1
|
Li H, Jia Y, Bai S, Peng H, Li J. Metal-chelated polydopamine nanomaterials: Nanoarchitectonics and applications in biomedicine, catalysis, and energy storage. Adv Colloid Interface Sci 2024; 334:103316. [PMID: 39442423 DOI: 10.1016/j.cis.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Polydopamine (PDA)-based materials inspired by the adhesive proteins of mussels have attracted increasing attention owing to the universal adhesiveness, antioxidant activity, fluorescence quenching ability, excellent biocompatibility, and especially photothermal conversion capability. The high binding ability of PDA to a variety of metal ions offers a paradigm for the exploration of metal-chelated polydopamine nanomaterials with fantastic properties and functions. This review systematically summarizes the latest progress of metal-chelated polydopamine nanomaterials for the applications in biomedicine, catalysis, and energy storage. Different fabrication strategies for metal-chelated polydopamine nanomaterials with various composition, structure, size, and surface chemistry, such as the pre-functionalization method, the one-pot co-assembly method, and the post-modification method, are summarized. Furthermore, emerging applications of metal-chelated polydopamine nanomaterials in the fields ranging from cancer therapy, theranostics, antibacterial, catalysis to energy storage are highlighted. Additionally, the critical remaining challenges and future directions of this area are discussed to promote the further development and practical applications of PDA-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
2
|
Al-Waeel M, Lukkari J, Kivelä H, Salomäki M. Heterogenous Copper(0)-Assisted Dopamine Oxidation: A New Pathway to Controllable and Scalable Polydopamine Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39248575 DOI: 10.1021/acs.langmuir.4c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In this study, we introduce an approach for synthesizing polydopamine (PDA) through the controlled oxidation of dopamine using metallic copper. Traditional methods of PDA synthesis often encounter challenges such as scalability, reproducibility, and control over polymerization. Our approach utilizes the catalytic properties of metallic copper in the presence of dissolved oxygen to generate reactive oxygen species (ROS) without additional chemicals. This process allows for precise control over dopamine oxidation, leading to reliable, materials and cost-effective upscalable PDA production. We investigated the reaction kinetics and the role of copper and ROS in dopamine oxidation, using several different experimental techniques. Our results demonstrate that, even at low pH, the copper-assisted method produces PDA with properties comparable to those synthesized through conventional means. We propose a mechanism for PDA synthesis that is initiated by oxygen adsorption onto copper surface, leading to the generation of various ROS which act as oxidizing agents in PDA synthesis. This method presents an advancement in the scalable and controlled production of PDA, with potential applications in various scientific and industrial fields.
Collapse
Affiliation(s)
- Majid Al-Waeel
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Jukka Lukkari
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Henri Kivelä
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Mikko Salomäki
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| |
Collapse
|
3
|
Zhou Y, Gao Y, Yao N, Lu G, Dong C, Wang K, Zhang J, Sun J, Li K, Li X. Multi-modal triggered-release sonodynamic/chemo/phototherapy synergistic nanocarriers for the treatment of colon cancer. Front Bioeng Biotechnol 2024; 12:1439883. [PMID: 39104624 PMCID: PMC11298370 DOI: 10.3389/fbioe.2024.1439883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Most colon cancer patients are diagnosed at an advanced stage, with a grim prognosis. In clinical, various combination therapies have been employed to enhance the efficacy of colon cancer treatment. The essence of combined treatment is the judicious selection and combination of various treatment units. Phototherapy (PT), sonodynamic therapy (SDT), and chemotherapy are treatment modalities that rely on the active molecules to treat tumors, and have been demonstrated to synergistically enhance tumor treatment efficacy. However, the differences in the metabolism of active molecules and hypoxic microenvironment of tumors have limited the synergistic effects of the aforementioned methods. To address this significant issue, in this study, we utilized polydopamine (PDA) as the encapsulated material to form a rigid shell that contains the therapeutic molecules IR-780 and methotrexate (MTX) on the surface of perfluorohexane (PFH) microdroplets through self-assembling method to develop an SDT/chemotherapy/PT combined nanoparticles (SCP NPs). Transmission electron microscopy (TEM) revealed that the nanoparticles exhibited a hollow shell structure, with an average size of approximately 100 nm. SCP NPs have excellent stability and biocompatibility in both in vitro and in vivo. The absorption and emission spectrum of the loaded IR-780 did not exhibit any significant shift, and the photothermal temperature rose to 92°C. Their ultrasonic cavitation effect was good and their cell inhibitory effect of MTX was maintained. SCP NPs can achieve multi-modal triggered release through ultrasound, laser irradiation, and pH, ensuring a simultaneous accumulation of therapeutic molecules in the tumor area and effectively alleviating tumor hypoxia. Additionally, both the near-infrared fluorescence (NIF) signal and the ultrasonic cavitation signal of the nanoparticles can be utilized for tracking and monitoring treatment efficacy. Most notably, SCP NPs exhibited outstanding synergistic treatment effects at low intervention levels, resulting in a 67% cure rate of tumors. These results provide an experimental basis for developing the new clinical treatments for colon cancer.
Collapse
Affiliation(s)
- Yun Zhou
- College of Clinical Medicine, Xi’an Medical University, Xi’an, China
| | - Yueyang Gao
- College of Clinical Medicine, Xi’an Medical University, Xi’an, China
| | - Nannan Yao
- College of Clinical Medicine, Xi’an Medical University, Xi’an, China
| | - Guozhi Lu
- College of Clinical Medicine, Xi’an Medical University, Xi’an, China
| | - Chuyu Dong
- The Second College of Clinical Medicine, Xi’an Medical University, Xi’an, China
| | - Kexin Wang
- The Second College of Clinical Medicine, Xi’an Medical University, Xi’an, China
| | - Junfeng Zhang
- Xi’an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Jing Sun
- College of Medical Technology, Xi’an Medical University, Xi’an, China
| | - Ke Li
- Xi’an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xueping Li
- College of Clinical Medicine, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| |
Collapse
|
4
|
Wu M, Hong C, Shen C, Xie D, Chen T, Wu A, Li Q. Polydopamine nanomaterials and their potential applications in the treatment of autoimmune diseases. Drug Deliv 2023; 30:2289846. [PMID: 38069584 PMCID: PMC10987051 DOI: 10.1080/10717544.2023.2289846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The conventional treatment methods used for the management of autoimmune diseases (ADs) have limited efficacy and also exhibit significant side effects. Thus, identification of novel strategies to improve the efficacy and safety of ADs treatment is urgently required. Overactivated immune response and oxidative stress are common characteristics associated with ADs. Polydopamine (PDA), as a polymer material with good antioxidant and photothermal conversion properties, has displayed useful application potential against ADs. In addition, PDA possesses good biosafety, simple preparation, and easy functionalization, which is conducive for the pharmacological development of PDA nanomaterials with clinical transformation prospects. Here, we have first reviewed the preparation of PDA, the different functional integration strategies of PDA-based biomaterials, and their potential applications in ADs. Next, the mechanism of action of PDA in ADs has been elaborated in detail. Finally, the application opportunities and challenges linked with PDA nanomaterials for ADs treatment are discussed. This review is contributed to design reasonable and effective PDA nanomaterials for the diagnosis and treatment of ADs.
