensor Ag-Sgc8-F/Q but also highly sensitive and specific for CCRF-CEM cells imaging.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongting Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
18
|
Li H, Hu H, Zhao Y, Chen X, Li W, Qiang W, Xu D. Multifunctional aptamer-silver conjugates as theragnostic agents for specific cancer cell therapy and fluorescence-enhanced cell imaging. Anal Chem 2015; 87:3736-45. [PMID: 25686206 DOI: 10.1021/ac504230j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We fabricated a multifunctional theragnostic agent Ag-Sgc8-FAM for apoptosis-based cancer therapy and fluorescence-enhanced cell imaging. For cancer therapy, aptamers Sgc8 and TDO5 acted as recognizing molecules to bind CCRF-CEM and Ramos cells specifically. It was found that aptamer-silver conjugates (Ag-Sgc8, Ag-TDO5) could be internalized into cells by receptor-mediated endocytosis, inducing specific apoptosis of CCRF-CEM and Ramos cells. The apoptosis of cells depended on the concentration of aptamer-silver conjugates, as well as the incubation time between cells and aptamer-silver conjugates. The apoptotic effects on CCRF-CEM and Ramos cells were different. Annexin V/PI staining, AO/PI staining, MTT assays and ROS (reactive oxygen species) detection demonstrated the specific apoptosis of CCRF-CEM and Ramos cells. For fluorescence-enhanced cell imaging, Ag-Sgc8-FAM was prepared. Compared to Sgc8-FAM molecules, Ag-Sgc8-FAM was an excellent imaging agent as numerous Sgc8-FAM molecules were enriched on the surface of AgNPs for multiple binding with CCRF-CEM cells and signal amplification. Moreover, AgNPs could increase the fluorescence intensity of FAM by metal-enhanced fluorescence (MEF) effect. Therefore, aptamer-silver conjugates can be potential theragnostic agents for inducing specific apoptosis of cells and achieving cells imaging in real time.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Hongting Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yaju Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Xiang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Weibing Qiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| |
Collapse
|
19
|
|
20
|
Wang K, Liao J, Yang X, Zhao M, Chen M, Yao W, Tan W, Lan X. A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron 2014; 63:172-177. [PMID: 25086329 DOI: 10.1016/j.bios.2014.07.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/27/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
Abstract
A label-free fluorescence aptasensor for highly selective and sensitive detection of ATP and thrombin was developed by using PicoGreen (PG) as signal molecule and surface-bound metal-enhanced fluorescence (MEF) substrates (silver island films, SIFs) as signal enhancers. On binding with ATP or thrombin, aptamers undergo structure switching, leading to a reduction of fluorescence intensity of PG. Chang of fluorescence intensity can be magnified by SIFs. The limit of detection for ATP and thrombin is 1.3 nM and 0.073 nM, respectively. The fluorescence quenching efficiency is linear in the logarithmic scale with ATP concentration range from 10 nM to 100 μM (R(2)=0.995) and thrombin concentration range from 0.1 nM to 100 nM (R(2)=0.997). The coefficients of variation of the intra-assay reproducibility and inter-assay reproducibility for ATP (10 μM) assay are 3.8% and 5.2%, respectively. In addition, the aptasensor is stable and can be reliably used for ATP measurement in biological samples. Overall, the aptasensor can be a useful and cost effective tool for the specific detection of ATP, thrombin and potentially other biomolecules in biological samples.
Collapse
Affiliation(s)
- Kaiyu Wang
- Institute of Laboratory Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou 350025, PR China; Department of Laboratory Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, PR China; Department of Laboratory Medicine, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, PR China
| | - Jian Liao
- Institute of Laboratory Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou 350025, PR China; Department of Laboratory Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, PR China
| | - Xiangyue Yang
- Institute of Laboratory Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou 350025, PR China; Department of Laboratory Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, PR China
| | - Meng Zhao
- Institute of Laboratory Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou 350025, PR China; Department of Laboratory Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, PR China
| | - Min Chen
- Institute of Laboratory Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou 350025, PR China; Department of Laboratory Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, PR China
| | - Weirong Yao
- Department of Laboratory Medicine, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, PR China
| | - Weihong Tan
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, University of Florida, Gainesville, Florida 32611, United States; Plant Pathology Lab, North Florida Research and Education Center, University of Florida, Quincy, Florida 32351, United States; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, PR China.
| | - Xiaopeng Lan
- Institute of Laboratory Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou 350025, PR China; Department of Laboratory Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, PR China; Department of Laboratory Medicine, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, PR China.
| |
Collapse
|