1
|
He YQ, Tang JH. Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy. Adv Healthc Mater 2025; 14:e2403009. [PMID: 39506461 DOI: 10.1002/adhm.202403009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.
Collapse
Affiliation(s)
- Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jian-Hong Tang
- School of Future technology, University of Chinese Academy of Sciences (UCAS), Beijing, 101408, P. R. China
| |
Collapse
|
2
|
Yao L, Xie S, Liu Y, Mengqi L, Xia J, Lu B. Singlet oxygen storage and controlled release for improving photodynamic therapy against hypoxic tumor. Chem Commun (Camb) 2024; 60:14012-14021. [PMID: 39535143 DOI: 10.1039/d4cc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy (PDT) is considered to be a promising tumor treatment method due to its non-invasiveness and low risk. However, there are two factors that affect the efficacy of this therapy. One is the light source and the other is the tumor hypoxia. An emerging PDT strategy has been developed to break these limits. This strategy is to adopt compounds, such as 2-pyridone, anthracene, and naphthalene derivatives, that have the ability to store and controlledly release the singlet oxygen (1O2) to achieve PDT in the dark. In this review, we focus on the construction strategies for integrated antitumor drugs containing these 1O2 storage/release units and photosensitizers and summarize their PDT performance in hypoxic tumors or in the dark. The methods to integrate these compounds with photosensitizers or nanocarriers are also discussed in detail to provide insightful design guidelines for the design of highly efficient antitumor systems based on 1O2 storage and controlled release.
Collapse
Affiliation(s)
- Long Yao
- Analysis and Testing Center, Nantong University, Nantong 226019, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuqing Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Liu Mengqi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
3
|
Nur Kertmen Kurtar S, Kertmen M, Kose M. Design of a new porphyrin-based compound and investigation of its photosensitive properties for antibacterial photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124529. [PMID: 38824758 DOI: 10.1016/j.saa.2024.124529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Considering the increasing number of pathogens resistant to commonly used antibiotics as well as antiseptics, there is an urgent need for antimicrobial approaches that can effectively inactivate pathogens without the risk of establishing resistance. An alternative approach in this context is antibacterial photodynamic therapy (APDT). APDT is a process that involves bacterial cell death using appropriate wavelength light energy and photosensitizer and causes the production of reactive oxygen species inside or outside the microbial cell depending on the penetration of light energy. In our study, a new porphyrin compound 4,4'-methylenebis(2-((E)-((4-(10,15,20-triphenylporphyrin-5-yl)phenyl)imino)methyl)phenol) (SP) was designed and synthesized as photosensitizer and its structure was clarified by NMR (13C and 1H) and mass determination method. Photophysical and photochemical properties were examined in detail using different methods. Singlet oxygen quantum yields were obtained as 0.48 and 0.59 by direct and indirect methods, respectively. Antibacterial activity studies have been conducted within the scope of biological activity and promising results have been obtained under LED light (500-700 nm, 265 V, 1500 LM), contributing to the antibacterial photodynamic therapy literature.
Collapse
Affiliation(s)
- Seda Nur Kertmen Kurtar
- Material Science and Engineering Department, Kahramanmaras Sutcu Imam University, Kahramanmaras 46050, Türkiye.
| | - Metin Kertmen
- Occupational Health and Safety Department, Siirt University, Siirt 56100, Türkiye
| | - Muhammet Kose
- Chemistry Department, Science Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras 46050, Türkiye.
| |
Collapse
|
4
|
Sandelin E, Schilling L, Saha E, Ruiu A, Neutze R, Sundén H, Wallentin CJ. Spatiotemporal Release of Singlet Oxygen in Low Molecular Weight Organo-Gels Upon Thermal or Photochemical External Stimuli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400827. [PMID: 38660701 DOI: 10.1002/smll.202400827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The first example of a material capable of spatiotemporal catch and release of singlet oxygen (1O2) in gel phase is presented. Several low molecular weight organogelators based around an oxotriphenylhexanoate (OTHO) core are developed and optimized with regard to; their gelation properties, and ability of releasing 1O2 upon thermal and/or photochemical external stimuli, in both gel phase and solution. Remarkably, reversible phase transitioning between the gel and solution phase are also demonstrated. Taken together two complementary modes of releasing 1O2, one thermally controlled over time, and one rapid release by means of photochemical stimuli is disclosed. These findings represent the first phase reversible system where function and aggregation properties can be controlled independently, and thus pave the way for novel applications in material sciences as well as in life sciences.
Collapse
Affiliation(s)
- Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Leonard Schilling
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, SE-221 00, Sweden
| | - Ekata Saha
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Andrea Ruiu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Carl-Johan Wallentin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| |
Collapse
|
5
|
Han D, Niu J, Yang Y, Huang C, Tan W, Zhang X. Au doped metal organic frameworks as di-functional photocatalysts for clearing organics in wastewater. CHEMOSPHERE 2024; 346:140665. [PMID: 37949188 DOI: 10.1016/j.chemosphere.2023.140665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Along with the development of productive forces, the use of organic compounds including diversified dyes and multiple drugs has become more and more commonly, resulting in the accelerating water contamination. Herein in this paper, Au doped PCN 224 are designed as bi-functional wastewater treatment agents to absorb and decompose organics molecules efficiently under light irradiation. After inserted with Au, the PCN 224 nanoparticles, which is kind of porous, stable and photosensitive metal-organic framework, show enhanced photodegradeability. Because the Au inserted could inhibit the re-combination of electrons and holes by absorbing photo-electrons; decrease the nanoparticles' band gap, and finally produce much more free radicals. In the meanwhile, due to the lower binding energy between S and Au, the Au modified PCN 224 perform better in absorbing organic compounds consisted of S contained heterocyclic ring (such as methylene blue). This work provides new insights into the precious design of materials in clearing organic compounds.
