1
|
Gou W, Dai P, Wang M, Wang Y, Ma N, Zhou X, Xu Y, Zhang L, Li C. Synthesis of Diverse Ureas from Amines and CO 2 at Atmospheric Pressure and Room Temperature. J Org Chem 2024; 89:12498-12507. [PMID: 39180140 DOI: 10.1021/acs.joc.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
A metal-free method is developed to perform the synthesis of urea derivatives utilizing CO2 as the C1 building block at atmospheric pressure and room temperature. In addition to diverse symmetric and dissymmetric ureas, benzimidazolones and quinazolinone can also be easily prepared using this protocol. Most importantly, the gram-scale preparation of fungicide pencycuron and antipsychotic drug pimavanserin proceeded smoothly under the mild conditions.
Collapse
Affiliation(s)
- Wenchang Gou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Pinli Dai
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Mei Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yunhuan Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Nana Ma
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Xuan Zhou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yingjian Xu
- GoldenKeys High-tech Materials Co., Ltd., Guian New Area, Guizhou 550025, People's Republic of China
| | - Lin Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Chun Li
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| |
Collapse
|
2
|
Bonnemaire CM, Windhorst AD, Orru R, Ruijter E, Vugts DJ. [11C]CO2 BOP fixation with amines to access 11C-labeled ureas for PET imaging. J Labelled Comp Radiopharm 2024; 67:201-210. [PMID: 38073118 DOI: 10.1002/jlcr.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 11/03/2023] [Indexed: 05/16/2024]
Abstract
Carbon-11 (11C) is a widely used radionuclide for positron emission tomography (PET) owing to the omnipresence of carbon atoms in organic molecules. While its half-life of 20.4 min is ideal for imaging and dosimetry, it also limits the synthetic possibilities. As such, the development of fast and easy, high-yielding synthesis methods is crucial for the application of 11C-labeled tracers in humans. In this study, we present a novel and efficient method for the reaction of [11C]CO2 with amine precursors using benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) to access 11C-labeled ureas. Our method is extremely fast as it only requires transfer of [11C]CO2 into a solution with precursor and BOP at room temperature, where it reacts momentary into the desired 11C-labeled urea. This simple procedure makes it possible to radiolabel urea directly from [11C]CO2 without the need for advanced equipment, making the method applicable for all laboratories where [11C]CO2 is available. We synthesized a small series of aliphatic symmetrical and non-symmetrical 11C-labeled ureas using this method, and achieved good to excellent yields. The novelty of our study lies in the fact that peptide coupling reagent BOP is used for the first time in radiochemistry to activate [11C]CO2, facilitating its reaction with amines to obtain 11C-labeled ureas.
Collapse
Affiliation(s)
- Coralie M Bonnemaire
- Radiology and Nuclear Medicine(s), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Radiology and Nuclear Medicine(s), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Romano Orru
- Bio-based Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle J Vugts
- Radiology and Nuclear Medicine(s), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Ozenil M, Kogler L, Mair BA, Hacker M, Wadsak W, Rotstein BH, Pichler V. Intramolecular Friedel-Crafts Acylation of [ 11C]Isocyanates Enabling the Radiolabeling of [carbonyl- 11C]DPQ. Chemistry 2024; 30:e202400581. [PMID: 38470445 DOI: 10.1002/chem.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
α,β-aromatic lactams are highly abundant in biologically active molecules, yet so far they cannot be radiolabeled with short-lived (t1/2=20.3 min), β+-decaying carbon-11, which has prevented their application as positron emission tomography tracers. Herein, we developed, optimized, and applied a widely applicable, one-pot, quick, robust and automatable radiolabeling method for α,β-aromatic lactams starting from [11C]CO2 using the reagent POCl3⋅AlCl3. This method proceeds via intramolecular Friedel-Crafts acylation of in situ formed [11C]isocyanates and shows a broad substrate scope for the formation of five- and six-membered rings. We implemented our developed labeling method for the radiosynthesis of the potential PARP1 PET tracer [carbonyl-11C]DPQ in a clinical radiotracer production facility following the standards of the European Pharmacopoeia.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lukas Kogler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
- CBmed GmbH-Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010, Graz, Austria
| | - Braeden A Mair
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt, Ottawa, ON, K1 N 6 N5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4 W7, Canada
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- CBmed GmbH-Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010, Graz, Austria
| | - Benjamin H Rotstein
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt, Ottawa, ON, K1 N 6 N5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4 W7, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8 M5, Canada
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| |
Collapse
|
4
|
Lynch C, Downey JW, Zhang Y, Hooker JM, Levin MD. Core-Labeling (Radio) Synthesis of Phenols. Org Lett 2023; 25:7230-7235. [PMID: 37751441 PMCID: PMC10563162 DOI: 10.1021/acs.orglett.3c02838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 09/28/2023]
Abstract
We report a method that enables the fast incorporation of carbon isotopes into the ipso carbon of phenols. Our approach relies on the synthesis of a 1,5-dibromo-1,4-pentadiene precursor, which upon lithium-halogen exchange followed by treatment with carbonate esters results in a formal [5 + 1] cyclization to form the phenol product. Using this strategy, we have prepared 12 1-13C-labeled phenols, show proof-of-concept for the labeling of phenols with carbon-14, and demonstrate phenol synthesis directly from cyclotron-produced [11C]CO2.
