1
|
Zhou D, Fu P, Lin WT, Li WL, Xu ZK, Wan LS. Poly( N, N-diethylacrylamide)-endowed spontaneous emulsification during the breath figure process and the formation of membranes with hierarchical pores. SOFT MATTER 2024; 20:1905-1912. [PMID: 38323340 DOI: 10.1039/d3sm01603j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The spontaneous emulsification for the formation of water-in-oil (W/O) or oil-in-water (O/W) emulsions needs the help of at least one kind of the third component (surfactant or cosolvent) to stabilize the oil-water interface. Herein, with the water/CS2-soluble polymer poly(N,N-diethylacrylamide) (PDEAM) as a surfactant, the spontaneous formation of water-in-PDEAM/CS2 emulsions is reported for the first time. The strong affinity between PDEAM and water or the increase of PDEAM concentration will accelerate the emulsification process with high dispersed phase content. It is demonstrated that the spontaneous emulsification of condensed water droplets into the PDEAM/CS2 solution occurs during the breath figure process, resulting in porous films with two levels of pore sizes (i.e., micron and submicron). The emulsification degree and the amounts of submicron-sized pores increase with PDEAM concentration and solidifying time of the solution. This work brings about incremental interest in spontaneous emulsification that may happen during the breath figure process. The combination of these two simultaneous processes provides us with an option to build hierarchically porous structures with condensed and emulsified water droplets as templates. Such porous membranes may have great potential in fields such as separation, cell culture, and biosensing.
Collapse
Affiliation(s)
- Di Zhou
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Ping Fu
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Wan-Ting Lin
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Wan-Long Li
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Ling-Shu Wan
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Lavielle N, Beysens D, Mongruel A. Memory Re-Condensation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2008-2014. [PMID: 36696657 DOI: 10.1021/acs.langmuir.2c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This paper reveals a phenomenon of memory in dropwise condensation in open air. After a first condensation process and complete evaporation of the condensed droplets, further condensations proceed with droplets nucleating at the very places where former droplets evaporated. The origin of this phenomenon is due to the incorporation of airborne salts during the first droplet condensation and its further concentration during droplet evaporation. Salts act as preferential nucleation sites and humidity sinks. The potential impact of this phenomenon on controlled breath figure patterns and plant metabolism is discussed.
Collapse
Affiliation(s)
- Nicolas Lavielle
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI, PSL Research University, Sorbonne Université, Université Paris Cité, Sorbonne Paris Cité, 75005 Paris, France
| | - Daniel Beysens
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI, PSL Research University, Sorbonne Université, Université Paris Cité, Sorbonne Paris Cité, 75005 Paris, France
| | - Anne Mongruel
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI, PSL Research University, Sorbonne Université, Université Paris Cité, Sorbonne Paris Cité, 75005 Paris, France
| |
Collapse
|
3
|
Advances in unusual interfacial polymerization techniques. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Fajstavr D, Fajstavrová K, Frýdlová B, Slepičková Kasálková N, Švorčík V, Slepička P. Biopolymer Honeycomb Microstructures: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:772. [PMID: 36676507 PMCID: PMC9863042 DOI: 10.3390/ma16020772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this review, we present a comprehensive summary of the formation of honeycomb microstructures and their applications, which include tissue engineering, antibacterial materials, replication processes or sensors. The history of the honeycomb pattern, the first experiments, which mostly involved the breath figure procedure and the improved phase separation, the most recent approach to honeycomb pattern formation, are described in detail. Subsequent surface modifications of the pattern, which involve physical and chemical modifications and further enhancement of the surface properties, are also introduced. Different aspects influencing the polymer formation, such as the substrate influence, a particular polymer or solvent, which may significantly contribute to pattern formation, and thus influence the target structural properties, are also discussed.
Collapse
|
5
|
Li Y, Cao Y, Wu S, Ju Y, Zhang X, Lu C, Sun W. Manipulative pore-formation of polyimide film for tuning the dielectric property via breath figure method. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Kim J, Park JB, Zheng D, Kim JS, Cheng Y, Park SK, Huang W, Marks TJ, Facchetti A. Readily Accessible Metallic Micro-Island Arrays for High-Performance Metal Oxide Thin-Film Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205871. [PMID: 36039798 DOI: 10.1002/adma.202205871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Thin-film transistors using metal oxide semiconductors are essential in many unconventional electronic devices. Nevertheless, further advances will be necessary to broaden their technological appeal. Here, a new strategy is reported to achieve high-performance solution-processed metal oxide thin-film transistors (MOTFTs) by introducing a metallic micro-island array (M-MIA) on top of the MO back channel, where the MO is a-IGZO (amorphous indium-gallium-zinc-oxide). Here Al-MIAs are fabricated using honeycomb cinnamate cellulose films, created by a scalable breath-figure method, as a shadow mask. For IGZO TFTs, the electron mobility (µe ) increases from ≈3.6 cm2 V-1 s-1 to near 15.6 cm2 V-1 s-1 for optimal Al-MIA dimension/coverage of 1.25 µm/51%. The Al-MIA IGZO TFT performance is superior to that of controls using compact/planar Al layers (Al-PL TFTs) and Au-MIAs with the same channel coverage. Kelvin probe force microscopy and technology computer-aided design simulations reveal that charge transfer occurs between the Al and the IGZO channel which is optimized for specific Al-MIA dimensions/surface channel coverages. Furthermore, such Al-MIA IGZO TFTs with a high-k fluoride-doped alumina dielectric exhibit a maximum µe of >50.2 cm2 V-1 s-1 . This is the first demonstration of a micro-structured MO semiconductor heterojunction with submicrometer resolution metallic arrays for enhanced transistor performance and broad applicability to other devices.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joon Bee Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Ding Zheng