Collapse
Affiliation(s)
- Donglin Han
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Juntao Niu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yuchen Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Chengjun Huang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Wenguang Tan
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - XuanYi Zhang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| |
Collapse
|
6
|
Cayla M, Sonet D, Tarayre E, Bapt R, Bibal B. Tandem Oxidative Dearomatizations of Diphenylanthracene Atropisomers. J Org Chem 2023; 88:13067-13075. [PMID: 37673031 DOI: 10.1021/acs.joc.3c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The first examples of tandem oxidative dearomatizations of 9,10-diphenylanthracene atropisomers with ortho,ortho'- formyl substituents are presented. In the presence of KMnO4, their stereoselective tandem double oxidation and spirocyclization mainly afford the syn or anti dearomatized 9,10-diphthalide anthracenes. Using Pinnick's reagent and depending on the conditions, the oxidation can mainly lead to the corresponding syn or anti diacids in good yields or to three oxidation products. An unprecedented further oxidative ring expansion toward dibenzo[b,e]oxepines is also reported.
Collapse
Affiliation(s)
- Mattéo Cayla
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Dorian Sonet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Emilien Tarayre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Romain Bapt
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Brigitte Bibal
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| |
Collapse
|
7
|
Jannesari M, Akhavan O, Madaah Hosseini HR, Bakhshi B. Oxygen-Rich Graphene/ZnO 2-Ag nanoframeworks with pH-Switchable Catalase/Peroxidase activity as O 2 Nanobubble-Self generator for bacterial inactivation. J Colloid Interface Sci 2023; 637:237-250. [PMID: 36701869 DOI: 10.1016/j.jcis.2023.01.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The oxygen-rich organic/inorganic (reduced graphene oxide (rGO)/ZnO2-Ag) nanoframeworks as suppliers of O2 nanobubbles (NBs) with dual pH-and-temperature-sensitive behavior were developed to suppress bacterial growth. It was demonstrated that not only the rate but also the final product of oxygen-rich ZnO2 decomposition (to an intermediate product of H2O2) rate was dramatically controlled by pH adjustment. Furthermore, in the presence of Ag nanoparticles, ̇OH radical generation switched to O2 NBs evolution by shifting the pH from acidic to basic/neutral conditions, demonstrating an adjustable nanozyme function-ability between catalase and peroxidase-like activity, respectively. Antibacterial properties of the in-situ generated O2 NBs substantially enhanced against bacterial models including methicillin-resistant Staphylococcus aureus in the presence of rGO. In fact, deflecting the electrons from their main respiratory chain to an oxygen-rich bypath through rGO significantly stimulated reactive oxygen species (ROS) generation, combating bacteria more efficiently. Moreover, NIR laser irradiation-induced temperature rise (due to the inherent photothermal properties of rGO) facilitated ZnO2 decomposition and accelerated growth and collapse of NBs. The simultaneous microscale thermal and mechanical destructions induced stronger antibacterial behavior. These results hold great promises for designing simple organic/inorganic nanoframeworks as solid sources of NBs with tunable enzyme-like ability in response to environmental conditions suitable for forthcoming graphene-based bio-applications.
Collapse
Affiliation(s)
- Marziyeh Jannesari
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588, 89694, Tehran, Iran; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Omid Akhavan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588, 89694, Tehran, Iran; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Hamid R Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9466, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
8
|
Li G, Wu M, Xu Y, Wang Q, Liu J, Zhou X, Ji H, Tang Q, Gu X, Liu S, Qin Y, Wu L, Zhao Q. Recent progress in the development of singlet oxygen carriers for enhanced photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Bouteille Q, Sonet D, Hennebelle M, Desvergne JP, Morvan E, Scalabre A, Pouget E, Méreau R, Bibal B. Singlet Oxygen Responsive Molecular Receptor to Modulate Atropisomerism and Cation Binding. Chemistry 2023; 29:e202203210. [PMID: 36639240 DOI: 10.1002/chem.202203210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 01/15/2023]
Abstract
In switchable molecular recognition, 1 O2 stimulus responsive receptors offer a unique structural change that is rarely exploited. The employed [4+2] reaction between 1 O2 and anthracene derivatives is quantitative, reversible and easily implemented. To evaluate the full potential of this new stimulus, a non-macrocyclic anthracene-based host was designed for the modular binding of cations. The structural investigation showed that 1 O2 controlled the atropisomerism in an on/off fashion within the pair of hosts. The binding studies revealed higher association constants for the endoperoxide receptor compared to the parent anthracene, due to a more favoured preorganization of the recognition site. The fatigue of the 1 O2 switchable hosts and their complexes was monitored over five cycles of cycloaddition/cycloreversion.
Collapse
Affiliation(s)
- Quentin Bouteille
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Dorian Sonet
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Marc Hennebelle
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Jean-Pierre Desvergne
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UAR 3033 CNRS INSERM, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Brigitte Bibal
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| |
Collapse
|
10
|
Cely-Pinto M, Wang B, Scaiano JC. Understanding α-lipoic acid photochemistry helps to control the synthesis of plasmonic gold nanostructures. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00378-5. [PMID: 36702995 DOI: 10.1007/s43630-023-00378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
We propose the photopolymerization of lipoic acid (LA) as an novel approach to produce a cross-linked polymeric matrix of lipoic acid monomers (PALA) which helps to control the size of plasmonic gold nanostructures when using 3,3,6,8-tetramethyl-1-tetralone as the photo-initiator for the reduction of Au(III) to Au0. A complete characterization of the polymer is included, and the dual behaviour of LA as an in situ stabilizer and reducing agent is investigated. These findings are relevant to the understanding of the photochemical transformation of this biologically relevant compound and would benefit the increasing use of LA and PALA for the synthesis of various nanomaterials.