Collapse
Affiliation(s)
- Colin
F. Lynch
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph W. Downey
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Yongliang Zhang
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jacob M. Hooker
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Lurie
Center for Autism, Massachusetts General
Hospital, Lexington, Massachusetts 02421, United States
| | - Mark D. Levin
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Ismailani US, Buchler A, MacMullin N, Abdirahman F, Adi M, Rotstein BH. Synthesis and Evaluation of [ 11C]MCC950 for Imaging NLRP3-Mediated Inflammation in Atherosclerosis. Mol Pharm 2023; 20:1709-1716. [PMID: 36735877 DOI: 10.1021/acs.molpharmaceut.2c00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Overexpression of the NLRP3 inflammasome has been attributed to the progressive worsening of a multitude of cardiovascular inflammatory diseases such as myocardial infarction, pulmonary arterial hypertension, and atherosclerosis. The recently discovered potent and selective NLRP3 inhibitor MCC950 has shown promise in hindering disease progression, but NLRP3-selective cardiovascular positron emission tomography (PET) imaging has not yet been demonstrated. We synthesized [11C]MCC950 with no-carrier-added [11C]CO2 fixation chemistry using an iminophosphorane precursor (RCY 45 ± 4%, >99% RCP, 27 ± 2 GBq/μmol, 23 ± 3 min, n = 6) and determined its distribution both in vivo and ex vivo in C57BL/6 and atherogenic ApoE-/- mice. Small animal PET imaging was performed in both strains following intravenous administration via the lateral tail vein and revealed considerable uptake in the liver that stabilized by 20 min (7-8.5 SUV), coincident with secondary renal excretion. Plasma metabolite analysis uncovered excellent in vivo stability of [11C]MCC950 (94% intact). Ex vivo autoradiography performed on excised aortas revealed heterogeneous uptake in atherosclerotic plaques of ApoE-/- mice in comparison to C57BL/6 controls (48 ± 17 %ID/m2 vs 18 ± 8 %ID/m2, p = 0.002, n = 4-5). Treatment of ApoE-/- mice with nonradioactive MCC950 (5 mg/kg, iv) 10 min prior to radiotracer administration increased uptake in the intestine (5.3 ± 1.8 %ID/g vs 11.0 ± 3.7 %ID/g, p = 0.04, n = 4-6) and in aortic lesions (48 ± 17 %ID/m2 vs 104 ± 15 %ID/m2, p = 0.0002, n = 5) by 108% and 117%, respectively, without significantly increasing plasma free fraction (fp, 1.3 ± 0.4% vs 1.7 ± 0.8%, n = 2). These results suggest that [11C]MCC950 uptake demonstrates specific binding and may prove useful for in vivo NLRP3 imaging in atherosclerosis.
Collapse
Affiliation(s)
- Uzair S Ismailani
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Ariel Buchler
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nicole MacMullin
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Faduma Abdirahman
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Myriam Adi
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Shegani A, Kealey S, Luzi F, Basagni F, Machado JDM, Ekici SD, Ferocino A, Gee AD, Bongarzone S. Radiosynthesis, Preclinical, and Clinical Positron Emission Tomography Studies of Carbon-11 Labeled Endogenous and Natural Exogenous Compounds. Chem Rev 2023; 123:105-229. [PMID: 36399832 PMCID: PMC9837829 DOI: 10.1021/acs.chemrev.2c00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/19/2022]
Abstract
The presence of positron emission tomography (PET) centers at most major hospitals worldwide, along with the improvement of PET scanner sensitivity and the introduction of total body PET systems, has increased the interest in the PET tracer development using the short-lived radionuclides carbon-11. In the last few decades, methodological improvements and fully automated modules have allowed the development of carbon-11 tracers for clinical use. Radiolabeling natural compounds with carbon-11 by substituting one of the backbone carbons with the radionuclide has provided important information on the biochemistry of the authentic compounds and increased the understanding of their in vivo behavior in healthy and diseased states. The number of endogenous and natural compounds essential for human life is staggering, ranging from simple alcohols to vitamins and peptides. This review collates all the carbon-11 radiolabeled endogenous and natural exogenous compounds synthesised to date, including essential information on their radiochemistry methodologies and preclinical and clinical studies in healthy subjects.
