1
|
Rommel D, Mork M, Vedaraman S, Bastard C, Guerzoni LPB, Kittel Y, Vinokur R, Born N, Haraszti T, De Laporte L. Functionalized Microgel Rods Interlinked into Soft Macroporous Structures for 3D Cell Culture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103554. [PMID: 35032119 PMCID: PMC8981485 DOI: 10.1002/advs.202103554] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/12/2021] [Indexed: 05/11/2023]
Abstract
In this work, a two component microgel assembly using soft anisometric microgels that interlink to create a 3D macroporous construct for cell growth is reported. Reactive microgel rods with variable aspect ratio are produced via microfluidics in a continuous plug-flow on-chip gelation method by photoinitiated free-radical polymerization of star-polyethylene glycol-acrylate with glycidyl methacrylate or 2-aminoethyl methacrylate comonomers. The resulting complementary epoxy- and amine-functionalized microgels assemble and interlink with each other via a ring opening reaction, resulting in macroporous constructs with pores up to several hundreds of micrometers. The level of crosslinking depends on the functionalization degree of the microgels, which also affects the stiffness and cell adhesiveness of the microgels when modified with the cell-adhesive GRGDS-PC peptide. Therefore, 3D spreading and growth of cells inside the macroporous structure is influenced not only by the presence of macropores but also by the mechanical and biochemical properties of the individual microgels.
Collapse
Affiliation(s)
- Dirk Rommel
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Matthias Mork
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Sitara Vedaraman
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Céline Bastard
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Luis P. B. Guerzoni
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Yonca Kittel
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | | | | | - Tamás Haraszti
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Laura De Laporte
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
- Institute of Applied Medical EngineeringDepartment of Advanced Materials for BiomedicineRWTH Aachen UniversityAachen52074Germany
| |
Collapse
|
2
|
Motta CMM, Endres KJ, Wesdemiotis C, Willits RK, Becker ML. Enhancing Schwann cell migration using concentration gradients of laminin-derived peptides. Biomaterials 2019; 218:119335. [PMID: 31302351 PMCID: PMC6868524 DOI: 10.1016/j.biomaterials.2019.119335] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022]
Abstract
Neuroregeneration following peripheral nerve injury is largely mediated by Schwann cells (SC), the principal glial cell that supports neurons in the peripheral nervous system. Axonal regeneration in vivo is limited by the extent of SC migration into the gap between the proximal and distal nerve, however, little is known regarding the principal driving forces for SC migration. Engineered microenvironments, such as molecular and protein gradients, play a role in the migration of many cell types, including cancer cells and fibroblasts. However, haptotactic strategies have not been applied widely to SC. Herein, a series of tethered laminin-derived peptides were analyzed for their influence on SC adhesion, proliferation, and alignment. Concentration gradient substrates were fabricated using a controlled vapor deposition method, followed by covalent peptide attachment via a thiol-ene reaction, and characterized by X-ray photoelectron spectroscopy (XPS) and MALDI-MS imaging. While tethered RGD peptides supported SC adhesion and proliferation, concentration gradients of RGD had little influence on biased SC directional migration. In contrast, YIGSR promoted less SC attachment than RGD, yet YIGSR peptide gradients directed migration with a strong bias to the concentration profile. With YIGSR peptide, overall speed increased with the steepness of the peptide concentration profile. YIGSR gradients had no haptotactic effect on rat dermal fibroblast migration, in contrast to fibroblast migration on RGD gradients. The response of SC to these tethered peptide gradients will guide the development of translationally relevant constructs designed to facilitate endogenous SC infiltration into defects for nerve regeneration.
Collapse
Affiliation(s)
- Cecilia M M Motta
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, United States
| | - Kevin J Endres
- Department of Chemistry, The University of Akron, Akron, OH, 44325, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH, 44325, United States
| | - Rebecca K Willits
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, United States.