Collapse
Affiliation(s)
- Melissa Cely-Pinto
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Bowen Wang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Juan C Scaiano
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
11
|
Zhu L, Luo M, Zhang Y, Fang F, Li M, An F, Zhao D, Zhang J. Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Wang J, Hao L, Li X, Liu S. W18O49@EP nanoparticles improve the anti-tumor effect of radiotherapy and photodynamic therapy by avoiding the limitation of hypoxia. Front Bioeng Biotechnol 2022; 10:1060467. [DOI: 10.3389/fbioe.2022.1060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Insufficient oxygen supply at the tumor site and hypoxia caused during tumor treatment lead to a poor therapeutic effect and poor prognosis. Therefore, effectively overcoming the problem of hypoxia in tumors and avoiding hypoxia that compromises the efficacy of the treatment could improve the anti-tumor therapeutic effect. Thus, this study reports the ability of W18O49@EP nanoparticles to release reactive oxygen species (ROS) during the combined tumor radiotherapy (RT) and photodynamic therapy (PDT). The release of ROS by the nanoparticles during near infrared light (NIR) irradiation was demonstrated by in vitro and in vivo experiments, realizing an effective PDT without inducing hypoxia. Indeed, the ROS did not derive from the oxygen in the tumor microenvironment but they were released by the nanoparticles. Thus, ROS could improve the therapeutic effect of RT avoiding the problem of hypoxia after RT. Hence, W18O49@EP nanoparticles greatly improved the anti-tumor effect due to their effectiveness despite the insufficient oxygen supply and hypoxia caused by traditional RT and PDT.
Collapse
|
13
|
Dutta D, Wang J, Li X, Zhou Q, Ge Z. Covalent Organic Framework Nanocarriers of Singlet Oxygen for Oxygen-Independent Concurrent Photothermal/Photodynamic Therapy to Ablate Hypoxic Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202369. [PMID: 35971160 DOI: 10.1002/smll.202202369] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Photodynamic therapy (PDT) of cancers is seriously restricted by tumor hypoxia. In addition to the intrinsic hypoxic microenvironment, continuous photoirradiation further aggravates intratumoral hypoxia, thereby reducing the PDT effect significantly. Oxygen-independent PDT is recognized as an efficient approach to overcome this issue. Herein, singlet oxygen (1 O2 )-stored covalent organic framework (COF) nanoparticles loading the near-infrared (NIR) dye cypate, which realize oxygen-independent 1 O2 production for concurrent photothermal therapy (PTT) and PDT under NIR irradiation, are presented. The cypate-loading COF nanoparticles are prepared by using the photosensitizers and 1 O2 -stored molecules via formation of Schiff base bonds, followed by coverage of poly(vinyl pyrrolidone). The COF nanoparticles significantly improve the photostability and photothermal conversion efficiency of cypate by protecting them from photodegradation under NIR irradiation. Upon 660 nm laser irradiation, 1 O2 is produced by the photosensitizer motifs and is successfully stored by the 1 O2 -stored moieties. After intravenous injection and tumor accumulation, the COF nanoparticles can generate heat quickly upon 808 nm irradiation which induces the efficient release of the stored 1 O2 to ablate tumors via O2 -independent concurrent PTT/PDT. Accordingly, the COF nanocarriers of 1 O2 provide a paradigm to develop O2 -independent concurrent PTT/PDT for precise cancer treatment upon NIR irradiation.
Collapse
Affiliation(s)
- Debabrata Dutta
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingbo Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
14
|
Wei P, Wang Q, Yi T. From fluorescent probes to the theranostics platform. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Qing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
15
|
Wu N, Jia R, Hong H, Gao H, Guo Z, Zhan H, Du S, Chen B. A peroxide-based conjugated triazine framework as a luminescent probe for p-nitroaniline and Fe3+ detection. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Imran M, Chen MS. Chemically Triggered Release of Singlet Oxygen from Bisphenalenyl Endoperoxides with a Brønsted Acid. Org Lett 2022; 24:1947-1952. [PMID: 35261237 DOI: 10.1021/acs.orglett.2c00340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic endoperoxides have emerged as intriguing stimulus-responsive materials for molecular oxygen (O2) storage and delivery but are currently limited in their application because they require heat to trigger O2 release. Here we present the first example of acid-triggered singlet oxygen (1O2) release that does not require external heating by treating bisphenalenyl endoperoxides (EPOs) with trifluoroacetic acid. Mechanistic studies reveal that diprotonation of EPOs leads to a >10-fold increase in cycloreversion rates by lowering the energy of activation (ΔEa) by as much as 71.1 kJ mol-1. Remarkably, acid-catalyzed 1O2 release is even demonstrated at room temperature. Chemical trapping experiments indicate that reactive 1O2 is present during acid-triggered release, which is promising for the development of these molecular materials for metal-free, on-demand 1O2 delivery.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015-3102, United States
| | - Mark S Chen
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015-3102, United States
| |
Collapse
|
17
|
Lu B, Wang J, Zhang Z, Yan X, Zhao Q, Ding Y, Wang J, Wang Y, Yao Y. Pillar[5]arene based supramolecular polymer for a singlet oxygen reservoir. Polym Chem 2022. [DOI: 10.1039/d2py00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of supramolecular polymer based on pillararene for the storage and control release of singlet oxygen.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
18
|
Kumar PPP, Lim DK. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics 2021; 14:70. [PMID: 35056967 PMCID: PMC8781750 DOI: 10.3390/pharmaceutics14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
19
|
Pham-Nguyen OV, Lee JW, Park Y, Jin S, Kim SR, Jung YM, Yoo HS. Atom transfer radical-polymerized cationic shells on gold nanoparticles for near infrared-triggered photodynamic therapy of tumor-bearing animals. J Mater Chem B 2021; 9:9700-9710. [PMID: 34779468 DOI: 10.1039/d1tb02004h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) were surface-engineered with a cationic corona to enhance the incorporation of photosensitizers for photodynamic therapy (PDT). The cationic corona composed of poly(2-(dimethylamino)ethyl methacrylate) was atom transfer radical-polymerized on the surface of the AuNPs. The cationic corona of the engineered surface was characterized by dynamic light scattering, electron microscopy, Raman spectroscopy, and mass spectroscopy. Chlorin-e6 (Ce6) incorporated onto the surface-engineered AuNPs exhibited higher cell incorporation efficiency than bare AuNPs. Ce6-incorporated AuNPs were confirmed to release singlet oxygen upon NIR irradiation. Compared to Ce6, Ce6-incorporated AuNPs exhibited higher cellular uptake and cytotoxicity against cancer cells in an irradiation time-dependent manner. Near-infrared-irradiated animals administered Ce6-incorporated AuNPs exhibited higher levels of tumor suppression without noticeable body weight loss. This result was attributed to the higher localization of Ce6 at the tumor sites to induce cancer cell apoptosis. Thus, we envision that engineered AuNPs with cationic corona can be tailored to effectively deliver photosensitizers to tumor sites for photodynamic therapy.
