1
|
Verdin A, Malherbe C, Sloan-Dennison S, Faulds K, Graham D, Eppe G. Thiol-polyethylene glycol-folic acid (HS-PEG-FA) induced aggregation of Au@Ag nanoparticles: A SERS and extinction UV-Vis spectroscopy combined study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124848. [PMID: 39032228 DOI: 10.1016/j.saa.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Plasmonic colloidal nanoparticles (NPs) functionalised with polymers are widely employed in diverse applications, offering advantages demonstrated over non-functionalised NPs such as enhanced colloidal stability or increased biocompatibility. However, functionalisation with polymers does not always increase the stability of the colloidal system. This work explores the intricate relationship between the functionalisation of plasmonic core@shell Au@Ag nanoparticles (NPs) with thiol-polyethylene glycol-folic acid (HS-PEG-FA) polymer chains and the resulting stability and spectral characteristics of Surface-Enhanced Raman Scattering (SERS) nanotags based on these NPs. We demonstrate that varying levels of HS-PEG-FA grafting influence nanotag stability, with a low level of grafting causing aggregation and subsequently affecting the spectral signature of Raman-reporter molecules attached to the surface of the NP. Electrostatic destabilisation is identified as the primary mechanism driving aggregation, impacting the SERS spectrum of Malachite Green isothiocyanate (MGITC) whose spectral shape is different between the aggregated and non-aggregated NPs. The findings provide valuable insights into NPs stability under different conditions, offering essential considerations for the design and optimisation of SERS nanotags in bio-analytical applications, particularly those involving data processing based on spectral shape, such as in multiplex approaches where experimental spectra are decomposed with several reference components.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
2
|
Sytu MRC, Hahm JI. Principles and Applications of ZnO Nanomaterials in Optical Biosensors and ZnO Nanomaterial-Enhanced Biodetection. BIOSENSORS 2024; 14:480. [PMID: 39451693 PMCID: PMC11506539 DOI: 10.3390/bios14100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Significant research accomplishments have been made so far for the development and application of ZnO nanomaterials in enhanced optical biodetection. The unparalleled optical properties of ZnO nanomaterials and their reduced dimensionality have been successfully exploited to push the limits of conventional optical biosensors and optical biodetection platforms for a wide range of bioanalytes. ZnO nanomaterial-enabled advancements in optical biosensors have been demonstrated to improve key sensor performance characteristics such as the limit of detection and dynamic range. In addition, all nanomaterial forms of ZnO, ranging from 0-dimensional (0D) and 1D to 2D nanostructures, have been proven to be useful, ensuring their versatile fabrication into functional biosensors. The employment of ZnO as an essential biosensing element has been assessed not only for ensembles but also for individual nanomaterials, which is advantageous for the realization of high miniaturization and minimal invasiveness in biosensors and biodevices. Moreover, the nanomaterials' incorporations into biosensors have been shown to be useful and functional for a variety of optical detection modes, such as absorption, colorimetry, fluorescence, near-band-edge emission, deep-level emission, chemiluminescence, surface evanescent wave, whispering gallery mode, lossy-mode resonance, surface plasmon resonance, and surface-enhanced Raman scattering. The detection capabilities of these ZnO nanomaterial-based optical biosensors demonstrated so far are highly encouraging and, in some cases, permit quantitative analyses of ultra-trace level bioanalytes that cannot be measured by other means. Hence, steady research endeavors are expected in this burgeoning field, whose scientific and technological impacts will grow immensely in the future. This review provides a timely and much needed review of the research efforts made in the field of ZnO nanomaterial-based optical biosensors in a comprehensive and systematic manner. The topical discussions in this review are organized by the different modes of optical detection listed above and further grouped by the dimensionality of the ZnO nanostructures used in biosensors. Following an overview of a given optical detection mode, the unique properties of ZnO nanomaterials critical to enhanced biodetection are presented in detail. Subsequently, specific biosensing applications of ZnO nanomaterials are discussed for ~40 different bioanalytes, and the important roles that the ZnO nanomaterials play in bioanalyte detection are also identified.
Collapse
Affiliation(s)
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
3
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
4
|
Lane LA, Zhang J, Wang Y. AMP coated SERS NanoTags with hydrophobic locking: Maximizing brightness, stability, and cellular targetability. J Colloid Interface Sci 2024; 663:295-308. [PMID: 38402824 DOI: 10.1016/j.jcis.2024.02.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Developing innovative surface-enhanced Raman scattering (SERS) nanotags continues to attract significant attention due to their unparalleled sensitivity and specificity for in vitro diagnostic and in vivo tumor imaging applications. Here, we report a new class of bright and stable SERS nanotags using alkylmercaptan-PEG (AMP) polymers. Due to its amphiphilic structure and a thiol anchoring group, these polymers strongly absorb onto gold nanoparticles, leading to an inner hydrophobic layer and an outer hydrophilic PEG layer. The inner hydrophobic layer serves to "lock in" the Raman reporter molecules adsorbed on the particle surface via favorable hydrophobic interactions that also allow denser PEG coatings, which "lock out" other molecules from competitive binding or adsorbing to the gold surface, thereby providing superior colloidal and signal stability. The higher grafting densities of AMP polymers compared to conventional thiolated PEG also led to dramatic increases in cellular target selectivity, with specific-to-nonspecific binding ratios reaching beyond an order of magnitude difference. Experimental evaluations and theoretical considerations of dielectric polarization and light scattering indicate that the hydrophobic layer provides a more favorable dielectric environment with less plasmon dampening, greater particle scattering efficiency, and increased Raman reporter polarizability. Accordingly, SERS nanotags with AMP polymer coatings are observed to be considerably brighter (∼10-fold). Furthermore, the AMP-coated SERS nanotag's increased intensity and avidity can boost cellular detection sensitivity by nearly two orders of magnitude.
Collapse
Affiliation(s)
- Lucas A Lane
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Jinglei Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Jiangsu Province 210093, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Jiangsu Province 210093, China.
| |
Collapse
|
5
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
6
|
Yang CH, Cho HS, Kim YH, Yoo K, Lim J, Hahm E, Rho WY, Kim YJ, Jun BH. Effects of Raman Labeling Compounds on the Stability and Surface-Enhanced Raman Spectroscopy Performance of Ag Nanoparticle-Embedded Silica Nanoparticles as Tagging Materials. BIOSENSORS 2024; 14:272. [PMID: 38920576 PMCID: PMC11201858 DOI: 10.3390/bios14060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) tagging using silica(SiO2)@Ag nanoparticles (NPs) is easy to handle and is being studied in various fields, including SERS imaging and immunoassays. This is primarily due to its structural advantages, characterized by high SERS activity. However, the Ag NPs introduced onto the SiO2 surface may undergo structural transformation owing to the Ostwald ripening phenomenon under various conditions. As a result, the consistency of the SERS signal decreases, reducing their usability as SERS substrates. Until recently, research has been actively conducted to improve the stability of single Ag NPs. However, research on SiO2@Ag NPs used as a SERS-tagging material is still lacking. In this study, we utilized a Raman labeling compound (RLC) to prevent the structural deformation of SiO2@Ag NPs under various conditions and proposed excellent SiO2@Ag@RLC-Pre NPs as a SERS-tagging material. Using various RLCs, we confirmed that 4-mercaptobenzoic acid (4-MBA) is the RLC that maintains the highest stability for 2 months. These results were also observed for the SiO2@Ag NPs, which were unstable under various pH and temperature conditions. We believe that SERS tags using SiO2@Ag NPs and 4-MBA can be utilized in various applications on based SERS because of the high stability and consistency of the resulting SERS signal.