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, United States; Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, United States; Department of Chemistry, Mechanical Engineering and Materials Science, and Orthopaedic Surgery, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
3
|
Lim HJ, Mosley MC, Kurosu Y, Smith Callahan LA. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle. Acta Biomater 2017; 56:153-160. [PMID: 27915022 DOI: 10.1016/j.actbio.2016.11.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/10/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
N-cadherin cell-cell signaling plays a key role in the structure and function of the nervous system. However, few studies have incorporated bioactive signaling from n-cadherin into tissue engineering matrices. The present study uses a continuous gradient approach in polyethylene glycol dimethacrylate hydrogels to identify concentration dependent effects of n-cadherin peptide, His-Ala-Val-Asp-Lle (HAVDI), on murine embryonic stem cell survival and neural differentiation. The n-cadherin peptide was found to affect the expression of pluripotency marker, alkaline phosphatase, in murine embryonic stem cells cultured on n-cadherin peptide containing hydrogels in a concentration dependent manner. Increasing n-cadherin peptide concentrations in the hydrogels elicited a biphasic response in neurite extension length and mRNA expression of neural differentiation marker, neuron-specific class III β-tubulin, in murine embryonic stem cells cultured on the hydrogels. High concentrations of n-cadherin peptide in the hydrogels were found to increase the expression of apoptotic marker, caspase 3/7, in murine embryonic stem cells compared to that of murine embryonic stem cell cultures on hydrogels containing lower concentrations of n-cadherin peptide. Increasing the n-cadherin peptide concentration in the hydrogels facilitated greater survival of murine embryonic stem cells exposed to increasing oxidative stress caused by hydrogen peroxide exposure. The combinatorial approach presented in this work demonstrates concentration dependent effects of n-cadherin signaling on mouse embryonic stem cell behavior, underscoring the need for the greater use of systematic approaches in tissue engineering matrix design in order to understand and optimize bioactive signaling in the matrix for tissue formation. STATEMENT OF SIGNIFICANCE Single cell encapsulation is common in tissue engineering matrices. This eliminates cellular access to cell-cell signaling. N-cadherin, a cell-cell signaling molecule, plays a vital role in the development of neural tissues, but has not been well studied as a bioactive signaling element in neural tissue engineering matrices. The present study uses a systematic continuous gradient approach to identify concentration dependent effects of n-cadherin derived peptide, HAVDI, on the survival and neural differentiation of murine embryonic stem cells. This work underscores the need for greater use to combinatorial strategies to understand the effect complex bioactive signaling, such as n-cadherin, and the need to optimize the concentration of such bioactive signaling within tissue engineering matrices for maximal cellular response.
Collapse
Affiliation(s)
- Hyun Ju Lim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, United States
| | - Matthew C Mosley
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, United States
| | - Yuki Kurosu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, United States
| | - Laura A Smith Callahan
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, United States; The Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, United States; The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
4
|
Wei Z, Zhao J, Chen YM, Zhang P, Zhang Q. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Sci Rep 2016; 6:37841. [PMID: 27897217 PMCID: PMC5126669 DOI: 10.1038/srep37841] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel ("l" means "linked-by"). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases.
Collapse
Affiliation(s)
- Zhao Wei
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jingyi Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710003, China
| | - Yong Mei Chen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710003, China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China, Fujian Guided Tissue Regeneration (GTR) Biotechnology Co., Ltd., Fuzhou 350108, China
| |
Collapse
|
5
|
Mosley MC, Lim HJ, Chen J, Yang YH, Li S, Liu Y, Smith Callahan LA. Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young's Modulus gradient. J Biomed Mater Res A 2016; 105:824-833. [DOI: 10.1002/jbm.a.35955] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Matthew C. Mosley
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Hyun Ju Lim
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Jing Chen
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Yueh-Hsun Yang
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Shenglan Li
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Ying Liu
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Laura A. Smith Callahan
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
- The Department of Nanomedicine and Biomedical Engineering; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- The Graduate School of Biomedical Sciences; University of Texas Health Science Center at Houston; Houston Texas 77030
| |
Collapse
|
6
|
Smith Callahan LA. Combinatorial Method/High Throughput Strategies for Hydrogel Optimization in Tissue Engineering Applications. Gels 2016; 2:E18. [PMID: 30674150 PMCID: PMC6318679 DOI: 10.3390/gels2020018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Combinatorial method/high throughput strategies, which have long been used in the pharmaceutical industry, have recently been applied to hydrogel optimization for tissue engineering applications. Although many combinatorial methods have been developed, few are suitable for use in tissue engineering hydrogel optimization. Currently, only three approaches (design of experiment, arrays and continuous gradients) have been utilized. This review highlights recent work with each approach. The benefits and disadvantages of design of experiment, array and continuous gradient approaches depending on study objectives and the general advantages of using combinatorial methods for hydrogel optimization over traditional optimization strategies will be discussed. Fabrication considerations for combinatorial method/high throughput samples will additionally be addressed to provide an assessment of the current state of the field, and potential future contributions to expedited material optimization and design.