Collapse
Affiliation(s)
- Manxiang Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| | - Chengyuan Hong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Chunjuan Shen
- Center for Reproductive Medicine, Jiaxing University Affilated Maternity and Child Hospital, Jiaxing, P. R. China
| | - Dong Xie
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
| | - Qiang Li
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| |
Collapse
|
5
|
Zhang N, Huang Y, Wei P, Sun L, Jing W, Xue Y, Zhang Y, Zhao B, Yang Z. Killing two birds with one stone: A therapeutic copper-loaded bio-patch promoted abdominal wall repair via VEGF pathway. Mater Today Bio 2023; 22:100785. [PMID: 37680583 PMCID: PMC10480776 DOI: 10.1016/j.mtbio.2023.100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Hernia and life-threatening intestinal obstruction often result from abdominal wall injuries, and the regeneration of abdominal wall defects is limited due to the lack of biocompatible, antibacterial and angiogenic scaffolding materials for treating injured tissues. Taking inspiration from the facile preparation of dopamine polymerization and its surface modification technology, in this study, multi-therapeutic copper element was introduced into porcine small intestinal submucosa (SIS) bio-patches through polydopamine (PDA) deposition, in order to regenerate abdominal wall injury. In both in vitro antibacterial assays, cytocompatibility assays and in vivo abdominal wall repair experiments, the SIS/PDA/Cu bio-patches exhibited robust antibacterial efficiency (>99%), excellent biocompatibility to cells (>90%), and enhanced neovascularization and improved collagen maturity compared to other commercially available patches (3.0-fold higher than the PP mesh), due to their activation of VEGF pathway. These findings indicated the bio-patch was a promising application for preventing visceral adhesion, bacterial infection, and promoting soft tissue regeneration.
Collapse
Affiliation(s)
- Nan Zhang
- Department of General Surgery, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Yiqian Huang
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
- Foshan (Southern China) Institute for New Materials, Foshan, 528220, China
| | - Liya Sun
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
- Foshan (Southern China) Institute for New Materials, Foshan, 528220, China
| | - Yunxia Xue
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Yan Zhang
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Ziang Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
6
|
Kang G, Zhao D, Wang H, Liu F, Wang T, Chen C, Lu Y. Malathion detection based on polydopamine enhanced oxidase-mimetic activity of palladium nanocubes. Talanta 2023; 262:124730. [PMID: 37245431 DOI: 10.1016/j.talanta.2023.124730] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Nowadays, fabricating simple and efficient pesticide detection methods become a research focus due to the great threat pesticide residues posed to human health and environment. Herein, we constructed a high-efficiency and sensitive colorimetric detection platform for malathion detection based on polydopamine-dressed Pd nanocubes (PDA-Pd/NCs). The Pd/NCs coated with PDA exhibited excellent oxidase-like activity, which was attributed to the substrates accumulation and accelerated electron transfer induced by PDA. What's more, we successfully achieved sensitive detection of acid phosphatase (ACP) using 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate, relying on the satisfactory oxidase activity from PDA-Pd/NCs. However, the addition of malathion could inhibit the activity of ACP and limit the production of medium AA. Therefore, we constructed a colorimetric assay for malathion based on PDA-Pd/NCs + TMB + ACP system. The wide linear range (0-8 μM) and low detection limit (0.023 μM) indicate excellent analytical performance, which is superior to most malathion analysis methods previously reported. This work not only provides a new idea for dopamine coated nano-enzyme to improve its catalytic activity, but also creates a new tactics for the detection of pesticides such as malathion.
Collapse
Affiliation(s)
- Ge Kang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Dan Zhao
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China.
| | - Hao Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Tingting Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China.
| |
Collapse
|
7
|
Cai Y, Gu R, Dong Y, Zhao Q, Zhang K, Cheng C, Yang H, Li J, Yuan X. Fabrication of antibacterial polydopamine-carboxymethyl cellulose-Ag nanoparticle hydrogel coating for urinary catheters. J Biomater Appl 2023:8853282231173576. [PMID: 37142296 DOI: 10.1177/08853282231173576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Urinary tract infections caused by catheter insertion are prevalent in hospital clinics, which can induce serious complications such as bacteriuria and sepsis, and even lead to patient death. The disposable catheters currently used in clinical practice suffer from poor biocompatibility and high infection rate. In this paper, we developed a polydopamine (PDA)-carboxymethylcellulose (CMC)-Ag nanoparticles (AgNPs) coating with both good antibacterial and anti-adhesion properties to bacteria on the surfaces of a disposable medical latex catheter by a simple dipping method. The antibacterial efficiency of the coated catheters against Gram-negative E. coli and Gram-positive S. aureus bacteria was evaluated with both inhibition zone tests and fluorescence microscopy. Compared with the untreated catheter, the PDA-CMC-AgNPs coated catheters showed both good antibacterial and anti-adhesion properties to bacteria, which inhibited the adhesion of live bacteria and dead bacteria by 99.0% and 86.6%, respectively. This novel PDA-CMC-AgNPs composite hydrogel coating has great potential in applications in catheters and other biomedical devices to reduce infections.
Collapse
Affiliation(s)
- Yongwei Cai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Ronghua Gu
- Chongqing University Cancer Hospital, Chongqing, China
| | | | - Qi Zhao
- University of Dundee, Dundee, UK
| | - Ke Zhang
- University of Dundee, Dundee, UK
| | | | - Hong Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Jianxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Xinggen Yuan
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
8
|
Zhang WJ, Li S, Vijayan V, Lee JS, Park SS, Cui X, Chung I, Lee J, Ahn SK, Kim JR, Park IK, Ha CS. ROS- and pH-Responsive Polydopamine Functionalized Ti 3C 2T x MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244392. [PMID: 36558246 PMCID: PMC9786132 DOI: 10.3390/nano12244392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Premature drug release and poor controllability is a challenge in the practical application of tumor therapy, which may lead to poor chemotherapy efficacy and severe adverse effects. In this study, a reactive oxygen species (ROS)-cleavable nanoparticle system (MXene-TK-DOX@PDA) was designed for effective chemotherapy drug delivery and antibacterial applications. Doxorubicin (DOX) was conjugated to the surface of (3-aminopropyl)triethoxysilane (APTES)-functionalized MXene via an ROS-cleavable diacetoxyl thioketal (TK) linkage. Subsequently, the surfaces of the MXene nanosheets were coated with pH-responsive polydopamine (PDA) as a gatekeeper. PDA endowed the MXene-TK-DOX@PDA nanoparticles with superior biocompatibility and stability. The MXene-TK-DOX@PDA nanoparticles had an ultrathin planar structure and a small lateral size of approximately 180 nm. The as-synthesized nanoparticles demonstrated outstanding photothermal conversion efficiency, superior photothermal stability, and a remarkable extinction coefficient (23.3 L g-1 cm-1 at 808 nm). DOX exhibited both efficient ROS-responsive and pH-responsive release performance from MXene-TK-DOX@PDA nanoparticles due to the cleavage of the thioketal linker. In addition, MXene-TK-DOX@PDA nanoparticles displayed high antibacterial activity against both Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) within 5 h. Taken together, we hope that MXene-TK-DOX@PDA nanoparticles will enrich the drug delivery system and significantly expand their applications in the biomedical field.