Collapse
Affiliation(s)
- Oanh-Vu Pham-Nguyen
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ju Won Lee
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sila Jin
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Song Rae Kim
- Korea Basic Science Institute, Chuncheon Center, Chuncheon, 24341, Republic of Korea
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
20
|
Luo H, Huang C, Chen J, Yu H, Cai Z, Xu H, Li C, Deng L, Chen G, Cui W. Biological homeostasis-inspired light-excited multistage nanocarriers induce dual apoptosis in tumors. Biomaterials 2021; 279:121194. [PMID: 34700222 DOI: 10.1016/j.biomaterials.2021.121194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022]
Abstract
In the microenvironment of an organism, each element always regulates and compensates for each other's defects, finally achieving biostable equilibrium. Herein, inspired by the balance of biological homeostasis and the interconstraint of elements, light-responsive nanoparticle with anti-vascularization and oxygen-supplying ability such like a homeostasis body is constructed by the electrostatic adsorption of reactive oxygen species (ROS)-responsive copolymers with photosensitizers and oxygen donors, which act as the elements of homeostasis body can interact through multistage reactions forming a balance that induces double apoptosis including those caused by the photosensitizer itself and those induced after oxygenation. In this homeostasis body, the element photosensitizer can simultaneously generate hyperthermia and ROS. The former can not only inhibit the growth of blood vessels and promote cell necrosis, but induce the thermally responsive release of oxygen to alleviate tumor hypoxia for enhanced PDT. And the latter will induce rapid depolymerization of nanoparticles, promote the penetration and finally induce double apoptosis through multistage reactions. Immunofluorescence data further demonstrate that the nanoparticles significantly alleviated tumor hypoxia upon photoexcitation. Thus, such nanoparticles with multistage synergistic effects have demonstrated excellent effects in achieving biostable equilibrium to induce dual apoptosis and may also be a good strategy in hypoxic tumors therapy.
Collapse
Affiliation(s)
- Huanhuan Luo
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China
| | - Chenglong Huang
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China
| | - Jiayi Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China
| | - Han Yu
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China
| | - Zhenhai Cai
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China
| | - Hongwei Xu
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China
| | - Cuidi Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Gang Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
21
|
Li G, Wang Q, Liu J, Wu M, Ji H, Qin Y, Zhou X, Wu L. Innovative strategies for enhanced tumor photodynamic therapy. J Mater Chem B 2021; 9:7347-7370. [PMID: 34382629 DOI: 10.1039/d1tb01466h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is an approved and promising treatment approach that utilizes a photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS) through irradiation to achieve tumor noninvasive therapy. However, the limited singlet oxygen generation, the nonspecific uptake of PS in normal cells, and tumor hypoxia have become major challenges in conventional PDT, impeding its development and further clinical application. This review summarizes an overview of recent advances for the enhanced PDT. The development of PDT with innovative strategies, including molecular engineering and heavy atom-free photosensitizers is presented and future directions in this promising field are also provided. This review aims to highlight the recent advances in PDT and discuss the potential strategies that show promise in overcoming the challenges of PDT.
Collapse
Affiliation(s)
- Guo Li
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Qi Wang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Jinxia Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Mingmin Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Haiwei Ji
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Yuling Qin
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Xiaobo Zhou
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Li Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| |
Collapse
|
22
|
Yang C, Su M, Luo P, Liu Y, Yang F, Li C. A Photosensitive Polymeric Carrier with a Renewable Singlet Oxygen Reservoir Regulated by Two NIR Beams for Enhanced Antitumor Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101180. [PMID: 34145754 DOI: 10.1002/smll.202101180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT), which utilizes photosensitizer to convert molecular oxygen into singlet oxygen (1 O2 ) upon laser irradiation to ablate tumors, will exacerbate the already oxygen shortage of most solid tumors and is thus self-limiting. Herein, a sophisticated photosensitive polymeric material (An-NP) that allows sustained 1 O2 generation and sufficient oxygen supply during the entire phototherapy is engineered by alternatively applying PDT and photothermal therapy (PTT) controlled by two NIR laser beams. In addition to a photosensitizer that generates 1 O2 , An-NP consists of two other key components: a molecularly designed anthracene derivative capable of trapping/releasing 1 O2 with superior reversibility and a dye J-aggregate with superb photothermal performance. Thus, in 655 nm laser-triggered PDT process, An-NP generates abundant 1 O2 with extra 1 O2 being trapped via the conversion into EPO-NP; while in the subsequent 785 nm laser-driven PTT process, the converted EPO-NP undergoes thermolysis to liberate the captured 1 O2 and regenerates An-NP. The intratumoral oxygen level can be replenished during the PTT cycle for the next round of PDT to generate 1 O2 . The working principle and phototherapy efficacy are preliminarily demonstrated in living cells and tumor-bearing mice, respectively.