Collapse
Affiliation(s)
- Cho-Hee Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Jaehong Lim
- Nanophilia Inc., Gwacheon 13840, Republic of Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Won Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| |
Collapse
|
7
|
Hassanzadeh-Barforoushi A, Tukova A, Nadalini A, Inglis DW, Chang-Hao Tsao S, Wang Y. Microfluidic-SERS Technologies for CTC: A Perspective on Clinical Translation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652011 DOI: 10.1021/acsami.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Enumeration and phenotypic profiling of circulating tumor cells (CTCs) provide critical information for clinical diagnosis and treatment monitoring in cancer. To achieve this goal, an integrated system is needed to efficiently isolate CTCs from patient samples and sensitively evaluate their phenotypes. Such integration would comprise a high-throughput single-cell processing unit for the isolation and manipulation of CTCs and a sensitive and multiplexed quantitation unit to detect clinically relevant signals from these cells. Surface-enhanced Raman scattering (SERS) has been used as an analytical method for molecular profiling and in vitro cancer diagnosis. More recently, its multiplexing capability and power to create distinct molecular signatures against their targets have garnered attention. Here, we share our insights into the combined power of microfluidics and SERS in realizing CTC isolation, enumeration, and detection from a clinical translation perspective. We highlight the key operational factors in CTC microfluidic processing and SERS detection from patient samples. We further discuss microfluidic-SERS integration and its clinical utility as a paradigm shift in clinical CTC-based cancer diagnosis and prognostication. Finally, we summarize the challenges and attempt to look forward to what lies ahead of us in potentially translating the technique into real clinical applications.
Collapse
Affiliation(s)
- Amin Hassanzadeh-Barforoushi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Audrey Nadalini
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
8
|
Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D, Ferro Leal L, Ngo TA, Pérez-Juste J, Reis RM, Kant K, Pastoriza-Santos I. SERS sensing for cancer biomarker: Approaches and directions. Bioact Mater 2024; 34:248-268. [PMID: 38260819 PMCID: PMC10801148 DOI: 10.1016/j.bioactmat.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers. In order to stop cancer from spreading and posing a significant risk to patient survival, early detection and prompt treatment are essential. Traditional cancer screening techniques are tedious, time-consuming, and require expert personnel for analysis. This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results. Using time and money saving techniques, these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity. With its proven potential for biomedical use, surface-enhanced Raman scattering (SERS) has been widely used in biosensing applications, particularly in biomarker identification. Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool. The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article, along with sample preparation techniques and obstacles. Aside from these significant constraints in the detection approach and techniques, the review also takes into account the complexity of biological fluids, the availability of biomarkers, and their sensitivity and selectivity, which are generally lowered. Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction. SERS is known to be a reliable diagnostic method for treatment judgments. Nonetheless, there is still room for advancement in terms of portability, creation of diagnostic apps, and interdisciplinary AI-based applications. Therefore, we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article. The review will meet the demand for reviewing various sample types (invasive and non-invasive) of cancer biomarkers and their detection using SERS. It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | | | - Daniel García-Lojo
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos, 14785-002, Brazil
| | - Tien Anh Ngo
- Vinmec Tissue Bank, Vinmec Health Care System, Hanoi, Viet Nam
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| |
Collapse
|
9
|
Choi N, Schlücker S. Convergence of Surface-Enhanced Raman Scattering with Molecular Diagnostics: A Perspective on Future Directions. ACS NANO 2024; 18:5998-6007. [PMID: 38345242 DOI: 10.1021/acsnano.3c11370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Molecular diagnostics (MD) is widely employed in multiple scientific disciplines, such as oncology, pathogen detection, forensic investigations, and the pharmaceutical industry. Techniques such as polymerase chain reaction (PCR) revolutionized the rapid and accurate identification of nucleic acids (DNA, RNA). More recently, CRISPR and its CRISPR-associated protein (Cas) have been a ground-breaking discovery that is the latest revolution in molecular biology, including MD. Surface-enhanced Raman scattering (SERS) is a very attractive alternative to fluorescence as the currently most widely used optical readout in MD. In this Perspective, milestones in the development of MD, SERS-PCR, and next-generation approaches to MD, such as Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR), are briefly summarized. Our perspective on the future convergence of SERS with MD is focused on SERS-based CRISPR/Cas (SERS-CRISPR) since we anticipate many promising applications in this rapidly emerging field. We predict that major future developments will exploit the advantages of real-time monitoring with the superior brightness, photostability, and spectral multiplexing potential of SERS nanotags in an automated workflow for rapid assays under isothermal, amplification-free conditions.
Collapse
Affiliation(s)
- Namhyun Choi
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| |
Collapse
|
10
|
You Q, Liang F, Wu G, Cao F, Liu J, He Z, Wang C, Zhu L, Chen X, Yang Y. The Landscape of Biomimetic Nanovesicles in Brain Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306583. [PMID: 37713652 DOI: 10.1002/adma.202306583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Brain diseases, such as brain tumors, neurodegenerative diseases, cerebrovascular diseases, and brain injuries, are caused by various pathophysiological changes, which pose a serious health threat. Brain disorders are often difficult to treat due to the presence of the blood-brain barrier (BBB). Biomimetic nanovesicles (BNVs), including endogenous extracellular vesicles (EVs) derived from various cells and artificial nanovesicles, possess the ability to penetrate the BBB and thus can be utilized for drug delivery to the brain. BNVs, especially endogenous EVs, are widely distributed in body fluids and usually carry various disease-related signal molecules such as proteins, RNA, and DNA, and may also be analyzed to understand the etiology and pathogenesis of brain diseases. This review covers the exhaustive classification and characterization of BNVs and pathophysiological roles involved in various brain diseases, and emphatically focuses on nanotechnology-integrated BNVs for brain disease theranostics, including various diagnosis strategies and precise therapeutic regulations (e.g., immunity regulation, disordered protein clearance, anti-neuroinflammation, neuroregeneration, angiogenesis, and the gut-brain axis regulation). The remaining challenges and future perspectives regarding the nanotechnology-integrated BNVs for the diagnosis and treatment of brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Liu C, Jiménez-Avalos G, Zhang WS, Sheen P, Zimic M, Popp J, Cialla-May D. Prussian blue (PB) modified gold nanoparticles as a SERS-based sensing platform for capturing and detection of pyrazinoic acid (POA). Talanta 2024; 266:125038. [PMID: 37574604 DOI: 10.1016/j.talanta.2023.125038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Pyrazinoic acid (POA) is a metabolite of the anti-tuberculosis drug pyrazinamide (PZA), and its detection can be used to assess the resistance of Mycobacterium tuberculosis in cultures, as only sensitive strains of the bacteria can metabolize PZA into POA. Prussian blue is a well-known metal-organic framework compound widely used in various sensing platforms such as electrochemical, photochemical, and magnetic sensors. In this study, we present a novel sensing platform based on Prussian blue-modified gold nanoparticles (AuNPs) designed to enhance the affinity of POA towards the sensing surface and to capture POA molecules from aqueous solutions. This SERS-based method allows for the selective enrichment of POA, which can be detected in both pure aqueous solution and in the presence of its pro-drug PZA. The limit of detection (LOD) for POA was estimated to be 1.08 μM in pure aqueous solution and 0.18 mM in the presence of PZA. Furthermore, the precision of the SERS method was verified by the relative standard deviation (RSD) of 3.34-12.02% for three parallel samples using different matrices, i.e. aqueous solution, spiked river water and spiked simulated saliva. The recoveries of the samples ranged from 92.65 to 118.51%. These all demonstrate the potential application of the proposed detection scheme in medical research.
Collapse
Affiliation(s)
- Chen Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Gabriel Jiménez-Avalos
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Wen-Shu Zhang
- China Fire and Rescue Institute, Beijing, 102202, China
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany.