Collapse
Affiliation(s)
- Wei-Jin Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Shuwei Li
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Jun Seok Lee
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sung Soo Park
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Xiuguo Cui
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Ildoo Chung
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaejun Lee
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suk-kyun Ahn
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
He X, Obeng E, Sun X, Kwon N, Shen J, Yoon J. Polydopamine, harness of the antibacterial potentials-A review. Mater Today Bio 2022; 15:100329. [PMID: 35757029 PMCID: PMC9218838 DOI: 10.1016/j.mtbio.2022.100329] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is one of the major causes of morbidity and mortality, triggered by the adhesion of microbes and to some extent the formation of biofilms. This condition has been quite challenging in the health and industrial sector. Conditions and processes required to foil these infectious and resistance are of much concern. The synthesis of PDA material, inspired by the Mytilus edulis foot protein (MEFP)5 possesses unique characteristics that allow for, adhesion, photothermal therapy, synergistic effects with other materials, biocompatibility process, etc. Therefore, their usage holds great potential for dealing with both the infectious nature and the antibiotic resistance processes. Hence, this review provides an overview of the mechanism involved in accomplishing and eradicating bacteria, the recently harnessed antibacterial effect of the PDA through other properties they possess, a way forward in tapping the benefit embedded in the PDA, and the future perspective.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Nahyun Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
10
|
Mulinari J, Ambrosi A, Innocentini MDDM, Feng Y, Li Q, Di Luccio M, Hotza D, Oliveira JV. Lipase immobilization on alumina membranes using a traditional and a nature-inspired method for active degradation of oil fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Fu Y, Yang L, Zhang J, Hu J, Duan G, Liu X, Li Y, Gu Z. Polydopamine antibacterial materials. MATERIALS HORIZONS 2021; 8:1618-1633. [PMID: 34846495 DOI: 10.1039/d0mh01985b] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, the development of polydopamine (PDA) has demonstrated numerous excellent performances in free radical scavenging, UV shielding, photothermal conversion, and biocompatibility. These unique properties enable PDA to be widely used as efficient antibacterial materials for various applications. Accordingly, PDA antibacterial materials mainly include free-standing PDA materials and PDA-based composite materials. In this review, an overview of PDA antibacterial materials is provided to summarize these two types of antibacterial materials in detail, including the fabrication strategies and antibacterial mechanisms. The future development and challenges of PDA in this field are also presented. It is hoped that this review will provide an insight into the future development of antibacterial functional materials based on PDA.
Collapse
Affiliation(s)
- Yu Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118316] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Reproducible and fast preparation of superhydrophobic surfaces via an ultrasound-accelerated one-pot approach for oil collection. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Zanuy D, Nir S, Aleman C, Reches M. Structural preferences of an anti-fouling peptide: From single chain to small molecular assemblies. Biophys Chem 2021; 272:106555. [PMID: 33713998 DOI: 10.1016/j.bpc.2021.106555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/16/2021] [Accepted: 01/31/2021] [Indexed: 11/15/2022]
Abstract
The structural features of a tripeptide constituted by two different non-coded amino acids, 3,4-dihydroxy-L-phenylalanine (L-DOPA) and 4-fluoro-Phenylalanine, (Phe(4F)), have been investigated by means of classical mechanics simulations. This tripeptide had been characterised as an antifouling agent with great adhesion capabilities. In this work, its conformational preferences have been described in two different environments (gas phase and water solution), at three different pHs and with different degrees of terminal capping. At the same time, the structural dynamics of small aggregates of the tripeptide have been investigated and their ability to stabilise β-sheet based assemblies has been studied. The reported results describe the complexity of the tripeptide conformational preferences due to both the amphiphilic nature of its side chains, and the effect of the ionisation state resulting from the solution conditions. The investigations performed with small tripeptide assemblies in water solution reproduced the previously reported structural features, such as the polymorphism of its aggregates as a function of the pH. At edge pH values, the electrostatic screening imposed by the ions present in the solution facilitates the aggregation of the tripeptide chains, while at neutral pH and low concentrations of ionised species, the polar groups and the hydrogen bond capable groups impose their strength and lead to the disaggregation of the peptide clusters by favouring the solvation of individual chains rather than stabilising the aggregated states.
Collapse
Affiliation(s)
- David Zanuy
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
| | - Sivan Nir
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Carlos Aleman
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Meital Reches
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
15
|
Yue Y, Zhao X. Melanin-Like Nanomedicine in Photothermal Therapy Applications. Int J Mol Sci 2021; 22:E399. [PMID: 33401518 PMCID: PMC7795111 DOI: 10.3390/ijms22010399] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Photothermal therapy (PTT) mediated by nanomaterial has become an attractive tumor treatment method due to its obvious advantages. Among various nanomaterials, melanin-like nanoparticles with nature biocompatibility and photothermal conversion properties have attracted more and more attention. Melanin is a natural biological macromolecule widely distributed in the body and displays many fascinating physicochemical properties such as excellent biocompatibility and prominent photothermal conversion ability. Due to the similar properties, Melanin-like nanoparticles have been extensively studied and become promising candidates for clinical application. In this review, we give a comprehensive introduction to the recent advancements of melanin-like nanoparticles in the field of photothermal therapy in the past decade. In this review, the synthesis pathway, internal mechanism and basic physical and chemical properties of melanin-like nanomaterials are systematically classified and evaluated. It also summarizes the application of melanin-like nanoparticles in bioimaging and tumor photothermal therapy (PTT)in detail and discussed the challenges they faced in clinical translation rationally. Overall, melanin-like nanoparticles still have significant room for development in the field of biomedicine and are expected to applied in clinical PTT in the future.
Collapse
Affiliation(s)
- Yale Yue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiao Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Tu Y, Lei C, Deng F, Chen Y, Wang Y, Zhang Z. Core–shell ZIF-8@polydopamine nanoparticles obtained by mitigating the polydopamine coating induced self-etching of MOFs: prototypical metal ion reservoirs for sticking to and killing bacteria. NEW J CHEM 2021. [DOI: 10.1039/d1nj00461a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ZIF-8@PDA nanoparticles can work as metal ion reservoirs that locally release metal ions to kill bacteria after sticking to them.
Collapse
Affiliation(s)
- Yingxue Tu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Caifen Lei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Yiang Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Ying Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| |
Collapse
|
17
|
Li H, Yin D, Li W, Tang Q, Zou L, Peng Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf B Biointerfaces 2020; 199:111502. [PMID: 33387795 DOI: 10.1016/j.colsurfb.2020.111502] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023]
Abstract
Polydopamine (PDA) has shown great potentials in biomedical fields due largely to its unique physicochemical properties, including high photothermal transfer efficiency, excellent drug binding capacity, versatile adhesion ability, sensitive pH responsibility and great biocompatibility and biodegradability. These properties confer PDA-based nanoparticles the potentials either as the drug carriers for advanced drug delivery or as the bioactive agents for photothermal therapy, imaging and biosensing. This review aims to provide a comprehensive understanding of PDA, its polymerization mechanisms and the potentials of PDA-based nano-systems in treating various diseases, including cancer, diabetes, inflammation, bacterial infection and Parkinson's disease. In addition, the concerns of PDA in biomedical use are also discussed.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Dolid A, Gomes LC, Mergulhão FJ, Reches M. Combining chemistry and topography to fight biofilm formation: Fabrication of micropatterned surfaces with a peptide-based coating. Colloids Surf B Biointerfaces 2020; 196:111365. [DOI: 10.1016/j.colsurfb.2020.111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
19
|
Mei S, Xu X, Priestley RD, Lu Y. Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials. Chem Sci 2020; 11:12269-12281. [PMID: 34094435 PMCID: PMC8162453 DOI: 10.1039/d0sc04486e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Polydopamine (PDA)-based nanoreactors have shown exceptional promise as multifunctional materials due to their nanoscale dimensions and sub-microliter volumes for reactions of different systems. Biocompatibility, abundance of active sites, and excellent photothermal conversion have facilitated their extensive use in bioscience and energy storage/conversion. This minireview summarizes recent advances in PDA-based nanoreactors, as applied to the abovementioned fields. We first highlight the design and synthesis of functional PDA-based nanoreactors with structural and compositional diversity. Special emphasis in bioscience has been given to drug/protein delivery, photothermal therapy, and antibacterial properties, while for energy-related applications, the focus is on electrochemical energy storage, catalysis, and solar energy harvesting. In addition, perspectives on pressing challenges and future research opportunities regarding PDA-based nanoreactors are discussed.