Collapse
Affiliation(s)
- Chun Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Meihui Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Pei Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yanan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Feng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
23
|
De Bonfils P, Verron E, Nun P, Coeffard V. Photoinduced Storage and Thermal Release of Singlet Oxygen from 1,2‐Dihydropyridine Endoperoxides. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Paul De Bonfils
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | - Elise Verron
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | - Pierrick Nun
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | | |
Collapse
|
24
|
Thakur NS, Mandal N, Patel G, Kirar S, Reddy YN, Kushwah V, Jain S, Kalia YN, Bhaumik J, Banerjee UC. Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 33:102368. [PMID: 33548477 DOI: 10.1016/j.nano.2021.102368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/29/2020] [Accepted: 01/19/2021] [Indexed: 01/10/2023]
Abstract
The photodynamic anticancer activity of a photosensitizer can be further increased by co-administration of a flavonoid. However, this requires that both molecules must be effectively accumulated at the tumor site. Hence, in order to enhance the activity of zinc phthalocyanine (ZnPc, photosensitizer), it was co-encapsulated with quercetin (QC, flavonoid) in lipid polymer hybrid nanoparticles (LPNs) developed using biodegradable & biocompatible materials and prepared using a single-step nanoprecipitation technique. High stability and cellular uptake, sustained release, inherent fluorescence, of ZnPC were observed after encapsulation in the LPNs, which also showed a higher cytotoxic effect in breast carcinoma cells (MCF-7) compared to photodynamic therapy (PDT) alone. In vivo studies in tumor-bearing Sprague Dawley rats demonstrated that the LPNs were able to deliver ZnPc and QC to the tumor site with minimal systemic toxicity and increased antitumor effect. Overall, the photodynamic effect of ZnPc was synergized by QC. This strategy could be highly beneficial for cancer management in the future while nullifying the side effects of chemotherapy.
Collapse
Affiliation(s)
- Neeraj S Thakur
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Punjab, India; Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), Mohali-140306, Punjab, India; School of Pharmaceutical Sciences, University of Geneva, CMU - 1 Rue Michel Servet 1206, Geneva, Switzerland
| | - Narattam Mandal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Punjab, India
| | - Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Punjab, India
| | - Seema Kirar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Punjab, India
| | - Y Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), Mohali-140306, Punjab, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Punjab, India
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU - 1 Rue Michel Servet 1206, Geneva, Switzerland
| | - Jayeeta Bhaumik
- School of Pharmaceutical Sciences, University of Geneva, CMU - 1 Rue Michel Servet 1206, Geneva, Switzerland.
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Punjab, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Punjab, India.
| |
Collapse
|
25
|
Xue F, Du W, Chen S, Ma M, Kuang Y, Chen J, Yi T, Chen H. Hypoxia-Induced Photogenic Radicals by Eosin Y for Efficient Phototherapy of Hypoxic Tumors. ACS APPLIED BIO MATERIALS 2020; 3:8962-8969. [PMID: 35019572 DOI: 10.1021/acsabm.0c01223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current reported photosensitizers generally show a decreased reactive oxygen species (ROS) generation property under hypoxia conditions, which is the main reason for the clinical failure of photodynamic therapy (PDT) in treatment of solid tumors. Herein, for the first time, hypoxia-induced photogenic radicals by eosin Y (Eos) were reported for efficient phototherapy of hypoxic tumors. More importantly, Eos shows a higher ROS and radical production efficiency under hypoxia conditions than under normoxia conditions. The photogenic radicals were captured by electron paramagnetic resonance and further verified by ROS and radical probe. Introducing CoCl2 as a hypoxia inducer, the photoinduced therapy of the hypoxia cancer cell model and tumor-bearing mice indicated that bovine serum albumin-Eos in hypoxic tumor sites can produce even higher tumor toxicity, thereby crossing the clinical obstacles of hypoxic tumor therapy. This non-oxygen-dependent PDT may open up an avenue for fighting with hypoxia.
Collapse
Affiliation(s)
- Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China
| | - Wenxian Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, P. R. China
| | - Shixiong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, P. R. China
| | - Jufeng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, P. R. China
| | - Tao Yi
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Songhu Road 2005, Shanghai 200433, P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
26
|
Singlet Fission in Self-assembled Amphipathic Tetracene Nanoparticles: Probing the Role of Charge-transfer State. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Lai H, Yan J, Liu S, Yang Q, Xing F, Xiao P. Peripheral RAFT Polymerization on a Covalent Organic Polymer with Enhanced Aqueous Compatibility for Controlled Generation of Singlet Oxygen. Angew Chem Int Ed Engl 2020; 59:10431-10435. [PMID: 32196858 DOI: 10.1002/anie.202002446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/19/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Haiwang Lai
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Jieyu Yan
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
| | - Shan Liu
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
| | - Qizhi Yang
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
| | - Feiyue Xing
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
- MOE Key Laboratory of Tumor Molecular Biology Jinan University Guangzhou 510632 China
| | - Pu Xiao
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
28
|
Lai H, Yan J, Liu S, Yang Q, Xing F, Xiao P. Peripheral RAFT Polymerization on a Covalent Organic Polymer with Enhanced Aqueous Compatibility for Controlled Generation of Singlet Oxygen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haiwang Lai
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Jieyu Yan
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
| | - Shan Liu
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
| | - Qizhi Yang
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
| | - Feiyue Xing
- Department of Immunobiology College of Life Science and Technology Jinan University 601 Huangpu West Avenue Guangzhou 510632 China
- MOE Key Laboratory of Tumor Molecular Biology Jinan University Guangzhou 510632 China
| | - Pu Xiao
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
29
|
Mongin C, Ardoy AM, Méreau R, Bassani DM, Bibal B. Singlet oxygen stimulus for switchable functional organic cages. Chem Sci 2020; 11:1478-1484. [PMID: 34094497 PMCID: PMC8150101 DOI: 10.1039/c9sc05354a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Molecular cages 1a and 2a incorporating a 9,10-diphenylanthracene (DPA) chromophore were synthesized through a templated ring-closure metathesis approach that allows variation in cavity size through the introduction of up to three different pillars. Reversible Diels–Alder reaction between the DPA moiety and photogenerated singlet oxygen smoothly converted 1a and 2a to the corresponding endoperoxide cages 1b and 2b, which are converted back to 1a and 2a upon heating. Endoperoxide formation constitutes a reversible covalent signal that combines structural changes in the interior of the cage with introduction of two additional coordination sites. This results in a large modulation of the binding ability of the receptors attributed to a change in the location of the preferred binding site owing to the added coordination by the endoperoxide oxygen lone pairs. Cages 1a and 2a form complexes with sodium and cesium whose association constants are modified by 4–20 fold for Na+ and 200–450 fold for Cs+ upon conversion to 1b and 2b. DFT calculations show that in the anthracene form, cages 1a and 2a can bind 2 metal cations in their periphery so that each cation is coordinated by 4 oxygens and one amine nitrogen, whereas the endoperoxide cages 1b and 2b bind cations centrally in a geometry that favors coordination to the endoperoxide oxygens. Allosteric switchable organic cages allow variability in cation recognition.![]()
Collapse
Affiliation(s)
- Cédric Mongin
- Université de Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255 351 cours de la Libération 33400 Talence France
| | - Alejandro Mendez Ardoy
- Université de Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255 351 cours de la Libération 33400 Talence France
| | - Raphaël Méreau
- Université de Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255 351 cours de la Libération 33400 Talence France
| | - Dario M Bassani
- Université de Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255 351 cours de la Libération 33400 Talence France
| | - Brigitte Bibal
- Université de Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255 351 cours de la Libération 33400 Talence France
| |
Collapse
|
30
|
Brega V, Yan Y, Thomas SW. Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials. Org Biomol Chem 2020; 18:9191-9209. [DOI: 10.1039/d0ob01744b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although they are often detrimental in organic electronics, the cycloaddition reactions of acenes, especially with singlet oxygen, are useful in a range of responsive materials.