Collapse
Affiliation(s)
- Antonio Shegani
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Steven Kealey
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Federico Luzi
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Filippo Basagni
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Joana do Mar Machado
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Sevban Doğan Ekici
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Alessandra Ferocino
- Institute
of Organic Synthesis and Photoreactivity, Italian National Research Council, via Piero Gobetti 101, 40129 Bologna, Italy
| | - Antony D. Gee
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Salvatore Bongarzone
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
8
|
Bow JP, Adami V, Marasco A, Gronnevik G, Rivers D, Alvaro G, Riss PJ. A Direct Fixation of CO2 for Isotopic Labelling of Hydantoins Using Iodine-Phosphine Charge Transfer Complexes. Chem Commun (Camb) 2022; 58:7546-7549. [DOI: 10.1039/d2cc01754g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a method for the isotopic labelling of hydantoins directly from CO2 by means of trimethyl-λ5-phosphine diiodide mediated carbonyl insertion. The method is suitable for 13C-labelling of diverse...
Collapse
|
9
|
Jakobsson JE, Telu S, Lu S, Jana S, Pike VW. Broad Scope and High-Yield Access to Unsymmetrical Acyclic [ 11 C]Ureas for Biomedical Imaging from [ 11 C]Carbonyl Difluoride. Chemistry 2021; 27:10369-10376. [PMID: 33890705 PMCID: PMC10134011 DOI: 10.1002/chem.202100690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Effective methods are needed for labelling acyclic ureas with carbon-11 (t1/2 =20.4 min) as potential radiotracers for biomedical imaging with positron emission tomography (PET). Herein, we describe the rapid and high-yield syntheses of unsymmetrical acyclic [11 C]ureas under mild conditions (room temperature and within 7 min) using no-carrier-added [11 C]carbonyl difluoride with aliphatic and aryl amines. This methodology is compatible with diverse functionality (e. g., hydroxy, carboxyl, amino, amido, or pyridyl) in the substrate amines. The labelling process proceeds through putative [11 C]carbamoyl fluorides and for primary amines through isolable [11 C]isocyanate intermediates. Unsymmetrical [11 C]ureas are produced with negligible amounts of unwanted symmetrical [11 C]urea byproducts. Moreover, the overall labelling method tolerates trace water and the generally moderate to excellent yields show good reproducibility. [11 C]Carbonyl difluoride shows exceptional promise for application to the synthesis of acyclic [11 C]ureas as new radiotracers for biomedical imaging with PET.
Collapse
Affiliation(s)
- Jimmy E Jakobsson
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| |
Collapse
|
10
|
Babin V, Sallustrau A, Loreau O, Caillé F, Goudet A, Cahuzac H, Del Vecchio A, Taran F, Audisio D. A general procedure for carbon isotope labeling of linear urea derivatives with carbon dioxide. Chem Commun (Camb) 2021; 57:6680-6683. [PMID: 34132265 DOI: 10.1039/d1cc02665h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon isotope labeling is a traceless technology, which allows tracking the fate of organic compounds either in the environment or in living organisms. This article reports on a general approach to label urea derivatives with all carbon isotopes, including 14C and 11C, based on a Staudinger aza-Wittig sequence. It provides access to all aliphatic/aromatic urea combinations.
Collapse
Affiliation(s)
- Victor Babin
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Antoine Sallustrau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Olivier Loreau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Amélie Goudet
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Héloïse Cahuzac
- Université Paris-Saclay, Département Médicaments et Technologies pour la santé (DMTS), CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Antonio Del Vecchio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Frédéric Taran
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Davide Audisio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| |
Collapse
|
11
|
Ismailani US, Munch M, Mair BA, Rotstein BH. Interrupted aza-Wittig reactions using iminophosphoranes to synthesize 11C-carbonyls. Chem Commun (Camb) 2021; 57:5266-5269. [PMID: 33942043 DOI: 10.1039/d1cc01016f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct CO2-fixation methodology couples structurally diverse iminophosphoranes with various nucleophiles to synthesize ureas, carbamates, thiocarbamates, and amides, and is amenable for 11C radiolabeling. This methodology is practical, as demonstrated by the synthesis of >35 products and isolation of the molecular imaging radiopharmaceuticals [11C]URB694 and [11C]glibenclamide.