Collapse
Affiliation(s)
- Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Xiaohui Xu
- Department of Chemical and Biological Engineering, Princeton University New Jersey 08544 USA
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University New Jersey 08544 USA
- Princeton Institute of the Science and Technology of Materials, Princeton University New Jersey 08544 USA
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
- Institute of Chemistry, University of Potsdam 14476 Potsdam Germany
| |
Collapse
|
20
|
Mohammad M, Ahmadpoor F, Shojaosadati SA. Mussel-Inspired Magnetic Nanoflowers as an Effective Nanozyme and Antimicrobial Agent for Biosensing and Catalytic Reduction of Organic Dyes. ACS OMEGA 2020; 5:18766-18777. [PMID: 32775878 PMCID: PMC7408242 DOI: 10.1021/acsomega.0c01864] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/03/2020] [Indexed: 05/08/2023]
Abstract
Mussel-inspired chemistry has been embodied as a method for acquiring multifunctional nanostructures. In this research, a novel mussel-inspired magnetic nanoflower was prepared through a mussel-inspired approach. Herein, magnetic PDA-Cu nanoflowers (NFs) were assembled via incorporating magnetic Fe3O4@SiO2-NH2 core/shell nanoparticles (NPs) into mussel-inspired polydopamine (PDA) and copper phosphate as the organic and inorganic portions, respectively. Accordingly, the flower-like morphology of MNPs PDA-Cu NFs was characterized by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) analysis confirmed the crystalline structure of magnetic nanoparticles (MNPs) and copper phosphate. Vibrating sample magnetometer (VSM) data revealed the superparamagnetic behavior of MNPs (40.5 emu/g) and MNPs PDA-Cu NFs (35.4 emu/g). Catalytic reduction of MNPs PDA-Cu NFs was evaluated through degradation of methylene blue (MB). The reduction of MB pursued the Langmuir-Hinshelwood mechanism and first-order kinetics, in which the apparent reduction rate K app of MB was higher than 1.44 min-1 and the dye degradation ability was 100%. MNPs PDA-Cu NFs also showed outstanding recyclability and reduction efficiency, for at least six cycles. Furthermore, the prepared MNPs PDA-Cu NFs demonstrated a peroxidase-like catalytic activity for catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidized TMB (oxTMB) solution in the presence of H2O2. Antimicrobial assays for MNPs PDA-Cu and PDA-Cu NFs were conducted on both Gram-negative and Gram-positive bacteria. Moreover, we demonstrated how the existence of magnetic nanoparticles in PDA-Cu NFs influences the inhibition of an increasing zone. Based on the results, mussel-inspired magnetic nanoflowers appear to have great potential applications, including those relevant to biological, catalysis, and environmental research.
Collapse
Affiliation(s)
- Mahsa Mohammad
- Biotechnology
Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14155-114, Iran
| | - Fatemeh Ahmadpoor
- Department
of Materials Engineering, Tarbiat Modares University, Tehran 14115-143, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology
Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14155-114, Iran
| |
Collapse
|
21
|
Yeroslavsky G, Okubo K, Umezawa M, Nigoghossian K, Dung DTK, Miyata K, Nomura K, Kamimura M, Soga K. Energy Transfer Between Rare Earth-doped Ceramic Nanoparticles for Gauging Strain and Temperature in Elastic Polymers. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gil Yeroslavsky
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
| | - Kyohei Okubo
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
- Department of Materials Science and Technology, Tokyo University of Science
| | - Masakazu Umezawa
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
- Department of Materials Science and Technology, Tokyo University of Science
| | | | - Doan Thi Kim Dung
- Research Institute for Biomedical Science, Tokyo University of Science
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center
| | - Keiji Miyata
- Department of Materials Science and Technology, Tokyo University of Science
| | - Koki Nomura
- Department of Materials Science and Technology, Tokyo University of Science
| | - Masao Kamimura
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
- Department of Materials Science and Technology, Tokyo University of Science
| | - Kohei Soga
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
- Department of Materials Science and Technology, Tokyo University of Science
- Research Institute for Biomedical Science, Tokyo University of Science
| |
Collapse
|
22
|
Wang Z, Zou Y, Li Y, Cheng Y. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907042. [PMID: 32220006 DOI: 10.1002/smll.201907042] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free-radical scavenging, high photothermal conversion efficiency, and strong metal-ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal-containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.
Collapse
Affiliation(s)
- Zhao Wang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
23
|
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020; 5:522-541. [PMID: 32322763 PMCID: PMC7170807 DOI: 10.1016/j.bioactmat.2020.04.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the mechanism of mussel adhesion, polydopamine (PDA), a versatile polymer for surface modification has been discovered. Owing to its unique properties like extraordinary adhesiveness, excellent biocompatibility, mild synthesis requirements, as well as distinctive drug loading approach, strong photothermal conversion capacity and reactive oxygen species (ROS) scavenging facility, various PDA-modified nanoparticles have been desired as drug carriers. These nanoparticles with diverse nanostructures are exploited in multifunctions, consisting of targeting, imaging, chemical treatment (CT), photodynamic therapy (PDT), photothermal therapy (PTT), tissue regeneration ability, therefore have attracted great attentions in plenty biomedical applications. Herein, recent progress of PDA-modified nanoparticle drug carriers in cancer therapy, antibiosis, prevention of inflammation, theranostics, vaccine delivery and adjuvant, tissue repair and implant materials are reviewed, including preparation of PDA-modified nanoparticle drug carriers with various nanostructures and their drug loading strategies, basic roles of PDA surface modification, etc. The advantages of PDA modification in overcoming the existing limitations of cancer therapy, antibiosis, tissue repair and the developing trends in the future of PDA-modified nanoparticle drug carriers are also discussed. Multifunctional PDA-modified drug systems are introduced in terms of classification, synthesis and drug loading strategies. Basic roles of PDA surface modification in the drug systems are discussed. Biomedical applications and unique advantages of the PDA-modified nanoparticle working as drug carriers are illustrated. Challenges and perspectives for future development are proposed.
Collapse
Affiliation(s)
- Anting Jin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lingyong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
24
|
Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903129. [PMID: 32274309 PMCID: PMC7141020 DOI: 10.1002/advs.201903129] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Indexed: 05/03/2023]
Abstract
Developing efficient, sustainable, and biocompatible high-tech nanoplatforms derived from naturally existing components in living organisms is highly beneficial for diverse advanced biomedical applications. Melanins are nontoxic natural biopolymers owning widespread distribution in various biosystems, possessing fascinating physicochemical properties and playing significant physiological roles. The multifunctionality together with intrinsic biocompatibility renders bioinspired melanin-like nanomaterials considerably promising as a versatile and powerful nanoplatform with broad bioapplication prospects. This panoramic Review starts with an overview of the fundamental physicochemical properties, preparation methods, and polymerization mechanisms of melanins. A systematical and well-bedded description of recent advancements of melanin-like nanomaterials regarding diverse biomedical applications is then given, mainly focusing on biological imaging, photothermal therapy, drug delivery for tumor treatment, and other emerging biomedicine-related implementations. Finally, current challenges toward clinical translation with an emphasis on innovative design strategies and future striving directions are rationally discussed. This comprehensive and detailed Review provides a deep understanding of the current research status of melanin-like nanomaterials and is expected to motivate further optimization of the design of novel tailorable and marketable multifunctional nanoplatforms in biomedicine.