Collapse
Affiliation(s)
| | - Yu Yan
- Department of Chemistry
- Tufts University
- Medford
- USA
| | | |
Collapse
|
31
|
Zhang XF, Xu B. Organo metal halide perovskites effectively photosensitize the production of singlet oxygen ( 1Δ g). Chem Commun (Camb) 2019; 55:13100-13103. [PMID: 31612179 DOI: 10.1039/c9cc06397h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the steady state and time resolved NIR emission and specific chemical trapping techniques, we show for the first time that metal halide perovskite quantum dots can effectively generate singlet oxygen with a quantum yield of up to 0.34, the highest among nano semiconductor/nano metal singlet oxygen photosensitizers. The mechanism is concluded to be due to energy transfer from triplet excitons to molecular oxygen.
Collapse
Affiliation(s)
- Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China. and Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066000, China and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China. and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
32
|
Kumar PPP, Yadav P, Shanavas A, Thurakkal S, Joseph J, Neelakandan PP. A three-component supramolecular nanocomposite as a heavy-atom-free photosensitizer. Chem Commun (Camb) 2019; 55:5623-5626. [DOI: 10.1039/c9cc02480h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The preparation of a supramolecular nanocomposite containing BODIPY, tryptophan and gold nanoparticles capable of photosensitized generation of singlet oxygen is reported.
Collapse
Affiliation(s)
| | - Pranjali Yadav
- Institute of Nano Science and Technology
- Habitat Centre
- Mohali 160062
- India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology
- Habitat Centre
- Mohali 160062
- India
| | - Shameel Thurakkal
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram 695019
- India
| | - Joshy Joseph
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram 695019
- India
| | | |
Collapse
|
33
|
Duong HD, Vo-Dinh T, Rhee JI. Synthesis and functionalization of gold nanostars for singlet oxygen production. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Callaghan S, Senge MO. The good, the bad, and the ugly - controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem Photobiol Sci 2018; 17:1490-1514. [PMID: 29569665 DOI: 10.1039/c8pp00008e] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Singlet oxygen, although integral to photodynamic therapy, is notoriously uncontrollable, suffers from poor selectivity and has fast decomposition rates in biological media. Across the scientific community, there is a conscious effort to refine singlet oxygen interactions and initiate selective and controlled release to produce a consistent and reproducible therapeutic effect in target tissue. This perspective aims to provide an insight into the contemporary design principles behind photosensitizers and drug delivery systems that depend on a singlet oxygen response or controlled release. The discussion will be accompanied by in vitro and in vivo examples, in an attempt to highlight advancements in the field and future prospects for the more widespread application of photodynamic therapy.
Collapse
Affiliation(s)
- Susan Callaghan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland and Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
35
|
Abstract
The synthesis and characterization of three metalla-rectangles of the general formula [Ru4(η6-p-cymene)4(μ4-clip)2(μ2-Lanthr)2][CF3SO3]4 (Lanthr: 9,10-bis(3,3’-ethynylpyridyl) anthracene; clip = oxa: oxalato; dobq: 2,5-dioxido-1,4-benzoquinonato; donq: 5,8-dioxido-1,4-naphthoquinonato) are presented. The molecular structure of the metalla-rectangle [Ru4(η6-p-cymene)4(μ4-oxa)2(μ2-Lanthr)2]4+ has been confirmed by the single-crystal X-ray structure analysis of [Ru4(η6-p-cymene)4(μ4-oxa)2(μ2-Lanthr)2][CF3SO3]4 · 4 acetone (A2 · 4 acetone), thus showing the anthracene moieties to be available for reaction with oxygen. While the formation of the endoperoxide form of Lanthr was observed in solution upon white light irradiation, the same reaction does not occur when Lanthr is part of the metalla-assemblies.
Collapse
|
36
|
Bard A, Rondon R, Marquez DT, Lanterna AE, Scaiano JC. How Fast Can Thiols Bind to the Gold Nanoparticle Surface? Photochem Photobiol 2018; 94:1109-1115. [PMID: 30192996 DOI: 10.1111/php.13010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Abstract
Kinetics of gold nanoparticle surface modification with thiols can take more than one hour for completion. 7-mercapto-4-methylcoumarin can be used to follow the process by fluorescence spectroscopy and serves as a convenient molecular probe to determine relative kinetics. SERS studies with aromatic thiols further support the slow surface modification kinetics observed by fluorescence spectroscopy. The formation of thiolate bonds is a relatively slow process; we recommend one to two hour wait for thiol binding to be essentially complete, while for disulfides, overnight incubation is suggested.