Collapse
Affiliation(s)
- Uzair S Ismailani
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada
| | - Braeden A Mair
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| |
Collapse
|
12
|
Luzi F, Gee AD, Bongarzone S. Rapid one-pot radiosynthesis of [carbonyl- 11C]formamides from primary amines and [ 11C]CO 2. EJNMMI Radiopharm Chem 2020; 5:20. [PMID: 32870409 PMCID: PMC7462944 DOI: 10.1186/s41181-020-00103-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Formamides are common motifs of biologically-active compounds (e.g. formylated peptides) and are frequently employed as intermediates to yield a number of other functional groups. A rapid, simple and reliable route to [carbonyl-11C]formamides would enable access to this important class of compounds as in vivo PET imaging agents. RESULTS A novel radiolabelling strategy for the synthesis of carbon-11 radiolabelled formamides ([11C]formamides) is presented. The reaction proceeded with the conversion of a primary amine to the corresponding [11C]isocyanate using cyclotron-produced [11C]CO2, a phosphazene base (2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine, BEMP) and phosphoryl chloride (POCl3). The [11C]isocyanate was subsequently reduced to [11C]formamide using sodium borohydride (NaBH4). [11C]Benzyl formamide was obtained with a radiochemical yield (RCY) of 80% in 15 min from end of cyclotron target bombardment and with an activity yield of 12%. This novel method was applied to the radiolabeling of aromatic and aliphatic formamides and the chemotactic amino acid [11C]formyl methionine (RCY = 48%). CONCLUSIONS This study demonstrates the feasibility of 11C-formylation of primary amines with the primary synthon [11C]CO2. The reactivity is proportional to the nucleophilicity of the precursor amine. This novel method can be used for the production of biomolecules containing a radiolabelled formyl group.
Collapse
Affiliation(s)
- Federico Luzi
- School of Imaging Sciences & Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Antony D Gee
- School of Imaging Sciences & Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Salvatore Bongarzone
- School of Imaging Sciences & Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
13
|
Bongarzone S, Sementa T, Dunn J, Bordoloi J, Sunassee K, Blower PJ, Gee A. Imaging Biotin Trafficking In Vivo with Positron Emission Tomography. J Med Chem 2020; 63:8265-8275. [PMID: 32658479 PMCID: PMC7445742 DOI: 10.1021/acs.jmedchem.0c00494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The water-soluble vitamin biotin is essential for cellular growth, development, and well-being, but its absorption, distribution, metabolism, and excretion are poorly understood. This paper describes the radiolabeling of biotin with the positron emission tomography (PET) radionuclide carbon-11 ([11C]biotin) to enable the quantitative study of biotin trafficking in vivo. We show that intravenously administered [11C]biotin is quickly distributed to the liver, kidneys, retina, heart, and brain in rodents-consistent with the known expression of the biotin transporter-and there is a surprising accumulation in the brown adipose tissue (BAT). Orally administered [11C]biotin was rapidly absorbed in the small intestine and swiftly distributed to the same organs. Preadministration of nonradioactive biotin inhibited organ uptake and increased excretion. [11C]Biotin PET imaging therefore provides a dynamic in vivo map of transporter-mediated biotin trafficking in healthy rodents. This technique will enable the exploration of biotin trafficking in humans and its use as a research tool for diagnostic imaging of obesity/diabetes, bacterial infection, and cancer.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Teresa Sementa
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Joel Dunn
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Jayanta Bordoloi
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Kavitha Sunassee
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Antony Gee
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|
14
|
Hill JR, Shao X, Massey NL, Stauff J, Sherman PS, Robertson AAB, Scott PJH. Synthesis and evaluation of NLRP3-inhibitory sulfonylurea [ 11C]MCC950 in healthy animals. Bioorg Med Chem Lett 2020; 30:127186. [PMID: 32312583 DOI: 10.1016/j.bmcl.2020.127186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023]
Abstract
The diaryl sulfonylurea MCC950/CRID3 is a potent NLRP3 inhibitor (IC50 = 8 nM) and, in animal models, MCC950 protects against numerous NLRP3-related neurodegenerative disorders. To evaluate the brain uptake and investigate target engagement of MCC950, we synthesised [11C-urea]MCC950 via carrier added [11C]CO2 fixation chemistry (activity yield = 237 MBq; radiochemical purity >99%; molar activity = 7 GBq/µmol; radiochemical yield (decay-corrected from [11C]CO2) = 1.1%; synthesis time from end-of-bombardment = 31 min; radiochemically stable for >1 h). Despite preclinical efficacy in neurodegeneration studies, preclinical positron emission tomography (PET) imaging studies in mouse, rat and rhesus monkey revealed poor brain uptake of low molar activity [11C]MCC950 and rapid washout. In silico prediction tools suggest efflux transporter liabilities for MCC950 at microdoses, and this information should be taken into account when developing next generation NLRP3 inhibitors and/or PET radiotracers.