Collapse
Affiliation(s)
- Heng Liu
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Youyuan Yang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Yu Liu
- Department of UltrasoundThe First Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Jingjing Pan
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Fengyuan Man
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Weiguo Zhang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
- Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing400042China
| | - Gang Liu
- Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
25
|
Dhand C, Ong CY, Dwivedi N, Varadarajan J, Halleluyah Periayah M, Jianyang Lim E, Mayandi V, Goh ETL, Najjar RP, Chan LW, Beuerman RW, Foo LL, Loh XJ, Lakshminarayanan R. Mussel-Inspired Durable Antimicrobial Contact Lenses: The Role of Covalent and Noncovalent Attachment of Antimicrobials. ACS Biomater Sci Eng 2020; 6:3162-3173. [DOI: 10.1021/acsbiomaterials.0c00229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
| | - Chun Yan Ong
- Department of Pharmacy, National University of Singapore, 18 Science Drive, Singapore 117543, Singapore
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
| | - Jayasudha Varadarajan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Mercy Halleluyah Periayah
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Edward Jianyang Lim
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Venkatesh Mayandi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eunice Tze Leng Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Raymond P. Najjar
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857 Singapore
- Visual Neuroscience Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Lai Wah Chan
- Department of Pharmacy, National University of Singapore, 18 Science Drive, Singapore 117543, Singapore
| | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857 Singapore
| | - Li Lian Foo
- Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Department of Pharmacy, National University of Singapore, 18 Science Drive, Singapore 117543, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857 Singapore
| |
Collapse
|
26
|
Awasthi AK, Gupta S, Thakur J, Gupta S, Pal S, Bajaj A, Srivastava A. Polydopamine-on-liposomes: stable nanoformulations, uniform coatings and superior antifouling performance. NANOSCALE 2020; 12:5021-5030. [PMID: 32065189 DOI: 10.1039/c9nr07770g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA), a mussel-inspired synthetic polymer, affords biocompatible and antifouling coatings on a variety of surfaces. However, the traditional protocol of preparing PDA by polymerizing dopamine (DA) under basic conditions yields physically-unstable and non-uniform coatings that are prone to delamination and exhibit compromised antifouling performance in vivo. Here, we show that the high local pH in the vicinity of vesicular self-assemblies formed by a series of acetal-based cationic amphiphiles can be exploited to conveniently polymerise DA under physiological conditions in a gradual manner without requiring any external oxidant. Two of the four PDA-liposome nanoformulations viz. PDA-L1 and PDA-L2 turned out to be highly stable physically and resisted precipitation for more than a month while the other two formulations (PDA-L3 and PDA-L4) were less stable and formed visible precipitates with time. Further, the PDA-liposome formulations had significantly improved haemocompatibility compared to that of pristine liposomes. PDA-L1 formed highly uniform, nanostructured coatings on implants like catheter, cotton and bandages that did not delaminate even after a week of continuous incubation in simulated body fluid, or on exposure to pH change and presence of proteolytic enzymes. The PDA-L1 coated catheter implants resisted biofouling by both Gram-positive and Gram-negative bacteria in vitro and also had superior in vivo performance in mice vis-à-vis the implants coated with traditional base-polymerised PDA formulation (BP-PDA). Thus, these novel liposomal PDA nanoformulations significantly improve the practical utility of PDA-based coatings for antimicrobial applications.
Collapse
Affiliation(s)
- Anand Kumar Awasthi
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad-121001, Haryana, India.
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Sakshi Gupta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad-121001, Haryana, India. and Kalinga Institute of Industrial Technology, Bhubaneswar-751024, Odisha, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad-121001, Haryana, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| |
Collapse
|
27
|
Jiang W, Zhang X, Luan Y, Wang R, Liu H, Li D, Hu L. Using γ-Ray Polymerization-Induced Assemblies to Synthesize Polydopamine Nanocapsules. Polymers (Basel) 2019; 11:E1754. [PMID: 31731483 PMCID: PMC6918355 DOI: 10.3390/polym11111754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
This work reports a simple and robust strategy for synthesis of polydopamine nanocapsules (PDA NCs). First, polymer assemblies were synthesized by a γ-ray-induced liquid-liquid (H2O-acrylate) interface polymerization strategy, in the absence of any surfactants. 1H nuclear magnetic resonance analysis and molecular dynamics simulation reveal that the generation of polymer assemblies largely depends on the hydrophilicity of acrylate and gravity of the oligomers at the interface. By virtue of the spherical structure and mechanic stability of the polymer assemblies, PDA NCs are next prepared by the interfacial polymerization of dopamine onto the assemblies, followed by the removal of templates by using ethanol. The polydopamine nanocapsules are shown to load and release ciprofloxacin (CIP, a model drug), such that the CIP-loaded PDA NCs are able to inhibit the growth of Escherichia coli.
Collapse
Affiliation(s)
- Wenwen Jiang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xinyue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yafei Luan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Rensheng Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hanzhou Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu, China
| | - Dan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Liang Hu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
28
|
Mehta R, Brahmbhatt H, Bhojani G, Mukherjee M, Bhattacharya A. Poly(piperizinamide) with copper ion composite membranes: Application for mitigation of Hexaconazole from water and combat microbial contamination. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:102-111. [PMID: 31125940 DOI: 10.1016/j.jhazmat.2019.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Thin film Poly(piperazine-amide) composite membranes using sequential interfacial polymerization with tuning by Cu2+ have brought significant findings in it. The hydrophobicity is relatively enhanced for the copper containing membranes. The membrane in which copper solution is applied prior to piperizine (Memb-III) exhibits higher hydrophobicity where as membrane (Memb-II) in which copper solution is applied following piperizine, possesses higher roughness compared to other two. Filtration experiments in terms of salts, mono/disaccharides and hexaconazole indicate that modified membranes are of different behaviours according to their sequence of preparative methods. Memb-III has shown lower SO4=/Cl- selectivity compared to Memb-II (i.e. 3.92), though they are in different range. The unmodified membrane (Memb-I) exhibits SO4=/Cl- selectivity 3.23 is in the same scale of Memb-III (2.27). Memb-III exhibits higher hexaconazole separation (91.5%) compared to Memb-II (i.e. 53.9%). The flux decline follows the order: field water > tap water > deionized water. The copper incorporated membrane (Memb-II) has shown a low flux decline compared to Memb-III as well as Memb-I. The antibacterial properties towards E. Coli and Bacillus subtilis are well reflected. The copper containing membranes have promising antibacterial properties and follows the order Memb-II > Memb-III > Memb-I.
Collapse
Affiliation(s)
- Romil Mehta
- Membrane Science and Separation Technology Division, Bhavnagar, 364002 Gujarat, India
| | - H Brahmbhatt
- Analytical and Environmental Science Division and Centralized Instrument Facility, Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, 364002 Gujarat, India
| | - Gopal Bhojani
- Membrane Science and Separation Technology Division, Bhavnagar, 364002 Gujarat, India
| | - M Mukherjee
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, W. Bengal, India
| | - A Bhattacharya
- Membrane Science and Separation Technology Division, Bhavnagar, 364002 Gujarat, India.