Collapse
Affiliation(s)
- Amanda Bard
- Department of Chemistry and Biomolecular Sciences, Centre for Advanced Materials Research (CAMaR), University of Ottawa, Ottawa, ON, Canada
| | - Rebeca Rondon
- Department of Chemistry and Biomolecular Sciences, Centre for Advanced Materials Research (CAMaR), University of Ottawa, Ottawa, ON, Canada
| | - Daniela T Marquez
- Department of Chemistry and Biomolecular Sciences, Centre for Advanced Materials Research (CAMaR), University of Ottawa, Ottawa, ON, Canada
| | - Anabel E Lanterna
- Department of Chemistry and Biomolecular Sciences, Centre for Advanced Materials Research (CAMaR), University of Ottawa, Ottawa, ON, Canada
| | - Juan C Scaiano
- Department of Chemistry and Biomolecular Sciences, Centre for Advanced Materials Research (CAMaR), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Fudickar W, Linker T. Release of Singlet Oxygen from Aromatic Endoperoxides by Chemical Triggers. Angew Chem Int Ed Engl 2018; 57:12971-12975. [PMID: 30070421 DOI: 10.1002/anie.201806881] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Indexed: 01/14/2023]
Abstract
The generation of reactive singlet oxygen under mild conditions is of current interest in chemistry, biology, and medicine. We were able to release oxygen from dipyridylanthracene endoperoxides (EPOs) by using a simple chemical trigger at low temperature. Protonation and methylation of such EPOs strongly accelerated these reactions. Furthermore, the methyl pyridinium derivatives are water soluble and therefore serve as oxygen carriers in aqueous media. Methylation of the EPO of the ortho isomer affords the parent form directly without increasing the temperature under very mild conditions. This exceptional behavior is ascribed to the close contact between the nitrogen atom and the peroxo group. Singlet oxygen is released upon this reaction, and can be used to oxygenate an acceptor such as tetramethylethylene in the dark with no heating. Thus, a new chemical source of singlet oxygen has been found, which is triggered by a simple stimulus.
Collapse
Affiliation(s)
- Werner Fudickar
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Torsten Linker
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
38
|
Fudickar W, Linker T. Chemisch induzierte Freisetzung von Singulettsauerstoff aus aromatischen Endoperoxiden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Werner Fudickar
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Deutschland
| | - Torsten Linker
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Deutschland
| |
Collapse
|
39
|
Nazarova NV, Avlasevich YS, Landfester K, Baluschev S. Stimuli-responsive protection of optically excited triplet ensembles against deactivation by molecular oxygen. Dalton Trans 2018; 47:8605-8610. [PMID: 29405211 DOI: 10.1039/c7dt03698a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein we demonstrate temperature-dependent sacrificial singlet oxygen scavenging properties of N-butyl-2-pyridone, ensuring efficient stimuli-responsive protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. As an acting external stimulus the temperature was chosen: it will be shown that at low temperature the concentration of singlet oxygen will be substantially lowered; in contrast, at elevated temperatures singlet oxygen will not be captured, and thus the optically excited densely populated triplet ensembles will be effectively depopulated. The singlet oxygen scavenging ability of N-butyl-2-pyridone demonstrates long-term protection of a triplet-triplet annihilation upconversion process against photooxidation.
Collapse
Affiliation(s)
- N V Nazarova
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | | | | | | |
Collapse
|
40
|
Han Y, Chen Z, Zhao H, Zha Z, Ke W, Wang Y, Ge Z. Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles. J Control Release 2018; 284:15-25. [PMID: 29894709 DOI: 10.1016/j.jconrel.2018.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/31/2018] [Accepted: 06/08/2018] [Indexed: 01/27/2023]
Abstract
Tumor hypoxia strikingly restricts photodynamic therapy (PDT) efficacy and limits its clinical applications in cancer therapy. The ideal strategy to address this issue is to develop oxygen-independent PDT systems. Herein, the rationally designed tumor pH-responsive polymeric micelles are devised to realize oxygen-independent combined PDT and photothermal therapy (PTT) under near-infrared light (NIR) irradiation. The triblock copolymer, poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-(piperidin-1-yl)ethyl methacrylate) (PEG-b-PCL-b- PPEMA), was prepared to co-encapsulate cypate and singlet oxygen donor (diphenylanthracene endoperoxide, DPAE) via self-assembly to obtain the micellar delivery system (C/O@N-Micelle). C/O@N-Micelle showed remarkable tumor accumulation and improved cellular internalization (2.1 times) as the pH value was changed from 7.4 during blood circulation to 6.8 in tumor tissues. The micelles could produce a potent hyperthermia for PTT of cypate under 808 nm NIR irradiation, which simultaneously induced thermal cycloreversion of DPAE generating abundant singlet oxygen for PDT without participation of tumor oxygen. Finally, the photothermally triggered PDT and PTT combination achieved efficient tumor ablation without remarkable systemic toxicity in an oxygen-independent manner. This work represents an efficient strategy for oxygen-independent combined PDT and PTT of cancers under NIR irradiation through co-encapsulation of cypate and DPAE into tumor pH-responsive polymeric micelles.
Collapse
Affiliation(s)
- Yu Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhongping Chen
- Department of Chemistry, Anhui Science and Technology University, Fengyang 233100, China
| | - Hong Zhao
- Department of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
41
|
Cheng N, Chen Y, Yu J, Li JJ, Liu Y. Enhanced DNA Binding and Photocleavage Abilities of β-Cyclodextrin Appended Ru(II) Complex through Supramolecular Strategy. Bioconjug Chem 2018; 29:1829-1833. [PMID: 29812915 DOI: 10.1021/acs.bioconjchem.8b00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosensitizers with high photocleavage ability are urgently needed to improve photodynamic therapy efficacy. Herein, a supramolecular complex was constructed through host-guest self-assembly using hexa-β-CD-appended ruthenium polypyridyl (6CD-Ru) and adamantane-modified anthracene (ADA-AN) in water. The targeted DNA-intercalation of peripheral anthracenes can remarkably enhance photocleavage ability and antitumor activity of the complex irradiated with visible light.