Collapse
Affiliation(s)
- James R Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas L Massey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillip S Sherman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Avril A B Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
A general 11C-labeling approach enabled by fluoride-mediated desilylation of organosilanes. Nat Commun 2020; 11:1736. [PMID: 32269227 PMCID: PMC7142131 DOI: 10.1038/s41467-020-15556-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Carbon-11 (11C) is one of the most ideal positron emitters for labeling bioactive molecules for molecular imaging studies. The lack of convenient and fast incorporation methods to introduce 11C into organic molecules often hampers the use of this radioisotope. Here, a fluoride-mediated desilylation (FMDS) 11C-labeling approach is reported. This method relies on thermodynamically favored Si-F bond formation to generate a carbanion, therefore enabling the highly efficient and speedy incorporation of [11C]CO2 and [11C]CH3I into molecules with diversified structures. It provides facile and rapid access to 11C-labeled compounds with carbon-11 attached at various hybridized carbons as well as oxygen, sulfur and nitrogen atoms with broad functional group tolerance. The exemplified syntheses of several biologically and clinically important radiotracers illustrates the potentials of this methodology. Convenient and fast methods to introduce 11C into organic molecules are of great help for molecular imaging studies. Here, the authors developed an efficient incorporation of [11C]CO2 and [11C]CH3I into molecules via a fluoride-mediated desilylation process.
Collapse
|
16
|
Mair BA, Fouad MH, Ismailani US, Munch M, Rotstein BH. Rhodium-Catalyzed Addition of Organozinc Iodides to Carbon-11 Isocyanates. Org Lett 2020; 22:2746-2750. [DOI: 10.1021/acs.orglett.0c00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Braeden A. Mair
- Departments of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Moustafa H. Fouad
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Uzair S. Ismailani
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Maxime Munch
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Benjamin H. Rotstein
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Departments of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| |
Collapse
|
17
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemistry for Positron Emission Tomography: Recent Advances in 11 C-, 18 F-, 13 N-, and 15 O-Labeling Reactions. Angew Chem Int Ed Engl 2019; 58:2580-2605. [PMID: 30054961 PMCID: PMC6405341 DOI: 10.1002/anie.201805501] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Indexed: 01/07/2023]
Abstract
Positron emission tomography (PET) is a molecular imaging technology that provides quantitative information about function and metabolism in biological processes in vivo for disease diagnosis and therapy assessment. The broad application and rapid advances of PET has led to an increased demand for new radiochemical methods to synthesize highly specific molecules bearing positron-emitting radionuclides. This Review provides an overview of commonly used labeling reactions through examples of clinically relevant PET tracers and highlights the most recent developments and breakthroughs over the past decade, with a focus on 11 C, 18 F, 13 N, and 15 O.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lei Zhang
- Medicine Design, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
18
|
Horkka K, Dahl K, Bergare J, Elmore CS, Halldin C, Schou M. Rapid and Efficient Synthesis of 11
C-Labeled Benzimidazolones Using [11
C]Carbon Dioxide. ChemistrySelect 2019. [DOI: 10.1002/slct.201803561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kaisa Horkka
- Karolinska Institutet; S-171 76 Stockholm Sweden
| | - Kenneth Dahl
- CAMH & University of Toronto, Toronto, ON; Canada
| | - Jonas Bergare
- Isotope Chemistry, Pharmaceutical Sciences iMED, AstraZeneca Pharmaceuticals AB, Mölndal; Sweden
| | - Charles S. Elmore
- Isotope Chemistry, Pharmaceutical Sciences iMED, AstraZeneca Pharmaceuticals AB, Mölndal; Sweden
| | | | - Magnus Schou
- Karolinska Institutet; S-171 76 Stockholm Sweden
- PET Science Centre, Precision Medicine and Genomics, iMED Biotech Unit, AstraZeneca, Karolinska Institutet; S-171 76 Stockholm Sweden
| |
Collapse
|
19
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemie der Positronenemissionstomographie: Aktuelle Fortschritte bei
11
C‐,
18
F‐,
13
N‐ und
15
O‐Markierungsreaktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lei Zhang
- Medicine DesignPfizer Inc. Cambridge MA 02139 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| |
Collapse
|
20
|
Abstract
A novel carbon-11 radiolabelling methodology for the synthesis of the dialkylcarbonate functional group has been developed. The method uses cyclotron-produced short-lived [11C]CO2 (half-life 20.4 min) directly from the cyclotron target in a one-pot synthesis. Alcohol in the presence of base trapped [11C]CO2 efficiently forming an [11C]alkylcarbonate intermediate that subsequently reacted with an alkylchloride producing the di-substituted [11C]carbonate (34% radiochemical yield, determined by radio-HPLC) in 5 minutes from the end of [11C]CO2 cyclotron delivery.
Collapse
|
21
|
Bongarzone S, Runser A, Taddei C, Dheere AKH, Gee AD. From [ 11C]CO 2 to [ 11C]amides: a rapid one-pot synthesis via the Mitsunobu reaction. Chem Commun (Camb) 2018; 53:5334-5337. [PMID: 28447672 PMCID: PMC5708528 DOI: 10.1039/c7cc01407d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Radiosynthesis of [11C]amides via the Mitsunobu reaction.