| |
Collapse
|
29
|
Leung CM, Dhand C, Dwivedi N, Xiao A, Ong ST, Chalasani MLS, Sriram H, Balakrishnan Y, Dolatshahi-Pirouz A, Orive G, Beuerman RW, Ramakrishna S, Verma NK, Lakshminarayanan R. Combating Microbial Contamination with Robust Polymeric Nanofibers: Elemental Effect on the Mussel-Inspired Cross-Linking of Electrospun Gelatin. ACS APPLIED BIO MATERIALS 2018; 2:807-823. [DOI: 10.1021/acsabm.8b00666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chak Ming Leung
- Department of Biomedical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Neeraj Dwivedi
- Department of Electrical and Computer Engineering, National University of Singapore, 3 Engineering Drive 3, Singapore 117583, Singapore
| | - Amy Xiao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Madhavi Latha Somaraju Chalasani
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Harini Sriram
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Yamini Balakrishnan
- Department of Biomedical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical, 2800 Kgs, Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research
Networking Centre in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN) Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology − UIRMI, Vitoria, Spain, BTI Biotechnology Institute, Vitoria, Spain
| | - Roger Wilmer Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Skin Research Institute of Singapore, Clinical Science Building, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
30
|
Yuran S, Dolid A, Reches M. Resisting Bacteria and Attracting Cells: Spontaneous Formation of a Bifunctional Peptide-Based Coating by On-Surface Assembly Approach. ACS Biomater Sci Eng 2018; 4:4051-4061. [PMID: 33418805 DOI: 10.1021/acsbiomaterials.8b00885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to extension of life expectancy, millions of people suffer nowadays from bone and dental malfunctions that can only be treated by different types of implants. However, these implants tend to fail due to bacterial infection and lack of integration with the remaining tissue. Here, we demonstrate a new concept in which we use specifically designed peptides, in a "Lego-like" manner to endow multiple preprogrammed functions. We developed a bifunctional peptide-based coating that simultaneously rejects the adhesion of infecting bacteria and attracts cells that build the new connecting tissue. The peptide design contains fluorinated phenylalanine that mediates the self-assembly of the peptide into a coating that resists bacterial adhesion. It also includes an Arg-Gly-Asp (RGD) motif that attracts mammalian cells. The whole compound is attached to the surface using a third unit, the amino acid 3,4-dihydroxyphenylalanine (DOPA). This novel, yet very simple approach is significantly advantageous for practical use and synthesis. More importantly, this peptide design can serve as a general platform for generating functional coatings.
Collapse
Affiliation(s)
- Sivan Yuran
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Alona Dolid
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
31
|
Batul R, Tamanna T, Khaliq A, Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci 2018; 5:1204-1229. [PMID: 28594019 DOI: 10.1039/c7bm00187h] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
Collapse
Affiliation(s)
- Rahila Batul
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | | | | |
Collapse
|
32
|
Wang N, Ma W, Ren Z, Zhang L, Qiang R, Lin KYA, Xu P, Du Y, Han X. Template synthesis of nitrogen-doped carbon nanocages–encapsulated carbon nanobubbles as catalyst for activation of peroxymonosulfate. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00256h] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitrogen-doped carbon nanocages–encapsulated carbon nanobubbles were employed as high-performance peroxymonosulfate activators for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Na Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Wenjie Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Ziqiu Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Leijiang Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Rong Qiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering
- National Chung Hsing University
- Taichung
- Taiwan
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
33
|
Ding T, Wang L, Zhang J, Xing Y, Cai K. Interfacially active polydopamine for nanoparticle stabilized nanocapsules in a one-pot assembly strategy toward efficient drug delivery. J Mater Chem B 2018; 6:1754-1763. [DOI: 10.1039/c7tb03008h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polydopamine (PDA) nanoparticle stabilized nanocapsules possess great potential for drug delivery via the non-endocytotic pathway.
Collapse
Affiliation(s)
- Tao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
- Chongqing 400044
- China
| | - Liucan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
- Chongqing 400044
- China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
- Chongqing 400044
- China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
- Chongqing 400044
- China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
- Chongqing 400044
- China
| |
Collapse
|
34
|
Deng Z, Shang B, Peng B. Polydopamine Based Colloidal Materials: Synthesis and Applications. CHEM REC 2017; 18:410-432. [PMID: 29124869 DOI: 10.1002/tcr.201700051] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/02/2017] [Indexed: 01/29/2023]
Abstract
Polydopamine is a synthetic analogue of natural melanin (eumelanin) produced from oxidative polymerization of dopamine. Owing to its strong adhesion ability, versatile chemical reactivity, biocompatibility and biodegradation, polydopamine is commonly applied as a versatile linker to synthesize colloidal materials with diverse structures, unique physicochemical properties and tunable functions, which allow for a broad scope of applications including biomedicine, sensing, catalysis, environment and energy. In this personal account, we discuss first about the different synthetic approaches of polydopamine, as well as its polymerization mechanism, and then with a comprehensive overview of recent progress in the synthesis and applications of polydopamine-based colloidal materials. Finally, we summarize this personal account with future perspectives.
Collapse
Affiliation(s)
- Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Bin Shang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Bo Peng
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
35
|
Gaw SL, Sarkar S, Nir S, Schnell Y, Mandler D, Xu ZJ, Lee PS, Reches M. Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26503-26509. [PMID: 28758735 DOI: 10.1021/acsami.7b03761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biofouling, the adsorption of organisms to a surface, is a major problem today in many areas of our lives. This includes: (i) health, as biofouling on medical device leads to hospital-acquired infections, (ii) water, since the accumulation of organisms on membranes and pipes in desalination systems harms the function of the system, and (iii) energy, due to the heavy load of the organic layer that accumulates on marine vessels and causes a larger consumption of fuel. This paper presents an effective electrochemical approach for generating antifouling and antimicrobial surfaces. Distinct from previously reported antifouling or antimicrobial electrochemical studies, we demonstrate the formation of a hydrogen gas bubble layer through the application of a low-voltage square-waveform pulses to the conductive surface. This electrochemically generated gas bubble layer serves as a separation barrier between the surroundings and the target surface where the adhesion of bacteria can be deterred. Our results indicate that this barrier could effectively reduce the adsorption of bacteria to the surface by 99.5%. We propose that the antimicrobial mechanism correlates with the fundamental of hydrogen evolution reaction (HER). HER leads to an arid environment that does not allow the existence of live bacteria. In addition, we show that this drought condition kills the preadhered bacteria on the surface due to water stress. This work serves as the basis for the exploration of future self-sustainable antifouling techniques such as incorporating it with photocatalytic and photoelectrochemical reactions.
Collapse
Affiliation(s)
- Sheng Long Gaw
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Sujoy Sarkar
- Institute of Chemistry The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Sivan Nir
- Institute of Chemistry The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yafit Schnell
- Institute of Chemistry The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Daniel Mandler
- Institute of Chemistry The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Meital Reches
- Institute of Chemistry The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
36
|
Zhuang H, Su H, Bi X, Bai Y, Chen L, Ge D, Shi W, Sun Y. Polydopamine Nanocapsule: A Theranostic Agent for Photoacoustic Imaging and Chemo-Photothermal Synergistic Therapy. ACS Biomater Sci Eng 2017; 3:1799-1808. [DOI: 10.1021/acsbiomaterials.7b00260] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hanqiong Zhuang
- Key Laboratory
of Biomedical
Engineering of Fujian Province University/Research Center of Biomedical
Engineering of Xiamen, Fujian Key Laboratory of Materials Genome,
Department of Biomaterials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, P. R. China
| | - Huilin Su
- Key Laboratory
of Biomedical
Engineering of Fujian Province University/Research Center of Biomedical
Engineering of Xiamen, Fujian Key Laboratory of Materials Genome,
Department of Biomaterials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, P. R. China
| | - Xuexin Bi
- Key Laboratory
of Biomedical
Engineering of Fujian Province University/Research Center of Biomedical
Engineering of Xiamen, Fujian Key Laboratory of Materials Genome,
Department of Biomaterials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, P. R. China
| | - Yuting Bai
- Key Laboratory
of Biomedical
Engineering of Fujian Province University/Research Center of Biomedical
Engineering of Xiamen, Fujian Key Laboratory of Materials Genome,
Department of Biomaterials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, P. R. China
| | - Lu Chen
- Key Laboratory
of Biomedical
Engineering of Fujian Province University/Research Center of Biomedical
Engineering of Xiamen, Fujian Key Laboratory of Materials Genome,
Department of Biomaterials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, P. R. China
| | - Dongtao Ge
- Key Laboratory
of Biomedical
Engineering of Fujian Province University/Research Center of Biomedical
Engineering of Xiamen, Fujian Key Laboratory of Materials Genome,
Department of Biomaterials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, P. R. China
| | - Wei Shi
- Key Laboratory
of Biomedical
Engineering of Fujian Province University/Research Center of Biomedical
Engineering of Xiamen, Fujian Key Laboratory of Materials Genome,
Department of Biomaterials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, P. R. China
| | - Yanan Sun
- Key Laboratory
of Biomedical
Engineering of Fujian Province University/Research Center of Biomedical
Engineering of Xiamen, Fujian Key Laboratory of Materials Genome,
Department of Biomaterials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, P. R. China
| |
Collapse
|
37
|
Xi J, Da L, Yang C, Chen R, Gao L, Fan L, Han J. Mn 2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. Int J Nanomedicine 2017; 12:3331-3345. [PMID: 28479854 PMCID: PMC5411169 DOI: 10.2147/ijn.s132270] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn2+-coordinated doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA) nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA) through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn2+-PDA@DOX/PLGA nanoparticles. In our system, Mn2+-PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn2+ could afford the high magnetic resonance (MR) imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn2+-PDA@ DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties.