Collapse
Affiliation(s)
- Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Department of Nanomedicine and Biomedical Engineering, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Ma Y, Policastro GM, Li Q, Zheng J, Jacquet R, Landis WJ, Becker ML. Concentration-Dependent hMSC Differentiation on Orthogonal Concentration Gradients of GRGDS and BMP-2 Peptides. Biomacromolecules 2016; 17:1486-95. [DOI: 10.1021/acs.biomac.6b00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yanrui Ma
- Department of Polymer Science and ‡Department of Biomedical
Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gina M. Policastro
- Department of Polymer Science and ‡Department of Biomedical
Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Qiyao Li
- Department of Polymer Science and ‡Department of Biomedical
Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jukuan Zheng
- Department of Polymer Science and ‡Department of Biomedical
Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Robin Jacquet
- Department of Polymer Science and ‡Department of Biomedical
Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - William J. Landis
- Department of Polymer Science and ‡Department of Biomedical
Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science and ‡Department of Biomedical
Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
8
|
Yang YH, Khan Z, Ma C, Lim HJ, Smith Callahan LA. Optimization of adhesive conditions for neural differentiation of murine embryonic stem cells using hydrogels functionalized with continuous Ile-Lys-Val-Ala-Val concentration gradients. Acta Biomater 2015; 21:55-62. [PMID: 25931018 DOI: 10.1016/j.actbio.2015.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
Stem cell therapies, which aim to restore neurological function after central nervous system injury, have shown increased efficacy when a tissue engineering matrix is implanted with cells compared to implantation of the cells alone. However, much work still needs to be done to characterize materials that can be used to facilitate and direct the differentiation of implanted cells. In the current study, polyethylene glycol hydrogels functionalized with continuous Ile-Lys-Val-Ala-Val (IKVAV) concentration gradients were fabricated and utilized to systematically study and optimize the adhesive conditions for neural differentiation of mouse embryonic stem cells in two- and three-dimensional environments. The results suggest that 570 μM and 60 μM are the optimal IKVAV concentrations for 2D and 3D neural differentiation, respectively, to maximize mRNA expression of neuron-specific markers and neurite extension while minimizing apoptotic activities in cultured cells compared to those exposed to higher IKVAV concentrations. The combinatorial approach presented in this work demonstrates that hydrogels functionalized with bioactive peptides provide a defined and tunable platform that can be employed to characterize and improve culture conditions for superior survival, maturation and integration of implanted cells, leading to enhanced restoration of neurological function for those receiving stem cell therapies after traumatic brain and spinal cord injuries.
Collapse
|
9
|
Tseng TC, Tao L, Hsieh FY, Wei Y, Chiu IM, Hsu SH. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3518-24. [PMID: 25953204 DOI: 10.1002/adma.201500762] [Citation(s) in RCA: 370] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/04/2015] [Indexed: 05/24/2023]
Abstract
An injectable, self-healing hydrogel (≈1.5 kPa) is developed for healing nerve-system deficits. Neurosphere-like progenitors proliferate in the hydrogel and differentiate into neuron-like cells. In the zebrafish injury model, the central nervous system function is partially rescued by injection of the hydrogel and significantly rescued by injection of the neurosphere-laden hydrogel. The self-healing hydrogel may thus potentially repair the central nervous system.
Collapse
Affiliation(s)
- Ting-Chen Tseng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fu-Yu Hsieh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan, R.O.C
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| |
Collapse
|
10
|
Smith Callahan LA, Xie S, Barker IA, Zheng J, Reneker DH, Dove AP, Becker ML. Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide. Biomaterials 2013; 34:9089-95. [DOI: 10.1016/j.biomaterials.2013.08.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
|