A novel amide synthesis methodology is described using amines, CO2 and Grignard reagents and Mitsunobu reagents. The method was applied to carbon-11 radiochemistry to label amides using cyclotron-produced [11C]CO2. The synthetic utility of the one-pot labelling methodology was demonstrated by producing [11C]melatonin. The incorporation of [11C]CO2 into [11C]melatonin was 36% – determined by radioHPLC 2 min post [11C]CO2 delivery.
Collapse
Affiliation(s)
- S Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - A Runser
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - C Taddei
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - A K Haji Dheere
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - A D Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
22
|
Dahl K, Collier TL, Chang R, Zhang X, Sadovski O, Liang SH, Vasdev N. "In-loop" [ 11 C]CO 2 fixation: Prototype and proof of concept. J Labelled Comp Radiopharm 2018; 61:252-262. [PMID: 28600835 PMCID: PMC5723245 DOI: 10.1002/jlcr.3528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Abstract
Carbon-11-labeled carbon dioxide is the most common feedstock for the synthesis of positron emission tomography radiotracers and can be directly used for 11 C-carbonylation. Herein, we report the development of an apparatus that takes advantage of "in-loop" technologies to facilitate robust and reproducible syntheses of 11 C-carbonyl-based radiotracers by [11 C]CO2 -fixation. Our "in-loop" [11 C]CO2 -fixation method is simple, efficient, and proceeds smoothly at ambient pressure and temperature. We selected model 11 C-carbonyl-labeled carbamates as well as symmetrical and unsymmetrical ureas based on their widespread use in radiotracer design and our clinical research interests for proof of concept. Utility of this method is demonstrated by the synthesis of a reversible radiopharmaceutical for monoamine oxidase B, [11 C]SL25.1188, and 2 novel fatty acid amide hydrolase inhibitors. These radiotracers were isolated and formulated (>3.5 GBq; 100 mCi) with radiochemical purities (>99%) and molar radioactivity (≥80 GBq/μmol; ≥2162 mCi/μmol).
Collapse
Affiliation(s)
- Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Thomas L. Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Advion Inc., 10 Brown Road, Ithaca, NY 14850, USA
| | - Ran Chang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Oleg Sadovski
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada MST 1R8
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
23
|
Downey J, Bongarzone S, Hader S, Gee AD. In-loop flow [ 11 C]CO 2 fixation and radiosynthesis of N,N'-[ 11 C]dibenzylurea. J Labelled Comp Radiopharm 2018; 61:263-271. [PMID: 28977686 PMCID: PMC5900881 DOI: 10.1002/jlcr.3568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 09/24/2017] [Indexed: 11/11/2022]
Abstract
Cyclotron-produced carbon-11 is a highly valuable radionuclide for the production of positron emission tomography (PET) radiotracers. It is typically produced as relatively unreactive carbon-11 carbon dioxide ([11 C]CO2 ), which is most commonly converted into a more reactive precursor for synthesis of PET radiotracers. The development of [11 C]CO2 fixation methods has more recently enabled the direct radiolabelling of a diverse array of structures directly from [11 C]CO2 , and the advantages afforded by the use of a loop-based system used in 11 C-methylation and 11 C-carboxylation reactions inspired us to apply the [11 C]CO2 fixation "in-loop." In this work, we developed and investigated a new ethylene tetrafluoroethylene (ETFE) loop-based [11 C]CO2 fixation method, enabling the fast and efficient, direct-from-cyclotron, in-loop trapping of [11 C]CO2 using mixed DBU/amine solutions. An optimised protocol was integrated into a proof-of-concept in-loop flow radiosynthesis of N,N'-[11 C]dibenzylurea. This reaction exhibited an average 78% trapping efficiency and a crude radiochemical purity of 83% (determined by radio-HPLC), giving an overall nonisolated radiochemical yield of 72% (decay-corrected) within just 3 minutes from end of bombardment. This proof-of-concept reaction has demonstrated that efficient [11 C]CO2 fixation can be achieved in a low-volume (150 μL) ETFE loop and that this can be easily integrated into a rapid in-loop flow radiosynthesis of carbon-11-labelled products. This new in-loop methodology will allow fast radiolabelling reactions to be performed using cheap/disposable ETFE tubing setup (ideal for good manufacturing practice production) thereby contributing to the widespread usage of [11 C]CO2 trapping/fixation reactions for the production of PET radiotracers.