| |
Collapse
|
12
|
Liu C, Dong J, Zhang Z, Fu K, Wang D, Mi X, Yue S, Tan X, Zhang Y. Four-Color SERS Monitoring of Size-dependent Nanoparticle Delivery in the Same Tumor. Anal Chem 2023; 95:13880-13888. [PMID: 37677106 DOI: 10.1021/acs.analchem.3c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The physicochemical properties of nanoparticles (NPs) significantly influence their deposition at the disease site, ultimately impacting the overall therapeutic efficacy; however, precisely assessing the effects of various factors on NP accumulation within a single cell/tumor tissue is challenging due to the lack of appropriate labeling techniques. Surface-enhanced Raman spectroscopy (SERS) tag is a powerful encoding method that has recently been intensively employed for immunodetection of biomarkers. Herein, we introduce a multiplexed SERS tracking approach for systematic investigation of size-dependent accumulation and distribution of NPs within the same tumor. Four-sized (34, 60, 108, and 147 nm) NPs encoded with different SERS "colors" were fabricated, mixed, and incubated with monolayer tumor cells, multicellular tumor spheroids, or injected into mouse models bearing xenograft solid tumors in a single dose. Multicolor SERS detection of the specimens revealed that NP accumulation in tumor cells, tumor spheroids, and solid tumors was in the order of 34 nm > 60 nm > 108 nm > 147 nm, 60 nm > 34 nm > 108 nm > 147 nm, and 34 nm > 147 nm > 108 nm > 60 nm, respectively. Inductively coupled plasma mass spectroscopy determination performed in parallel samples were in alignment with the four-color SERS probing results, demonstrating the effectiveness of this multiplexed evaluation assay. Furthermore, in combination with fluorescence labeling of specific biomolecules, this method can be applied for the colocalization of different NPs in various pathological structures and provide additional information for analysis of the possible mechanisms.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianguo Dong
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zedong Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Kexin Fu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue Mi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shijing Yue
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Exploring the generality of ligands for Silica-Encapsulated nanoclusters as SERS labels. J Colloid Interface Sci 2023; 635:43-49. [PMID: 36577354 DOI: 10.1016/j.jcis.2022.12.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/09/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The surface enhanced Raman scattering (SERS) reporters are rather limited, and the Raman peaks still overlap in varying degrees, making SERS multiplex coding a critical bottleneck in the exploration of SERS nanotechnology. Herein, we design a general strategy to expand the SERS probe scope to 26 probes of six types, which can be further expanded within a limited range, with stable performance and structure. By constructing (Au-aggregate)@Ag@silica and (Au-aggregate)@silica nanocomposites, we develop optimal enhancement strategies for each Raman molecules. Mixed signal-ligand SERS probes improve the complexity of Raman spectra and expand the coding capacity. By integrating the strategies, SERS inks are produced and applied in anti-counterfeiting. With these improvements, this work breaks the constrains of probe selection, bringing SERS one step closer to the sensor or anti-counterfeiting application.
Collapse
|
14
|
Leventi A, Billimoria K, Bartczak D, Laing S, Goenaga-Infante H, Faulds K, Graham D. New Model for Quantifying the Nanoparticle Concentration Using SERS Supported by Multimodal Mass Spectrometry. Anal Chem 2023; 95:2757-2764. [PMID: 36701560 PMCID: PMC9909670 DOI: 10.1021/acs.analchem.2c03779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is widely explored for the elucidation of underlying mechanisms behind biological processes. However, the capability of absolute quantitation of the number of nanoparticles from the SERS response remains a challenge. Here, we show for the first time the development of a new 2D quantitation model to allow calibration of the SERS response against the absolute concentration of SERS nanotags, as characterized by single particle inductively coupled plasma mass spectrometry (spICP-MS). A novel printing approach was adopted to prepare gelatin-based calibration standards containing the SERS nanotags, which consisted of gold nanoparticles and the Raman reporter 1,2-bis(4-pyridyl)ethylene. spICP-MS was used to characterize the Au mass concentration and particle number concentration of the SERS nanotags. Results from laser ablation inductively coupled plasma time-of-flight mass spectrometry imaging at a spatial resolution of 5 μm demonstrated a homogeneous distribution of the nanotags (between-line relative standard deviation < 14%) and a linear response of 197Au with increasing nanotag concentration (R2 = 0.99634) in the printed gelatin standards. The calibration standards were analyzed by SERS mapping, and different data processing approaches were evaluated. The reported calibration model was based on an "active-area" approach, classifying the pixels mapped as "active" or "inactive" and calibrating the SERS response against the total Au concentration and the particle number concentration, as characterized by spICP-MS. This novel calibration model demonstrates the potential for quantitative SERS imaging, with the capability of correlating the nanoparticle concentration to biological responses to further understand the underlying mechanisms of disease models.
Collapse
Affiliation(s)
- Aristea
Anna Leventi
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.,National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Kharmen Billimoria
- National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Dorota Bartczak
- National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Stacey Laing
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.
| | | | - Karen Faulds
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.,
| |
Collapse
|
15
|
Oliveira MJ, Dalot A, Fortunato E, Martins R, Byrne HJ, Franco R, Águas H. Microfluidic SERS devices: brightening the future of bioanalysis. DISCOVER MATERIALS 2022; 2:12. [PMID: 36536830 PMCID: PMC9751519 DOI: 10.1007/s43939-022-00033-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A new avenue has opened up for applications of surface-enhanced Raman spectroscopy (SERS) in the biomedical field, mainly due to the striking advantages offered by SERS tags. SERS tags provide indirect identification of analytes with rich and highly specific spectral fingerprint information, high sensitivity, and outstanding multiplexing potential, making them very useful in in vitro and in vivo assays. The recent and innovative advances in nanomaterial science, novel Raman reporters, and emerging bioconjugation protocols have helped develop ultra-bright SERS tags as powerful tools for multiplex SERS-based detection and diagnosis applications. Nevertheless, to translate SERS platforms to real-world problems, some challenges, especially for clinical applications, must be addressed. This review presents the current understanding of the factors influencing the quality of SERS tags and the strategies commonly employed to improve not only spectral quality but the specificity and reproducibility of the interaction of the analyte with the target ligand. It further explores some of the most common approaches which have emerged for coupling SERS with microfluidic technologies, for biomedical applications. The importance of understanding microfluidic production and characterisation to yield excellent device quality while ensuring high throughput production are emphasised and explored, after which, the challenges and approaches developed to fulfil the potential that SERS-based microfluidics have to offer are described.
Collapse
Affiliation(s)
- Maria João Oliveira
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Dalot
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, Dublin, Ireland
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| |
Collapse
|
16
|
Detection of rare prostate cancer cells in human urine offers prospect of non-invasive diagnosis. Sci Rep 2022; 12:18452. [PMID: 36323734 PMCID: PMC9630382 DOI: 10.1038/s41598-022-21656-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Two molecular cytology approaches, (i) time-gated immunoluminescence assay (TGiA) and (ii) Raman-active immunolabeling assay (RiA), have been developed to detect prostate cancer (PCa) cells in urine from five prostate cancer patients. For TGiA, PCa cells stained by a biocompatible europium chelate antibody-conjugated probe were quantitated by automated time-gated microscopy (OSAM). For RiA, PCa cells labeled by antibody-conjugated Raman probe were detected by Raman spectrometer. TGiA and RiA were first optimized by the detection of PCa cultured cells (DU145) spiked into control urine, with TGiA-OSAM showing single-cell PCa detection sensitivity, while RiA had a limit of detection of 4-10 cells/mL. Blinded analysis of each patient urine sample, using MIL-38 antibody specific for PCa cells, was performed using both assays in parallel with control urine. Both assays detected very low abundance PCa cells in patient urine (3-20 PCa cells per mL by TGiA, 4-13 cells/mL by RiA). The normalized mean of the detected PCa cells per 1 ml of urine was plotted against the clinical data including prostate specific antigen (PSA) level and Clinical Risk Assessment for each patient. Both cell detection assays showed correlation with PSA in the high risk patients but aligned with the Clinical Assessment rather than with PSA levels of the low/intermediate risk patients. Despite the limited available urine samples of PCa patients, the data presented in this proof-of-principle work is promising for the development of highly sensitive diagnostic urine tests for PCa.