Collapse
|
42
|
Xie N, Feng K, Shao J, Chen B, Tung CH, Wu LZ. Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. Biomacromolecules 2018; 19:2750-2758. [DOI: 10.1021/acs.biomac.8b00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nan Xie
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianqun Shao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
43
|
Fudickar W, Linker T. Release of Singlet Oxygen from Organic Peroxides under Mild Conditions. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201700235] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Werner Fudickar
- Department of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Torsten Linker
- Department of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| |
Collapse
|
44
|
Nishiyabu R, Shimizu A. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol. Chem Commun (Camb) 2018; 52:9765-8. [PMID: 27311634 DOI: 10.1039/c6cc02782b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions.
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| | - Ai Shimizu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
45
|
Rahoui N, Jiang B, Taloub N, Huang YD. Spatio-temporal control strategy of drug delivery systems based nano structures. J Control Release 2017; 255:176-201. [DOI: 10.1016/j.jconrel.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
|
46
|
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016; 45:6597-6626. [PMID: 27722328 PMCID: PMC5118097 DOI: 10.1039/c6cs00271d] [Citation(s) in RCA: 1293] [Impact Index Per Article: 143.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs. Recent advances in nanotechnology and nanomedicine have provided new opportunities to develop ROS-generating systems through photodynamic or non-photodynamic procedures while tackling the challenges of the current PDT approaches. In this review, we summarize the current status and discuss the possible opportunities for ROS generation for cancer therapy. We hope this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.
Collapse
Affiliation(s)
- Zijian Zhou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Liu Y, Wang Z, Zhang H, Lang L, Ma Y, He Q, Lu N, Huang P, Liu Y, Song J, Liu Z, Gao S, Ma Q, Kiesewetter DO, Chen X. A photothermally responsive nanoprobe for bioimaging based on Edman degradation. NANOSCALE 2016; 8:10553-7. [PMID: 27149392 PMCID: PMC5223088 DOI: 10.1039/c6nr01400c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new type of photothermally responsive nanoprobe based on Edman degradation has been synthesized and characterized. Under irradiation by an 808 nm laser, the heat generated by the gold nanorod core breaks the thiocarbamide structure and releases the fluorescent dye Cy5.5 with increased near-infrared (NIR) fluorescence under mild acidic conditions. This RGD modified nanoprobe is capable of fluorescence imaging of ανβ3 over-expressing U87MG cells in vitro and in vivo. This Edman degradation-based nanoprobe provides a novel strategy to design activatable probes for biomedical imaging and drug/gene delivery.
Collapse
Affiliation(s)
- Yi Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Huimin Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Qianjun He
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Nan Lu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Peng Huang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Zhibo Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Shi Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| | - Qingjie Ma
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
48
|
Kolemen S, Ozdemir T, Lee D, Kim GM, Karatas T, Yoon J, Akkaya EU. Remote-Controlled Release of Singlet Oxygen by the Plasmonic Heating of Endoperoxide-Modified Gold Nanorods: Towards a Paradigm Change in Photodynamic Therapy. Angew Chem Int Ed Engl 2016; 55:3606-10. [PMID: 26845734 DOI: 10.1002/anie.201510064] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/07/2015] [Indexed: 12/20/2022]
Abstract
The photodynamic therapy of cancer is contingent upon the sustained generation of singlet oxygen in the tumor region. However, tumors of the most metastatic cancer types develop a region of severe hypoxia, which puts them beyond the reach of most therapeutic protocols. More troublesome, photodynamic action generates acute hypoxia as the process itself diminishes cellular oxygen reserves, which makes it a self-limiting method. Herein, we describe a new concept that could eventually lead to a change in the 100 year old paradigm of photodynamic therapy and potentially offer solutions to some of the lingering problems. When gold nanorods with tethered endoperoxides are irradiated at 808 nm, the endoperoxides undergo thermal cycloreversion, resulting in the generation of singlet oxygen. We demonstrate that the amount of singlet oxygen produced in this way is sufficient for triggering apoptosis in cell cultures.
Collapse
Affiliation(s)
- Safacan Kolemen
- UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Tugba Ozdemir
- UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Dayoung Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Gyoung Mi Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Tugce Karatas
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea.
| | - Engin U Akkaya
- UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey. .,Department of Chemistry, Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|
49
|
Kolemen S, Ozdemir T, Lee D, Kim GM, Karatas T, Yoon J, Akkaya EU. Remote-Controlled Release of Singlet Oxygen by the Plasmonic Heating of Endoperoxide-Modified Gold Nanorods: Towards a Paradigm Change in Photodynamic Therapy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Safacan Kolemen
- UNAM-Institute of Material Science and Nanotechnology; Bilkent University; Ankara 06800 Turkey
| | - Tugba Ozdemir
- UNAM-Institute of Material Science and Nanotechnology; Bilkent University; Ankara 06800 Turkey
| | - Dayoung Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Gyoung Mi Kim
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Tugce Karatas
- Department of Chemistry; Bilkent University; Ankara 06800 Turkey
| | - Juyoung Yoon
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Engin U. Akkaya
- UNAM-Institute of Material Science and Nanotechnology; Bilkent University; Ankara 06800 Turkey
- Department of Chemistry; Bilkent University; Ankara 06800 Turkey
| |
Collapse
|
50
|
Nguyen D, Stolaroff J, Esser-Kahn A. Solvent Effects on the Photothermal Regeneration of CO2 in Monoethanolamine Nanofluids. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25851-25856. [PMID: 26523847 DOI: 10.1021/acsami.5b08151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO2 without heating the bulk solvent. The mechanism by which CO2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regeneration of CO2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO2 regeneration system in a continuously flowing setup. Using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.
Collapse
Affiliation(s)
- Du Nguyen
- Lawrence Livermore National Laboratory , Livermore, California 94551, United States
| | - Joshuah Stolaroff
- Lawrence Livermore National Laboratory , Livermore, California 94551, United States
| | | |
Collapse
|