Collapse
Affiliation(s)
- Joseph Downey
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Salvatore Bongarzone
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Stefan Hader
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Antony D. Gee
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| |
Collapse
|
24
|
Taddei C, Gee AD. Recent progress in [ 11 C]carbon dioxide ([ 11 C]CO 2 ) and [ 11 C]carbon monoxide ([ 11 C]CO) chemistry. J Labelled Comp Radiopharm 2018; 61:237-251. [PMID: 29274276 PMCID: PMC6485328 DOI: 10.1002/jlcr.3596] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/20/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
[11 C]Carbon dioxide ([11 C]CO2 ) and [11 C]carbon monoxide ([11 C]CO) are 2 attractive precursors for labelling the carbonyl position (C═O) in a vast range of functionalised molecules (eg, ureas, amides, and carboxylic acids). The development of radiosynthetic methods to produce functionalised 11 C-labelled compounds is required to enhance the radiotracers available for positron emission tomography, molecular, and medical imaging applications. Following a brief summary of secondary 11 C-precursor production and uses, the review focuses on recent progress with direct 11 C-carboxylation routes with [11 C]CO2 and 11 C-carbonylation with [11 C]CO. Novel approaches to generate [11 C]CO using CO-releasing molecules (CO-RMs), such as silacarboxylic acids and disilanes, applied to radiochemistry are described and compared with standard [11 C]CO production methods. These innovative [11 C]CO synthesis strategies represent efficient and reliable [11 C]CO production processes, enabling the widespread use of [11 C]CO chemistry within the wider radiochemistry community.
Collapse
Affiliation(s)
- Carlotta Taddei
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Antony D. Gee
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
25
|
Boscutti G, Huiban M, Passchier J. Use of carbon-11 labelled tool compounds in support of drug development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:3-10. [PMID: 29233265 DOI: 10.1016/j.ddtec.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
The pharmaceutical industry is facing key challenges to improve return on R&D investment. Positron emission tomography (PET), by itself or in combination with complementary technologies such as magnetic resonance imaging (MRI), provides a unique opportunity to confirm a candidate's ability to meet the so-called 'three pillars' of drug development. Positive confirmation provides confidence for go/no-go decision making at an early stage of the development process and enables informed clinical progression. Whereas fluorine-18 has probably gained wider use in the community, there are benefits to using carbon-11 given the greater flexibility the use of this isotope permits in adaptive clinical study design. This review explores the scope of available carbon-11 chemistries and provides clinical examples to highlight its value in PET studies in support of drug development.
Collapse
Affiliation(s)
- Giulia Boscutti
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Mickael Huiban
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Jan Passchier
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
26
|
Taddei C, Bongarzone S, Gee AD. Instantaneous Conversion of [ 11 C]CO 2 to [ 11 C]CO via Fluoride-Activated Disilane Species. Chemistry 2017; 23:7682-7685. [PMID: 28419627 PMCID: PMC5488231 DOI: 10.1002/chem.201701661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/03/2023]
Abstract
The development of a fast and novel methodology to generate carbon-11 carbon monoxide ([11 C]CO) from cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) mediated by a fluoride-activated disilane species is described. This methodology allows up to 74 % conversion of [11 C]CO2 to [11 C]CO using commercially available reagents, readily available laboratory equipment and mild reaction conditions (room temperature). As proof of utility, radiochemically pure [carbonyl-11 C]N-benzylbenzamide was successfully synthesized from produced [11 C]CO in up to 74 % radiochemical yield (RCY) and >99 % radiochemical purity (RCP) in ≤10 min from end of [11 C]CO2 delivery.
Collapse
Affiliation(s)
- Carlotta Taddei
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| | - Salvatore Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| | - Antony D. Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| |
Collapse
|
27
|
Dahl K, Halldin C, Schou M. New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clin Transl Imaging 2017; 5:275-289. [PMID: 28596949 PMCID: PMC5437136 DOI: 10.1007/s40336-017-0223-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/01/2017] [Indexed: 12/04/2022]
Abstract
PURPOSE This short review aims to cover the more recent and promising developments of carbon-11 (11C) labeling radiochemistry and its utility in the production of novel radiopharmaceuticals, with special emphasis on methods that have the greatest potential to be translated for clinical positron emission tomography (PET) imaging. METHODS A survey of the literature was undertaken to identify articles focusing on methodological development in 11C chemistry and their use within novel radiopharmaceutical preparation. However, since 11C-labeling chemistry is such a narrow field of research, no systematic literature search was therefore feasible. The survey was further restricted to a specific timeframe (2000-2016) and articles in English. RESULTS From the literature, it is clear that the majority of 11C-labeled radiopharmaceuticals prepared for clinical PET studies have been radiolabeled using the standard heteroatom methylation reaction. However, a number of methodologies have been developed in recent years, both from a technical and chemical point of view. Amongst these, two protocols may have the greatest potential to be widely adapted for the preparation of 11C-radiopharmaceuticals in a clinical setting. First, a novel method for the direct formation of 11C-labeled carbonyl groups, where organic bases are utilized as [11C]carbon dioxide-fixation agents. The second method of clinical importance is a low-pressure 11C-carbonylation technique that utilizes solvable xenon gas to effectively transfer and react [11C]carbon monoxide in a sealed reaction vessel. Both methods appear to be general and provide simple paths to 11C-labeled products. CONCLUSION Radiochemistry is the foundation of PET imaging which relies on the administration of a radiopharmaceutical. The demand for new radiopharmaceuticals for clinical PET imaging is increasing, and 11C-radiopharmaceuticals are especially important within clinical research and drug development. This review gives a comprehensive overview of the most noteworthy 11C-labeling methods with clinical relevance to the field of PET radiochemistry.