Collapse
|
17
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines 2022; 10:2426. [PMID: 36289688 PMCID: PMC9599314 DOI: 10.3390/biomedicines10102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals' health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination among foodborne pathogens. The occurrence of AMR in bacteria pathogens that cause infections in animals and those associated with food spoilage is now considered a global health concern affecting humans, animals and the environment. The search for alternative antimicrobial agents has kindled the interest of many researchers. Among the alternatives, using plant-derived nanoparticles (PDNPs) for treating microbial dysfunctions in food-producing animals has gained significant attention. In traditional medicine, plant extracts are considered as safe, efficient and natural antibacterial agents for various animal diseases. Given the complexity of the AMR and concerns about issues at the interface of human health, animal health and the environment, it is important to emphasize the role of a One Health approach in addressing this problem. This review examines the potential of PDNPs as bio-control agents in food-producing animals, intending to provide consumers with microbiologically safe food while ensuring food safety and security, better health for animals and humans and a safe environment.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
19
|
Kim J, Park J, Ki J, Rho HW, Huh YM, Kim E, Son HY, Haam S. Simultaneous dual-targeted monitoring of breast cancer circulating miRNA via surface-enhanced Raman spectroscopy. Biosens Bioelectron 2022; 207:114143. [DOI: 10.1016/j.bios.2022.114143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 01/20/2023]
|
20
|
Lyu N, Pedersen B, Shklovskaya E, Rizos H, Molloy MP, Wang Y. SERS characterization of colorectal cancer cell surface markers upon anti-EGFR treatment. EXPLORATION (BEIJING, CHINA) 2022; 2:20210176. [PMID: 37323700 PMCID: PMC10190927 DOI: 10.1002/exp.20210176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed and the second lethal cancer worldwide. Approximately 30-50% of CRC are driven by mutations in the KRAS oncogene, which is a strong negative predictor for response to anti-epidermal growth factor receptor (anti-EGFR) therapy. Examining the phenotype of KRAS mutant and wild-type (WT) CRC cells in response to anti-EGFR treatment may provide significant insights into drug response and resistance. Herein, surface-enhanced Raman spectroscopy (SERS) assay was applied to phenotype four cell surface proteins (EpCAM, EGFR, HER2, HER3) in KRAS mutant (SW480) and WT (SW48) cells over a 24-day time course of anti-EGFR treatment with cetuximab. Cell phenotypes were obtained using Raman reporter-coated and antibody-conjugated gold nanoparticles (SERS nanotags), where a characteristic Raman spectrum was generated upon single laser excitation, reflecting the presence of the targeted surface marker proteins. Compared to the KRAS mutant cells, KRAS WT cells were more sensitive to anti-EGFR treatment and displayed a significant decrease in HER2 and HER3 expression. The SERS results were validated with flow cytometry, confirming the SERS assay is promising as an alternative method for multiplexed characterization of cell surface biomarkers using a single laser excitation system.
Collapse
Affiliation(s)
- Nana Lyu
- ARC Center of Excellence for Nanoscale BioPhotonics and School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Bernadette Pedersen
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Elena Shklovskaya
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Kolling InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Yuling Wang
- ARC Center of Excellence for Nanoscale BioPhotonics and School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
21
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Tian T, Yi J, Liu Y, Li B, Liu Y, Qiao L, Zhang K, Liu B. Self-assembled plasmonic nanoarrays for enhanced bacterial identification and discrimination. Biosens Bioelectron 2022; 197:113778. [PMID: 34798500 DOI: 10.1016/j.bios.2021.113778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
The rapid and accurate bacterial testing is a critical step for the management of infectious diseases, but challenges remain largely due to a lack of advanced sensing tools. Here we report the development of highly plasmon-active, biofunctional nanoparticle arrays for simultaneous capture, identification, and differentiation of bacteria by surface-enhanced Raman scattering (SERS). The nanoarrays were facilely prepared through an electrostatic mechanism-controlled self-assembly of metallic nanoparticles at liquid-liquid interfaces, and exhibited high SERS sensitivity beyond femtomole, good reproducibility (relative standard deviation of 2.7%) and stability. Modification of the nanoarrays with concanavalin A allowed to effective capture of both Gram-positive and Gram-negative bacteria (bacterial-capture efficiency maintained beyond 50%) at bacterial concentrations ranging from 50 to 2000 CFU mL-1, as determined by the plate-counting method. Moreover, single-cell Raman fingerprinting and discrimination of eight different bacteria species with high signal-to-noise ratio, excellent spectral reproducibility, and a total assay time of 1.5 h was achieved under fairly mild conditions (24 μW, acquisition time: 1 s). Collectively, we believe that our biofunctionalized, SERS-based self-assembled nanoarrays have great potential to help in rapid and label-free bacterial diagnosis and phenotyping study.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yujie Liu
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Baohong Liu
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
23
|
Achadu OJ, Nwaji N, Lee D, Lee J, Akinoglu EM, Giersig M, Park EY. 3D hierarchically porous magnetic molybdenum trioxide@gold nanospheres as a nanogap-enhanced Raman scattering biosensor for SARS-CoV-2. NANOSCALE ADVANCES 2022; 4:871-883. [PMID: 36131829 PMCID: PMC9419194 DOI: 10.1039/d1na00746g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 05/03/2023]
Abstract
The global pandemic of COVID-19 is an example of how quickly a disease-causing virus can take root and threaten our civilization. Nowadays, ultrasensitive and rapid detection of contagious pathogens is in high demand. Here, we present a novel hierarchically porous 3-dimensional magnetic molybdenum trioxide-polydopamine-gold functionalized nanosphere (3D mag-MoO3-PDA@Au NS) composed of plasmonic, semiconductor, and magnetic nanoparticles as a multifunctional nanosculptured hybrid. Based on the synthesized 3D mag-MoO3-PDA@Au NS, a universal "plug and play" biosensor for pathogens is proposed. Specifically, a magnetically-induced nanogap-enhanced Raman scattering (MINERS) detection platform was developed using the 3D nanostructure. Through a magnetic actuation process, the MINERS system overcomes Raman signal stability and reproducibility challenges for the ultrasensitive detection of SARS-CoV-2 spike protein over a wide dynamic range up to a detection limit of 10-15 g mL-1. The proposed MINERS platform will facilitate the broader use of Raman spectroscopy as a powerful analytical detection tool in diverse fields.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Research Institute of Green Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan +81-54-238-4887 +81-54-238-3306
- International Institute for Nanocomposites Manufacturing, WMG, University of Warwick CV4 7AL Coventry UK
| | - Njemuwa Nwaji
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
| | - Dongkyu Lee
- Dept. of Chemistry, College of Natural Science, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Korea
| | - Jaebeom Lee
- Dept. of Chemistry, College of Natural Science, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Korea
| | - Eser M Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
| | - Michael Giersig
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
- Institute of Fundamental Technological Research, Polish Academy of Sciences 02-106 Warsaw Poland
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan +81-54-238-4887 +81-54-238-3306
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|
24
|
Andreiuk B, Nicolson F, Clark LM, Panikkanvalappil SR, Kenry, Rashidian M, Harmsen S, Kircher MF. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022; 6:10-30. [PMID: 34976578 PMCID: PMC8671966 DOI: 10.7150/ntno.61244] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags hold a unique place among bioimaging contrast agents due to their fingerprint-like spectra, which provide one of the highest degrees of detection specificity. However, in order to achieve a sufficiently high signal intensity, targeting capabilities, and biocompatibility, all components of nanotags must be rationally designed and tailored to a specific application. Design parameters include fine-tuning the properties of the plasmonic core as well as optimizing the choice of Raman reporter molecule, surface coating, and targeting moieties for the intended application. This review introduces readers to the principles of SERS nanotag design and discusses both established and emerging protocols of their synthesis, with a specific focus on the construction of SERS nanotags in the context of bioimaging and theranostics.