Collapse
Affiliation(s)
- Juqun Xi
- Pharmacology Department, Medical School, Yangzhou University
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
| | - Lanyue Da
- Pharmacology Department, Medical School, Yangzhou University
| | - Changshui Yang
- Pharmacology Department, Medical School, Yangzhou University
| | - Rui Chen
- Department of Nephrology, Subei People’s Hospital, Yangzhou University
| | - Lizeng Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
38
|
Ding H, Pan F, Mulalic E, Gomaa H, Li W, Yang H, Wu H, Jiang Z, Wang B, Cao X, Zhang P. Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Hao X, Chen S, Zhu H, Wang L, Zhang Y, Yin Y. The Synergy of Graphene Oxide and Polydopamine Assisted Immobilization of Lysozyme to Improve Antibacterial Properties. ChemistrySelect 2017. [DOI: 10.1002/slct.201601794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiangping Hao
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Shougang Chen
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Hongzheng Zhu
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Longqiang Wang
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Yue Zhang
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Yansheng Yin
- College of Marine Science & Engineering; Shanghai Maritime University; Shanghai 201306 PR China
| |
Collapse
|
40
|
Yao J, Zhang Y, Hu Q, Zeng D, Hua F, Meng W, Wang W, Bao GH. Optimization of paeonol-loaded poly(butyl-2-cyanoacrylate) nanocapsules by central composite design with response surface methodology together with the antibacterial properties. Eur J Pharm Sci 2017; 101:189-199. [PMID: 28189814 DOI: 10.1016/j.ejps.2017.01.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/06/2017] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
With the aim to enhance dissolution rate and bioavailability of paeonol, paeonol-loaded poly(butyl-2-cyanoacrylate) nanocapsules (Pae@PNCs) were prepared by interfacial spontaneous polymerization for the first time. Herein, a rotatable central composite design (RCCD) with three-factor five-level was applied to evaluate the optimization experiments. To the maximum percentage encapsulation efficiency (EE%) and minimum particle size (nm) of the Pae@PNCs, a quadratic polynomial model was generated to predict and evaluate the independent variables with respect to the dependent variables. RSM model goodness fitting were confirmed by the ANOVA Table (P<0.05) through variance analysis, which predicted values of EE (%) and particle size (R2 and adjusted R2 were close to 1, respectively) in good agreement with experimental values. By solving the regression equation and analyzing the response surface, three-dimensional model graphs and plots, the optimal result for the preparation of Pae@PNCs were found to be: pH (2.34), Poloxamer F-68 (0.80% m/v) and ethyl acetate/α-BCA ratio (16.67 v/v) for the highest EE% (73.58±2.76%) and the smallest particle size (42.06±1.20nm). The release profiles and antibacterial activity in vitro from the optimal Pae@PNCs were performed. The results indicated that it has slow and well-controlled release, and has strong antibacterial activity in vitro than paeonol. This understanding can help to predict the conditions of optimization of poly(butyl-2-cyanoacrylate) nanoparticles formation and to improve paeonol bioavailability and pharmacological properties.
Collapse
Affiliation(s)
- Jingjing Yao
- International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yangxin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Qiming Hu
- International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Decheng Zeng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Fang Hua
- International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Wei Meng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Guan-Hu Bao
- International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| |
Collapse
|
41
|
Ran J, Xiao L, Wu W, Liu Y, Qiu W, Wu J. Zeolitic imidazolate framework-8 (ZIF-8) as a sacrificial template: one-pot synthesis of hollow poly(dopamine) nanocapsules and yolk-structured poly(dopamine) nanocomposites. NANOTECHNOLOGY 2017; 28:055604. [PMID: 28032614 DOI: 10.1088/1361-6528/28/5/055604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hollow poly(dopamine) (PDA) nanocapsules and yolk-structured PDA nanocomposites were prepared by an aqueous one-pot synthesis method utilizing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as a sacrificial template without any special etchant. The resulting PDA nanocapsules show negligible cytotoxicity in HeLa cells after incubation for 48 h at various doses, which implies their potential as candidates for practical applications in drug transport and targeting.
Collapse
Affiliation(s)
- Jingyu Ran
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, People's Republic of China. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China. Photoelectric Institute of Functional Materials, Guizhou Institute of Technology, Guiyang 550003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Yeroslavsky G, Lavi R, Alishaev A, Rahimipour S. Sonochemically-Produced Metal-Containing Polydopamine Nanoparticles and Their Antibacterial and Antibiofilm Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5201-5212. [PMID: 27133213 DOI: 10.1021/acs.langmuir.6b00576] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A facile one-pot sonochemical synthesis of Cu-, Ag-, and hybrid Cu/Ag-based polydopamine nanoparticles (Cu-, Ag-, and Cu/Ag-PDA-NPs) and the mechanisms by which they exert antibacterial and antibiofilm activities are reported. We showed that the nanoparticles are spherical with a core-shell structure. Whereas Cu is chelated to the shell of Cu-PDA-NPs in oxidation states of +1/+2, the core of Ag-PDA-NPs is filled with elemental Ag°. Sonochemical irradiation of dopamine in the presence of both Cu(2+) and Ag(+) generates hybrid Cu/Ag-PDA-NPs, whose shells are composed of Cu-chelated PDA with Ag° in the core. The redox potential of the metals was found to be the main determinant of the location and oxidation state of the metals. Leaching studies under physiological conditions reveal a relatively fast release of Cu ions from the shell, whereas Ag leaches very slowly from the core. The metal-containing PDA-NPs are highly microbicidal and exhibit potent antibiofilm activity. The combination of both metals in Cu/Ag-PDA-NPs is especially effective against bacteria and robust biofilms, owing to the dual bactericidal mechanisms of the metals. Most importantly, both Ag- and Cu/Ag-PDA-NPs proved to be significantly more antibacterial than commercial Ag-NPs while exhibiting lower toxicity toward NIH 3T3 mouse embryonic fibroblasts. Mechanistically, the metal-containing PDA-NPs generate stable PDA-semiquinone and reactive oxygen species under physiological conditions, which contribute at least partly to the antimicrobial activity. We also demonstrated that simple treatment of surfaces with Ag-PDA-NPs converts them to antibacterial, the activity of which was preserved even after prolonged storage under ambient conditions.