Collapse
Affiliation(s)
- Kenneth Dahl
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Neuroscience, AstraZeneca Translational Science Centre, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
28
|
Xia M, Hu W, Sun S, Yu JT, Cheng J. The dearomative annulation between N-2-pyridylamidine and CO2 toward pyrido[1,2-a]-1,3,5-triazin-4-ones. Org Biomol Chem 2017; 15:4064-4067. [DOI: 10.1039/c7ob00777a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A base-promoted dearomative annulation between N-2-pyridylamidine and an atmospheric pressure of CO2 was developed, affording a series of pyrido[1,2-a]-1,3,5-triazin-4-ones in moderate to excellent yields.
Collapse
Affiliation(s)
- Minfang Xia
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| | - Weiming Hu
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| | - Song Sun
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| | - Jin-Tao Yu
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| |
Collapse
|
29
|
Ahamed M, Verbeek J, Funke U, Lecina J, Verbruggen A, Bormans G. Recent Progress in Metal Catalyzed Direct Carboxylation of Aryl Halides and Pseudo Halides Employing CO2: Opportunities for11C Radiochemistry. ChemCatChem 2016. [DOI: 10.1002/cctc.201600943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Uta Funke
- Laboratory of Radiopharmacy; KU Leuven; Belgium
| | - Joan Lecina
- Laboratory of Radiopharmacy; KU Leuven; Belgium
| | | | - Guy Bormans
- Laboratory of Radiopharmacy; KU Leuven; Belgium
| |
Collapse
|
30
|
Rotstein BH, Liang SH, Placzek MS, Hooker JM, Gee AD, Dollé F, Wilson AA, Vasdev N. (11)C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals. Chem Soc Rev 2016; 45:4708-26. [PMID: 27276357 PMCID: PMC5000859 DOI: 10.1039/c6cs00310a] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry.
Collapse
Affiliation(s)
| | - Steven H Liang
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA and McLean Hospital, Belmont, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA
| | | | - Frédéric Dollé
- CEA - Institut d'imagerie biomédicale, Service hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Neil Vasdev
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
31
|
Mossine AV, Brooks AF, Jackson IM, Quesada CA, Sherman P, Cole EL, Donnelly DJ, Scott PJH, Shao X. Synthesis of Diverse (11)C-Labeled PET Radiotracers via Direct Incorporation of [(11)C]CO2. Bioconjug Chem 2016; 27:1382-9. [PMID: 27043721 PMCID: PMC5637095 DOI: 10.1021/acs.bioconjchem.6b00163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new positron emission tomography (PET) radiotracers of interest to our functional neuroimaging and translational oncology programs have been prepared through new developments in [(11)C]CO2 fixation chemistry. [(11)C]QZ (glutaminyl cyclase) was prepared via a tandem trapping of [(11)C]CO2/intramolecular cyclization; [(11)C]tideglusib (glycogen synthase kinase-3) was synthesized through a tandem trapping of [(11)C]CO2 followed by an intermolecular cycloaddition between a [(11)C]isocyanate and an isothiocyanate to form the 1,2,4-thiadiazolidine-3,5-dione core; [(11)C]ibrutinib (Bruton's tyrosine kinase) was synthesized through a HATU peptide coupling of an amino precursor with [(11)C]acrylic acid (generated from [(11)C]CO2 fixation with vinylmagnesium bromide). All radiochemical syntheses are fully automated on commercial radiochemical synthesis modules and provide radiotracers in 1-5% radiochemical yield (noncorrected, based upon [(11)C]CO2). All three radiotracers have advanced to rodent imaging studies and preliminary PET imaging results are also reported.
Collapse
Affiliation(s)
- Andrew V. Mossine
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allen F. Brooks
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Isaac M. Jackson
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A. Quesada
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Phillip Sherman
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Erin L. Cole
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol-Myers Squibb Research and Development, Princeton, NJ, USA
| | - David J. Donnelly
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol-Myers Squibb Research and Development, Princeton, NJ, USA
| | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
- The Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|