Collapse
Affiliation(s)
- Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise M. Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Stefan Harmsen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 022115, USA
| |
Collapse
|
25
|
Adampourezare M, Hasanzadeh M, Seidi F. Optical bio-sensing of DNA methylation analysis: an overview of recent progress and future prospects. RSC Adv 2022; 12:25786-25806. [PMID: 36199327 PMCID: PMC9460980 DOI: 10.1039/d2ra03630d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation as one of the most important epigenetic modifications has a critical role in regulating gene expression and drug resistance in treating diseases such as cancer. Therefore, the detection of DNA methylation in the early stages of cancer plays an essential role in disease diagnosis. The majority of routine methods to detect DNA methylation are very tedious and costly. Therefore, designing easy and sensitive methods to detect DNA methylation directly and without the need for molecular methods is a hot topic issue in bioscience. Here we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation. In addition, various types of labeled and label-free reactions along with the application of molecular methods and optical biosensors have been surveyed. Also, the effect of nanomaterials on the sensitivity of detection methods is discussed. Furthermore, a comprehensive overview of the advantages and disadvantages of each method are provided. Finally, the use of microfluidic devices in the evaluation of DNA methylation and DNA damage analysis based on smartphone detection has been discussed. Here, we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation.![]()
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
Du J, Li J, Li Y, Wang D, Cao H, He W, Zhou Y. Acridine-based dyes as high-performance near-infrared Raman reporter molecules for cell imaging. RSC Adv 2022; 12:3380-3385. [PMID: 35425341 PMCID: PMC8979271 DOI: 10.1039/d1ra08827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
A surface-enhanced Raman scattering (SERS) nanoprobe has been proven to be a promising tool for near-infrared (NIR) biomedical imaging and diagnosis because of its high sensitivity and selectivity. However, the development of NIR SERS reporters has been a bottleneck impeding the preparation of ultrasensitive SERS probes. Herein, we report the design and synthesis of a series of SERS reporters in the NIR region based on 10-methylacridine (AD). The AD nanotags (gold nanostar–AD molecules–BSA, AuNS–AD–BSA) exhibit appreciable SERS signals and can be detected at as low as the sub-picomole level. The results of in vitro imaging experiments show that it can be used in live-cell delineation. A surface-enhanced Raman scattering (SERS) nanoprobe has been proven to be a promising tool for near-infrared (NIR) biomedical imaging and diagnosis because of its high sensitivity and selectivity.![]()
Collapse
Affiliation(s)
- Jiasheng Du
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhan Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanli He
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Zhou
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
28
|
Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Yuan C, Fang J, de la Chapelle ML, Zhang Y, Zeng X, Huang G, Yang X, Fu W. Surface-enhanced Raman scattering inspired by programmable nucleic acid isothermal amplification technology. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Srivastav S, Dankov A, Adanalic M, Grzeschik R, Tran V, Pagel-Wieder S, Gessler F, Spreitzer I, Scholz T, Schnierle B, Anastasiou OE, Dittmer U, Schlücker S. Rapid and Sensitive SERS-Based Lateral Flow Test for SARS-CoV2-Specific IgM/IgG Antibodies. Anal Chem 2021; 93:12391-12399. [PMID: 34468139 DOI: 10.1021/acs.analchem.1c02305] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an immune response to COVID-19 infection, patients develop SARS-CoV-2-specific IgM/IgG antibodies. Here, we compare the performance of a conventional lateral flow assay (LFA) with a surface-enhanced Raman scattering (SERS)-based LFA test for the detection of SARS-CoV-2-specific IgM/IgG in sera of COVID-19 patients. Sensitive detection of IgM might enable early serological diagnosis of acute infections. Rapid detection in serum using a custom-built SERS reader is at least an order of magnitude more sensitive than the conventional LFAs with naked-eye detection. For absolute quantification and the determination of the limit of detection (LOD), a set of reference measurements using purified (total) IgM in buffer was performed. In this purified system, the sensitivity of SERS detection is even 7 orders of magnitude higher: the LOD for SERS was ca. 100 fg/mL compared to ca. 1 μg/mL for the naked-eye detection. This outlines the high potential of SERS-based LFAs in point-of-care testing once the interference of serum components with the gold conjugates and the nitrocellulose membrane is minimized.
Collapse
Affiliation(s)
- Supriya Srivastav
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Asen Dankov
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Mujo Adanalic
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Roland Grzeschik
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Vi Tran
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sibylle Pagel-Wieder
- Miprolab-Gesellschaft für mikrobiologische Diagnostik mbH, 37079 Göttingen, Germany
| | - Frank Gessler
- Miprolab-Gesellschaft für mikrobiologische Diagnostik mbH, 37079 Göttingen, Germany
| | - Ingo Spreitzer
- Paul-Ehrlich Institut, Department of Microbiology, 63225 Langen, Germany
| | - Tatjana Scholz
- Paul-Ehrlich Institut, Department of Virology, 63225 Langen, Germany
| | - Barbara Schnierle
- Paul-Ehrlich Institut, Department of Virology, 63225 Langen, Germany
| | - Olympia E Anastasiou
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
31
|
Lyu N, Rajendran VK, Li J, Engel A, Molloy MP, Wang Y. Highly specific detection of KRAS single nucleotide polymorphism by asymmetric PCR/SERS assay. Analyst 2021; 146:5714-5721. [PMID: 34515700 DOI: 10.1039/d1an01108a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular diagnosis of KRAS mutations has become crucial for clinical decision-making in colorectal cancer (CRC) treatments. Currently, the common methods for detecting mutations are based on quantitative PCR, DNA sequencing and droplet digital PCR (ddPCR), which require expensive specialized equipment and testing reagents. Herein, we propose a simple and specific strategy by integrating asymmetric PCR with surface-enhanced Raman spectroscopy (Asy-PCR/SERS) for the detection of KRAS G12V mutation, one of the most common driver mutations in CRC. To discriminate mutant targets from non-targets, Asy-PCR was applied to obtain single-stranded DNA (ssDNA) with unequal amounts of forward and reverse primers, subsequently, detection of the target mutant ssDNA amplicons was attempted by hybridization with Raman reporter-coded and allele-specific oligonucleotide-functionalized gold nanoparticles (SERS nanotags). The oligo encoding of the KRAS G12V mutant sequence could be identified by using a portable Raman spectrometer where the characteristic spectra of SERS nanotags indicate the presence of mutant targets. The Asy-PCR/SERS method showed high specificity and sensitivity for identifying as few as 0.1% mutant alleles of KRAS G12V mutation from non-target sequences. Using colorectal polyp biopsies, we demonstrated that Asy-PCR/SERS assay could distinguish KRAS G12V (c.35G > T) and KRAS G12D (c.35G > A) which occur at the same nucleotide location. As KRAS G12V is a driver oncogene in other cancers including lung, pancreatic, ovarian and endometrial cancers, the proposed assay shows great potential for application in additional tumor streams.
Collapse
Affiliation(s)
- Nana Lyu
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Vinoth Kumar Rajendran
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Jun Li
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, NSW 2006, Australia.
| | - Alexander Engel
- Department of Colorectal Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia.,Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, NSW 2006, Australia.
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
32
|
Tahir MA, Dina NE, Cheng H, Valev VK, Zhang L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. NANOSCALE 2021; 13:11593-11634. [PMID: 34231627 DOI: 10.1039/d1nr00708d] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years, bioanalytical surface-enhanced Raman spectroscopy (SERS) has blossomed into a fast-growing research area. Owing to its high sensitivity and outstanding multiplexing ability, SERS is an effective analytical technique that has excellent potential in bioanalysis and diagnosis, as demonstrated by its increasing applications in vivo. SERS allows the rapid detection of molecular species based on direct and indirect strategies. Because it benefits from the tunable surface properties of nanostructures, it finds a broad range of applications with clinical relevance, such as biological sensing, drug delivery and live cell imaging assays. Of particular interest are early-stage-cancer detection and the fast detection of pathogens. Here, we present a comprehensive survey of SERS-based assays, from basic considerations to bioanalytical applications. Our main focus is on SERS-based pathogen detection methods as point-of-care solutions for early bacterial infection detection and chronic disease diagnosis. Additionally, various promising in vivo applications of SERS are surveyed. Furthermore, we provide a brief outlook of recent endeavours and we discuss future prospects and limitations for SERS, as a reliable approach for rapid and sensitive bioanalysis and diagnosis.
Collapse
Affiliation(s)
- Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, Peoples' Republic of China.