Collapse
Affiliation(s)
- Gil Yeroslavsky
- Department of Chemistry, Bar-Ilan University , Ramat-Gan, 5290002, Israel
| | - Ronit Lavi
- Department of Chemistry, Bar-Ilan University , Ramat-Gan, 5290002, Israel
| | | | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University , Ramat-Gan, 5290002, Israel
| |
Collapse
|
44
|
Zhang C, Ou Y, Lei WX, Wan LS, Ji J, Xu ZK. CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angew Chem Int Ed Engl 2016; 55:3054-7. [PMID: 26822393 DOI: 10.1002/anie.201510724] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Indexed: 11/11/2022]
Abstract
Mussel-inspired polydopamine (PDA) deposition offers a promising route to fabricate multifunctional coatings for various materials. However, PDA deposition is generally a time-consuming process, and PDA coatings are unstable in acidic and alkaline media, as well as in polar organic solvents. We report a strategy to realize the rapid deposition of PDA by using CuSO4/H2O2 as a trigger. Compared to the conventional processes, our strategy shows the fastest deposition rate reported to date, and the PDA coatings exhibit high uniformity and enhanced stability. Furthermore, the PDA-coated porous membranes have excellent hydrophilicity, anti-oxidant properties, and antibacterial performance. This work demonstrates a useful method for the environmentally friendly, cost-effective, and time-saving fabrication of PDA coatings.
Collapse
Affiliation(s)
- Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Ou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wen-Xi Lei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
45
|
Zhang C, Ou Y, Lei WX, Wan LS, Ji J, Xu ZK. CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510724] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yang Ou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Wen-Xi Lei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
46
|
Nir S, Reches M. Bio-inspired antifouling approaches: the quest towards non-toxic and non-biocidal materials. Curr Opin Biotechnol 2016; 39:48-55. [PMID: 26773304 DOI: 10.1016/j.copbio.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/19/2015] [Indexed: 12/18/2022]
Abstract
Biofouling is an undesirable process in which organisms and their by-products encrust a surface. Antifouling solutions are of great importance since biofouling has negative effects on numerous species, ecosystems, and areas including water treatment facilities, health-care systems, and marine devices. Many useful solutions have been developed in the last few decades. However, with the emergence of environmental issues, the search for new promising non-toxic materials has expanded. One approach tries to mimic natural antifouling surfaces and relies on mechanisms of action derived from nature. Since these materials are based on natural systems, they are mostly biocompatible and more efficient against complex fouling. In this review, we cover the latest advances in the field of antifouling materials. We specifically focus on biomaterials that are based on the chemical and physical behavior of biological systems.
Collapse
Affiliation(s)
- Sivan Nir
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
47
|
Liu Z, Hu Y, Liu C, Zhou Z. Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties. Chem Commun (Camb) 2016; 52:12245-12248. [DOI: 10.1039/c6cc06015c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties.
Collapse
Affiliation(s)
- Zhongyun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology of Shandong Province
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
| | - Yunxia Hu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology of Shandong Province
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
| | - Caifeng Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology of Shandong Province
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
| | - Zongyao Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology of Shandong Province
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
| |
Collapse
|
48
|
Lynge ME, Schattling P, Städler B. Recent developments in poly(dopamine)-based coatings for biomedical applications. Nanomedicine (Lond) 2015; 10:2725-42. [PMID: 26377046 DOI: 10.2217/nnm.15.89] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The success of polymer coatings for biomedical applications is undeniable. Among the very successful examples are poly(dopamine) (PDA) films due to their simplicity in deposition and beneficial interaction with biomolecules and cells. The aim of this review is to highlight the findings and achievement of PDA in nanomedicine since 2011. We discuss the progress that has been made to elucidate the structure of PDA and novel aspects considering the assembly of PDA-based films on diverse substrates. We highlight the newest results considering the biological evaluation PDA-based coatings to control cell behavior and the use of PDA in biosensing. The popularity of PDA remains unchanged, but the research efforts start to be consolidated toward more specific aims and clinical applications.
Collapse
Affiliation(s)
- Martin E Lynge
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Philipp Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| |
Collapse
|
49
|
Miao ZH, Wang H, Yang H, Li ZL, Zhen L, Xu CY. Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16946-16952. [PMID: 26196160 DOI: 10.1021/acsami.5b06265] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Theranostic agents for magnetic resonance imaging (MRI) guided photothermal therapy have attracted intensive interest in cancer diagnosis and treatment. However, the development of biocompatible theranostic agents with high photothermal conversion efficiency and good MRI contrast effect remains a challenge. Herein, PEGylated Mn2+-chelated polydopamine (PMPDA) nanoparticles were successfully developed as novel theranostic agents for simultaneous MRI signal enhancement and photothermal ablation of cancer cells, based on intrinsic manganese-chelating properties and strong near-infrared absorption of polydopamine nanomaterials. The obtained PMPDA nanoparticles showed significant MRI signal enhancement for both in vitro and in vivo imaging. Highly effective photothermal ablation of HeLa cells exposed to PMPDA nanoparticles was then achieved upon laser irradiation for 10 min. Furthermore, the excellent biocompatibility of PMPDA nanoparticles, because of the use of Mn2+ ions as diagnostic agents and biocompatible polydopamine as photothermal agents, was confirmed by a standard MTT assay. Therefore, the developed PMPDA nanoparticles could be used as a promising theranostic agent for MRI-guided photothermal therapy of cancer cells.
Collapse
Affiliation(s)
- Zhao-Hua Miao
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Hui Wang
- §School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Huanjie Yang
- §School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Zheng-Lin Li
- ∥Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150000, People's Republic of China
| | - Liang Zhen
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Cheng-Yan Xu
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
50
|
Yu L, Liu X, Yuan W, Brown LJ, Wang D. Confined Flocculation of Ionic Pollutants by Poly(L-dopa)-Based Polyelectrolyte Complexes in Hydrogel Beads for Three-Dimensional, Quantitative, Efficient Water Decontamination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6351-66. [PMID: 25981870 DOI: 10.1021/acs.langmuir.5b01084] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of simple and recyclable adsorbents with high adsorption capacity is a technical imperative for water treatment. In this work, we have successfully developed new adsorbents for the removal of ionic pollutants from water via encapsulation of polyelectrolyte complexes (PECs) made from positively charged poly(allylamine hydrochloride) (PAH) and negatively charged poly(l-3,4-dihydroxyphenylalanine) (PDopa), obtained via the self-polymerization of l-3,4-dihydroxyphenylalanine (l-Dopa). Given the outstanding mass transport through the hydrogel host matrixes, the PDopa-PAH PEC guests loaded inside can effectively and efficiently remove various ionic pollutants, including heavy metal ions and ionic organic dyes, from water. The adsorption efficiency of the PDopa-PAH PECs can be quantitatively correlated to and tailored by the PDopa-to-PAH molar ratio. Because PDopa embodies one catechol group, one carboxyl group, and one amino group in each repeating unit, the resulting PDopa-PAH PECs exhibit the largest capacity of adsorption of heavy metal ions compared to available adsorbents. Because both PDopa and PAH are pH-sensitive, the PDopa-PAH PEC-loaded agarose hydrogel beads can be easily and completely recovered after the adsorption of ionic pollutants by adjusting the pH of the surrounding media. The present strategy is similar to the conventional process of using PECs to flocculate ionic pollutants from water, while in our system flocculation is confined to the agarose hydrogel beads, thus allowing easy separation of the resulting adsorbents from water.
Collapse
Affiliation(s)
- Li Yu
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Xiaokong Liu
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Weichang Yuan
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Lauren Joan Brown
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Dayang Wang
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|