| | | | | | | | | |
Collapse
|
33
|
Achadu OJ, Abe F, Li TC, Khoris IM, Lee D, Lee J, Suzuki T, Park EY. Molybdenum Trioxide Quantum Dot-Encapsulated Nanogels for Virus Detection by Surface-Enhanced Raman Scattering on a 2D Substrate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27836-27844. [PMID: 34105944 DOI: 10.1021/acsami.1c04793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The use of nanogels (NGs) to modulate surface-enhanced Raman scattering (SERS) activities is introduced as an innovative strategy to address certain critical issues with SERS-based immunoassays. This includes the chemical deformation of SERS nanotags, as well as their nonspecific interactions and effective "hotspots" formation. Herein, the polymeric cocoon and stimuli-responsive properties of NGs were used to encapsulate SERS nanotags containing plasmonic molybdenum trioxide quantum dots (MoO3-QDs). The pH-controlled release of the encapsulated nanotags and their subsequent localization by maleimide-functionalized magnetic nanoparticles facilitated the creation of "hotspots" regions with catalyzed SERS activities. This approach resulted in developing a biosensing platform for the ultrasensitive immunoassays of hepatitis E virus (HEV) or norovirus (NoV). The immunoassays were optimized using the corresponding virus-like particles to attain limits of detection of 6.5 and 8.2 fg/mL for HEV-LPs and NoV-LPs, respectively. The SERS-based technique achieved a signal enhancement factor of up to ∼108 due to the combined electromagnetic and chemical mechanisms of the employed dual-SERS substrate of MoO3-QDs/2D hexagonal boron nitride nanosheets. The highlight and validation of the developed SERS-based immunoassays was the detection of NoV in infected patients' fecal specimen and clinical HEV G7 subtype. Importantly, this system can be used to maintain the stability of SERS nanotags and improve their reliability in immunoassays.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Fuyuki Abe
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 232-1, Yainaba, Fujieda 426-0083, Japan
| | - Tian-Cheng Li
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayam-shi, Tokyo 208-0011, Japan
| | - Indra Memdi Khoris
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Dongkyu Lee
- Department of Chemistry, College of Natural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jaebeom Lee
- Department of Chemistry, College of Natural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-1 Higashi-ku, Handa-yama, Hamamatsu 431-3192, Japan
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
34
|
Effect of Cetuximab-Conjugated Gold Nanoparticles on the Cytotoxicity and Phenotypic Evolution of Colorectal Cancer Cells. Molecules 2021; 26:molecules26030567. [PMID: 33499047 PMCID: PMC7865832 DOI: 10.3390/molecules26030567] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is estimated to be overexpressed in 60~80% of colorectal cancer (CRC), which is associated with a poor prognosis. Anti-EGFR targeted monoclonal antibodies (cetuximab and panitumumab) have played an important role in the treatment of metastatic CRC. However, the therapeutic response of anti-EGFR monoclonal antibodies is limited due to multiple resistance mechanisms. With the discovery of new functions for gold nanoparticles (AuNPs), we hypothesize that cetuximab-conjugated AuNPs (cetuximab-AuNPs) will not only improve the cytotoxicity for cancer cells, but also introduce expression change of the related biomarkers on cancer cell surface. In this contribution, we investigated the size-dependent cytotoxicity of cetuximab-AuNPs to CRC cell line (HT-29), while also monitored the expression of cell surface biomarkers in response to treatment with cetuximab and cetuximab-AuNPs. AuNPs with the size of 60 nm showed the highest impact for cell cytotoxicity, which was tested by cell counting kit-8 (CCK-8) assay. Three cell surface biomarkers including epithelial cell adhesion molecule (EpCAM), melanoma cell adhesion molecule (MCAM), and human epidermal growth factor receptor-3 (HER-3) were found to be expressed at higher heterogeneity when cetuximab was conjugated to AuNPs. Both surface-enhanced Raman scattering/spectroscopy (SERS) and flow cytometry demonstrated the correlation of cell surface biomarkers in response to the drug treatment. We thus believe this study provides powerful potential for drug-conjugated AuNPs to enhance cancer prognosis and therapy.
Collapse
|
35
|
Rodal-Cedeira S, Vázquez-Arias A, Bodelón G, Skorikov A, Núñez-Sánchez S, Laporta A, Polavarapu L, Bals S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells. ACS NANO 2020; 14:14655-14664. [PMID: 32869970 PMCID: PMC7690041 DOI: 10.1021/acsnano.0c04368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Raman-encoded gold nanoparticles (NPs) have been widely employed as photostable multifunctional probes for sensing, bioimaging, multiplex diagnostics, and surface-enhanced Raman scattering (SERS)-guided tumor therapy. We report a strategy toward obtaining a particularly large library of Au nanocapsules encoded with Raman codes defined by the combination of different thiol-free Raman reporters, encapsulated at defined molar ratios. The fabrication of SERS tags with tailored size and predefined codes is based on the in situ incorporation of Raman reporter molecules inside Au nanocapsules during their formation via galvanic replacement coupled to seeded growth on Ag NPs. The hole-free closed-shell structure of the nanocapsules is confirmed by electron tomography. The unusually wide encoding possibilities of the obtained SERS tags are investigated by means of either wavenumber-based encoding or Raman frequency combined with signal intensity, leading to an outstanding performance as exemplified by 26 and 54 different codes, respectively. We additionally demonstrate that encoded nanocapsules can be readily bioconjugated with antibodies for applications such as SERS-based targeted cell imaging and phenotyping.
Collapse
Affiliation(s)
- Sergio Rodal-Cedeira
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Alba Vázquez-Arias
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Gustavo Bodelón
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Alexander Skorikov
- EMAT,
University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sara Núñez-Sánchez
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Andrea Laporta
- EMAT,
University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Lakshminarayana Polavarapu
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Sara Bals
- EMAT,
University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastian, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
- Centro
de
Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina, CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Jorge Pérez-Juste
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| |
Collapse
|
36
|
Bao Y, Li Y, Ling L, Xiang X, Han X, Zhao B, Guo X. Label-Free and Highly Sensitive Detection of Native Proteins by Ag IANPs via Surface-Enhanced Raman Spectroscopy. Anal Chem 2020; 92:14325-14329. [DOI: 10.1021/acs.analchem.0c03165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ying Bao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ling Ling
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
37
|
Du Z, Qi Y, He J, Zhong D, Zhou M. Recent advances in applications of nanoparticles in SERS in vivo imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1672. [PMID: 33073511 DOI: 10.1002/wnan.1672] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
Abstract
Surface-enhanced Raman scattering (SERS) technique has been regarded as one of the most important research methods in the field of single-molecule science. Since the previous decade, the application of nanoparticles for in vivo SERS imaging becomes the focus of research. To enhance the performance of SERS imaging, researchers have developed several SERS nanotags such as gold nanostars, copper-based nanomaterials, semiconducting quantum dots, and so on. The development of Raman equipment is also necessary owing to the current limitations. This review describes the recent advances of SERS nanoparticles and their applications for in vivo imaging in detail. Specific examples highlighting the in vivo cancer imaging and treatment application of SERS nanoparticles. A perspective on the challenges and opportunities of nanoparticles in SERS in vivo imaging is also provided. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Zhen Du
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuchen Qi
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jian He
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Danni Zhong
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Min Zhou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.,The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Zhang Q, Wu Y, Xu Q, Ma F, Zhang CY. Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens Bioelectron 2020; 171:112712. [PMID: 33045657 DOI: 10.1016/j.bios.2020.112712] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
DNA methylation is the predominant epigenetic modification that participates in many fundamental cellular processes through posttranscriptional regulation of gene expression. Aberrant DNA methylation is closely associated with a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA methylation may greatly facilitate the epigenetic biological researches and disease diagnosis. In recent years, a series of novel biosensors have been developed for highly sensitive detection of DNA methylation, but an overview of recent advances in biosensors for in vitro detection and especially live-cell imaging of DNA methylation is absent. In this review, we summarize the emerging biosensors for in vitro and in vivo DNA methylation assays in the past five years (2015-2020). Based on the signal types, the biosensors for in vitro DNA methylation assay are classified into five categories including fluorescent, electrochemical, colorimetric, surface enhanced Raman spectroscopy, mass spectrometry, and surface plasmon resonance biosensors, while the biosensors for in vivo DNA methylation assay mainly rely on fluorescent imaging. We review the strategies, features and applications of these biosensors, and provide a new insight into the challenges and future directions in this area.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Yanxia Wu
- Department of Pathology and Pathological Diagnosis & Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
39
|
Achadu OJ, Abe F, Suzuki T, Park EY. Molybdenum Trioxide Nanocubes Aligned on a Graphene Oxide Substrate for the Detection of Norovirus by Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43522-43534. [PMID: 32957773 DOI: 10.1021/acsami.0c14729] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A novel biosensing system based on graphene-mediated surface-enhanced Raman scattering (G-SERS) using plasmonic/magnetic molybdenum trioxide nanocubes (mag-MoO3 NCs) has been designed to detect norovirus (NoV) via a dual SERS nanotag/substrate platform. A novel magnetic derivative of MoO3 NCs served as the SERS nanotag and the immunomagnetic separation material of the biosensor. Single-layer graphene oxide (SLGO) was adopted as the 2D SERS substrate/capture platform and acted as the signal reporter, with the ability to accommodate an additional Raman molecule as a coreporter. The developed SERS-based immunoassay achieved a signal amplification of up to ∼109-fold resulting from the combined electromagnetic and chemical mechanisms of the dual SERS nanotag/substrate system. The developed biosensor was employed for the detection of NoV in human fecal samples collected from infected patients by capturing the virus with the aid of NoV-specific antibody-functionalized magnetic MoO3 NCs. This approach enabled rapid signal amplification for NoV detection with this biosensing technology. The biosensor was tested and optimized using NoV-like particles within a broad linear range from 10 fg/mL to 100 ng/mL and a limit of detection (LOD) of ∼5.2 fg/mL. The practical applicability of the developed biosensor to detect clinical NoV subtypes in human fecal samples was demonstrated by effective detection with an LOD of ∼60 RNA copies/mL, which is ∼103-fold lower than that of a commercial enzyme-linked immunosorbent assay kit for NoV.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Fuyuki Abe
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 232-1 Yainaba, Fujieda 426-0083, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
40
|
Lyu N, Rajendran VK, Diefenbach RJ, Charles K, Clarke SJ, Engel A, Rizos H, Molloy MP, Wang Y. Multiplex detection of ctDNA mutations in plasma of colorectal cancer patients by PCR/SERS assay. Nanotheranostics 2020; 4:224-232. [PMID: 32923312 PMCID: PMC7484630 DOI: 10.7150/ntno.48905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular diagnostic testing of KRAS and BRAF mutations has become critical in the management of colorectal cancer (CRC) patients. Some progress has been made in liquid biopsy detection of mutations in circulating tumor DNA (ctDNA), which is a fraction of circulating cell-free DNA (cfDNA), but slow analysis for DNA sequencing methods has limited rapid diagnostics. Other methods such as quantitative PCR and more recently, droplet digital PCR (ddPCR), have limitations in multiplexed capacity and the need for expensive specialized equipment. Hence, a robust, rapid and facile strategy is needed for detecting multiple ctDNA mutations to improve the management of CRC patients. To address this significant problem, herein, we propose a new application of multiplex PCR/SERS (surface-enhanced Raman scattering) assay for the detection of ctDNA in CRC, in a fast and non-invasive manner to diagnose and stratify patients for effective treatment. Methods: To discriminate ctDNA mutations from wild-type cfDNA, allele-specific primers were designed for the amplification of three clinically important DNA point mutations in CRC including KRAS G12V, KRAS G13D and BRAF V600E. Surface-enhanced Raman scattering (SERS) nanotags were labelled with a short and specific sequence of oligonucleotide, which can hybridize with the corresponding PCR amplicons. The PCR/SERS assay was implemented by firstly amplifying the multiple mutations, followed by binding with multicolor SERS nanotags specific to each mutation, and subsequent enrichment with magnetic beads. The mutation status was evaluated using a portable Raman spectrometer where the fingerprint spectral peaks of the corresponding SERS nanotags indicate the presence of the mutant targets. The method was then applied to detect ctDNA from CRC patients under a blinded test, the results were further validated by ddPCR. Results: The PCR/SERS strategy showed high specificity and sensitivity for genotyping CRC cell lines and plasma ctDNA, where as few as 0.1% mutant alleles could be detected from a background of abundant wild-type cfDNA. The blinded test using 9 samples from advanced CRC patients by PCR/SERS assay was validated with ddPCR and showed good consistency with pathology testing results. Conclusions: With ddPCR-like sensitivity yet at the convenience of standard PCR, the proposed assay shows great potential in sensitive detection of multiple ctDNA mutations for clinical decision-making.
Collapse
Affiliation(s)
- Nana Lyu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Russell J Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Melanoma Institute Australia, Sydney, Australia
| | - Kellie Charles
- School of Medical Sciences, Discipline of Pharmacology, The University of Sydney, Australia
| | - Stephen J Clarke
- Royal North Shore Hospital, Department of Medical Oncology, The University of Sydney, Australia
| | - Alexander Engel
- Royal North Shore Hospital, Colorectal Surgical Unit, The University of Sydney, Australia
| | | | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, Australia
| | - Yuling Wang
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
41
|
Keller T, Brem S, Tran V, Sritharan O, Schäfer D, Schlücker S. Rational design of thiolated polyenes as trifunctional Raman reporter molecules in surface-enhanced Raman scattering nanotags for cytokine detection in a lateral flow assay. JOURNAL OF BIOPHOTONICS 2020; 13:e201960126. [PMID: 31957948 DOI: 10.1002/jbio.201960126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The characteristic vibrational spectroscopic fingerprint of Raman reporter molecules adsorbed on noble metal nanoparticles is employed for the identification of target proteins by the corresponding surface-enhanced Raman scattering (SERS) nanotag-labeled antibodies. Here, we present the modular synthesis of thiolated polyenes with two to five C═C double bonds introduced via stepwise Wittig reactions. The experimental characterization of their electronic and vibrational properties is complemented by density functional theory calculations. Highly SERS-active nanotags are generated by using the thiolated polyenes as Raman reporter molecules in Au/Au core/satellite supraparticles with multiple hot spots. The cytokines IL-1β and IFN-γ are detected in a duplex SERS-based lateral flow assay on a nitrocellulose test strip by Raman microscopy. The thiolated polyenes are suitable for use in immuno-SERS applications such as point-of-care testing as well as cellular and tissue imaging.
Collapse
Affiliation(s)
- Thomas Keller
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Svetlana Brem
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Vi Tran
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Oliver Sritharan
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Daniel Schäfer
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry, University of Duisburg-Essen, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
- Zentrum für Medizinische Biotechnologie (ZMB), Essen, Germany
| |
Collapse
|
42
|
Eremina OE, Kapitanova OO, Goodilin EA, Veselova IA. Silver-chitosan nanocomposite as a plasmonic platform for SERS sensing of polyaromatic sulfur heterocycles in oil fuel. NANOTECHNOLOGY 2020; 31:225503. [PMID: 32050183 DOI: 10.1088/1361-6528/ab758f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, a silver-chitosan nanocomposite for application in surface enhanced Raman spectroscopy (SERS) sensing was proposed. It was shown that optically transparent chitosan coatings with 0.8 μm thickness allow penetration of target analytes to silver nanoparticles and the analysis in both polar and nonpolar solvents. Under the chosen conditions, chitosan formed continuously smooth films and coatings stabilizing rough nanostructured metallic surfaces and served as a suitable matrix for immobilization, uniform spreading, and preconcentration of the analytes. Polycyclic aromatic sulfur heterocycles were chosen as target analytes being one of the most important fuel quality markers, hazardous components, and the hardest-to-remove impurities. For the most effective immobilization and even distribution of the analytes onto a nanostructured metallic surface, an additional polymer layer of chitosan was found to be needed. The presence of thin films of chitosan resulted in higher reproducibility of SERS spectra as compared to bare nanostructured silver substrates. Additionally, the developed nanocomposite SERS sensors provided the rapid determination of dibenzothiophene and its derivatives in isooctane with the threshold of detection better than 0.1 μM. This approach was successfully applied in the analysis of real fuel samples and the results agreed well with independently measured FTIR and GC-MS data.
Collapse
Affiliation(s)
- Olga E Eremina
- Faculty of Chemistry, Moscow State University, Leninskie gory, Moscow, 119991, Russia
| | | | | | | |
Collapse
|
43
|
Ambartsumyan O, Gribanyov D, Kukushkin V, Kopylov A, Zavyalova E. SERS-Based Biosensors for Virus Determination with Oligonucleotides as Recognition Elements. Int J Mol Sci 2020; 21:ijms21093373. [PMID: 32397680 PMCID: PMC7247000 DOI: 10.3390/ijms21093373] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
Viral infections are among the main causes of morbidity and mortality of humans; sensitive and specific diagnostic methods for the rapid identification of viral pathogens are required. Surface-enhanced Raman spectroscopy (SERS) is one of the most promising techniques for routine analysis due to its excellent sensitivity, simple and low-cost instrumentation and minimal required sample preparation. The outstanding sensitivity of SERS is achieved due to tiny nanostructures which must be assembled before or during the analysis. As for specificity, it may be provided using recognition elements. Antibodies, complimentary nucleic acids and aptamers are the most usable recognition elements for virus identification. Here, SERS-based biosensors for virus identification with oligonucleotides as recognition elements are reviewed, and the potential of these biosensors is discussed.
Collapse
Affiliation(s)
| | - Dmitry Gribanyov
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia;
| | - Vladimir Kukushkin
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia;
- Correspondence: (V.K.); (E.Z.); Tel.: +7-495-939-3149 (E.Z.)
| | - Alexey Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia;
- Correspondence: (V.K.); (E.Z.); Tel.: +7-495-939-3149 (E.Z.)
| |
Collapse
|
44
|
Zhang W, Jiang L, Diefenbach RJ, Campbell DH, Walsh BJ, Packer NH, Wang Y. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags. ACS Sens 2020; 5:764-771. [PMID: 32134252 DOI: 10.1021/acssensors.9b02377] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs have been regarded as important cancer biomarkers for liquid biopsy-based cancer diagnosis and drug treatment monitoring. However, because of the high heterogeneity and low level of small EVs in body fluids, there is a high demand for sensitive detection and characterization of such vesicles at a molecular level. In this study, we have developed a sensitive and effective approach to simultaneously profile multiple protein biomarkers expressed on cancer-derived small EVs using surface-enhanced Raman spectroscopy (SERS) nanotags in a single test, without complex isolation steps. Rapid and multiplexed phenotypic profiling of small EVs is achieved by mixing specific detection antibody-coated SERS nanotags, filtered conditioned EV-suspended medium (conditioned EVs), and capture antibody (CD63)-conjugated magnetic beads to form a sandwich immunoassay. As a proof-of-concept demonstration, we applied this approach to characterize pancreatic cancer-derived EVs by simultaneously detecting three specific EV surface receptors including Glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant isoform 6 (CD44V6). The sensitivity of this method was measured down to 2.3 × 106 particles/mL, which is more sensitive and shows higher multiplexing capability than most other reported EV profiling techniques, such as western blot, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, phenotypic profiling of small EVs from colorectal cancer and bladder cancer cell lines (SW480 and C3) was conducted and compared to those derived from pancreatic cancer (Panc-1), highlighting the significant difference in EV phenotypes for various cancer cell types suspended in both phosphate-buffered saline and plasma. Thus, we believe that this technology enables a comprehensive evaluation of small secreted EV heterogeneity with high sensitivity, offering strong potential for accurate noninvasive cancer diagnosis and monitoring of drug treatment. In addition, this assay provides point-of-care use because of the easy sample preparation and portable nature of the Raman spectrometer.
Collapse
Affiliation(s)
- Wei Zhang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lianmei Jiang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Russell J. Diefenbach
- Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | - Bradley J. Walsh
- Minomic International Ltd, Macquarie Park, New South Wales 2113, Australia
| | - Nicolle H. Packer
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yuling Wang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
45
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
46
|
Langer J, García I, Liz-Marzán LM. Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Faraday Discuss 2019; 205:363-375. [PMID: 28880321 DOI: 10.1039/c7fd00123a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present the application of surface-enhanced Raman scattering (SERS) spectroscopy for the fast, sensitive and highly specific detection of the galectin-9 (Gal-9) protein in binding buffer (mimicking natural conditions). The method involves the use of specifically designed nanotags comprising glycan-decorated gold nanoparticles encoded with 4-mercaptobenzoic acid. At fast time scales Gal-9 can be detected down to a concentration of 1.2 nM by monitoring the SERS signal of the reporter, driven by aggregation of the functionalized Au NPs tags, induced by Gal-9 recognition. We additionally demonstrate that the sensitivity and concentration working range of the sensor can be tuned via control of aggregation dynamics and cluster size distribution.
Collapse
Affiliation(s)
- Judith Langer
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.
| | | | | |
Collapse
|
47
|
Wang XP, Walkenfort B, König M, König L, Kasimir-Bauer S, Schlücker S. Fast and reproducible iSERS microscopy of single HER2-positive breast cancer cells using gold nanostars as SERS nanotags. Faraday Discuss 2019; 205:377-386. [PMID: 28902197 DOI: 10.1039/c7fd00135e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Speed is often a bottleneck in conventional Raman microscopy on biological specimens. In immuno-Raman microspectroscopy, or for short iSERS microscopy, the acquisition times per pixel have been reduced by more than one order of magnitude over the past decade since its proof of concept. Typically rather high laser power densities are employed with the intention of compensating for the shorter acquisition times, without checking the reproducibility of the results in repeated experiments on the same sample. Here, we systematically analyze this aspect at the single-cell level since it forms the basis of quantification and is very important for reinspection of the same specimen. Specifically, we investigate experimentally the role of the laser power density in conjunction with the acquisition times per pixel in a series of repeated iSERS experiments on the same single cell overexpressing the breast cancer tumor marker human epidermal growth factor receptor 2 (HER2). Confocal iSERS mapping experiments were guided by wide-field fluorescence microscopy for selecting the regions of interest. We demonstrate that the combination of ca. a 1-2 mW laser power (40× objective, NA 0.6), 50 ms acquisition time per pixel and a high EM-CCD signal gain yields highly reproducible iSERS images in a series of four repeated experiments on the same single cell. In contrast, longer acquisition times (0.8 s, no EM gain) and in particular higher laser power (4 mW up to 18 mW) densities lead to non-reproducible iSERS results due to signal degradation.
Collapse
Affiliation(s)
- Xin-Ping Wang
- Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Lenzi E, Jimenez de Aberasturi D, Liz-Marzán LM. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sens 2019; 4:1126-1137. [PMID: 31046243 DOI: 10.1021/acssensors.9b00321] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have recently witnessed a major improvement in the quality of nanoparticles encoded with Raman-active molecules (SERS tags). Such progress relied mainly on a major improvement of fabrication methods for building-blocks, resulting in widespread application of this powerful tool in various fields, with the potential to replace commonly used techniques, such as those based on fluorescence. We present hereby a brief Perspective on surface enhanced Raman scattering (SERS) tags, regarding their composition, morphology, and structure, and describe our own selection from the current state-of-the-art. We then focus on the main bioimaging applications of SERS tags, showing a gradual evolution from two-dimensional studies to three-dimensional analysis. Recent improvements in sensitivity and multiplexing ability have enabled great advancements toward in vivo applications, e.g., highlighting tumor boundaries to guide surgery. In addition, the high level of biomolecule sensitivity reached by SERS tags promises an expansion toward biomarker detection in cases for which traditional methods offer limited reliability, as a consequence of the frequently low analyte concentrations.
Collapse
Affiliation(s)
- Elisa Lenzi
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | | | - Luis M. Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
49
|
Wiercigroch E, Stepula E, Mateuszuk L, Zhang Y, Baranska M, Chlopicki S, Schlücker S, Malek K. ImmunoSERS microscopy for the detection of smooth muscle cells in atherosclerotic plaques. Biosens Bioelectron 2019; 133:79-85. [PMID: 30909016 DOI: 10.1016/j.bios.2019.02.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/19/2023]
Abstract
We investigated the suitability of immuno-SERS (iSERS) microscopy for imaging of smooth muscle cells (SMCs) in atherosclerotic plaques. Localization of SMCs is achieved by using SERS-labelled antibodies direct against alpha-smooth muscle actin (SMA). The staining quality of the false-colour iSERS images obtained by confocal Raman microscopy with point mapping is compared with wide-field immunofluorescence images. Both direct (labelled primary antibody) and indirect iSERS staining (unlabelled primary and labelled secondary antibody) techniques were employed. Direct iSERS staining yields results comparable to indirect IF staining, demonstrating the suitability of iSERS in research on atherosclerosis and paving the way for future multiplexed imaging experiments.
Collapse
Affiliation(s)
- Ewelina Wiercigroch
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Elzbieta Stepula
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Yuying Zhang
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Chair of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Sebastian Schlücker
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland.
| |
Collapse
|
50
|
Tran V, Walkenfort B, König M, Salehi M, Schlücker S. Rapid, Quantitative, and Ultrasensitive Point-of-Care Testing: A Portable SERS Reader for Lateral Flow Assays in Clinical Chemistry. Angew Chem Int Ed Engl 2019; 58:442-446. [PMID: 30288886 PMCID: PMC6582447 DOI: 10.1002/anie.201810917] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 11/27/2022]
Abstract
The design of a portable Raman/SERS-LFA reader with line illumination using a custom-made fiber optic probe for rapid, quantitative, and ultrasensitive point-of-care testing (POCT) is presented. The pregnancy hormone human chorionic gonadotropin (hCG) is detectable in clinical samples within only 2-5 s down to approximately 1.6 mIU mL-1 . This acquisition time is several orders of magnitude shorter than those of existing approaches requiring expensive Raman instrumentation, and the method is 15-times more sensitive than a commercially available lateral flow assay (LFA) as the gold standard. The SERS-LFA technology paves the way for affordable, quantitative, and ultrasensitive POCT with multiplexing potential in real-world applications, ranging from clinical chemistry to food and environmental analysis as well as drug and biowarfare agent testing.
Collapse
Affiliation(s)
- Vi Tran
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Bernd Walkenfort
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Matthias König
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Mohammad Salehi
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Sebastian Schlücker
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| |
Collapse
|