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joon-Seok Kim
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Wei Huang
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| |
Collapse
|
7
|
Guo Y, Sun X, Wang R, Tang H, Wang L, Zhang L, Qin S. Construction of porous poly (l-lactic acid) surface via carbon quantum dots-assisted static Breath-Figures method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Transparent and fluorescent breath figure arrays prepared from end-functionalized copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Falak S, Shin B, Huh D. Modified Breath Figure Methods for the Pore-Selective Functionalization of Honeycomb-Patterned Porous Polymer Films. NANOMATERIALS 2022; 12:nano12071055. [PMID: 35407174 PMCID: PMC9000584 DOI: 10.3390/nano12071055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Recent developments in the field of the breath figure (BF) method have led to renewed interest from researchers in the pore-selective functionalization of honeycomb-patterned (HCP) films. The pore-selective functionalization of the HCP film gives unique properties to the film which can be used for specific applications such as protein recognition, catalysis, selective cell culturing, and drug delivery. There are several comprehensive reviews available for the pore-selective functionalization by the self-assembly process. However, considerable progress in preparation technologies and incorporation of new materials inside the pore surface for exact applications have emerged, thus warranting a review. In this review, we have focused on the pore-selective functionalization of the HCP films by the modified BF method, in which the self-assembly process is accompanied by an interfacial reaction. We review the importance of pore-selective functionalization, its applications, present limitations, and future perspectives.
Collapse
|
10
|
Zhou D, Wu B, Yang W, Li X, Zhu L, Xu Z, Wan L. Effect of polar groups of polystyrenes on the
self‐assembly
of breath figure arrays. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Bai‐Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Wen‐Wu Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xiao Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Liang‐Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Ling‐Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
11
|
Gao J, Cui P, Ding L, Xu T, Ju Y, Yu B, Zhang W, Zhang Z, Sun W. Research on the implementing conditions of inverse emulsion‐breath figure method. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiajun Gao
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Pengcheng Cui
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| | - Lingyun Ding
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Taiyi Xu
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Yuanlai Ju
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Bibo Yu
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| | - Wenwu Zhang
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| | - Zhilv Zhang
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| | - Wei Sun
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| |
Collapse
|
12
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Zhou Y, Gu C, Zheng L, Shan F, Chen G. Aqueous broadband photopolymerization on microreactor arrays: from high throughput polymerization to fabricating artificial cells. Polym Chem 2022. [DOI: 10.1039/d1py01534f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microreactor arrays combining ZnO and polyaniline are fabricated onto the bottom of multi-well plates to catalyze broadband sunlight-driven open-to-air polymerization in aqueous media.
Collapse
Affiliation(s)
- Yue Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China
| | - Chuan Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China
| | - Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China
| | - Fangjian Shan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
14
|
|
15
|
Basnett P, Matharu RK, Taylor CS, Illangakoon U, Dawson JI, Kanczler JM, Behbehani M, Humphrey E, Majid Q, Lukasiewicz B, Nigmatullin R, Heseltine P, Oreffo ROC, Haycock JW, Terracciano C, Harding SE, Edirisinghe M, Roy I. Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32624-32639. [PMID: 34228435 DOI: 10.1021/acsami.0c19689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organ dysfunction is a major cause of morbidity and mortality. Transplantation is typically the only definitive cure, challenged by the lack of sufficient donor organs. Tissue engineering encompasses the development of biomaterial scaffolds to support cell attachment, proliferation, and differentiation, leading to tissue regeneration. For efficient clinical translation, the forming technology utilized must be suitable for mass production. Herein, uniaxial polyhydroxyalkanoate scaffolds manufactured by pressurized gyration, a hybrid scalable spinning technique, are successfully used in bone, nerve, and cardiovascular applications. Chorioallantoic membrane and in vivo studies provided evidence of vascularization, collagen deposition, and cellular invasion for bone tissue engineering. Highly efficient axonal outgrowth was observed in dorsal root ganglion-based 3D ex vivo models. Human induced pluripotent stem cell derived cardiomyocytes exhibited a mature cardiomyocyte phenotype with optimal calcium handling. This study confirms that engineered polyhydroxyalkanoate-based gyrospun fibers provide an exciting and unique toolbox for the development of scalable scaffolds for both hard and soft tissue regeneration.
Collapse
Affiliation(s)
- Pooja Basnett
- School of Life Sciences, University of Westminster, London W1W 6UW, U.K
| | - Rupy K Matharu
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Caroline S Taylor
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Upulitha Illangakoon
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Jonathan I Dawson
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - Janos M Kanczler
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - Mehrie Behbehani
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Eleanor Humphrey
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Qasim Majid
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | | | - Rinat Nigmatullin
- School of Life Sciences, University of Westminster, London W1W 6UW, U.K
| | - Phoebe Heseltine
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - John W Haycock
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Cesare Terracciano
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| |
Collapse
|
16
|
Niinuma A, Tsukamoto M, Matsui J. Self-Assembled Lamellar Films of Comb-Shaped Copolymers by Segregation between Hydrophobic Side Chains and the Main Chain with Hydrophilic Comonomers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5393-5398. [PMID: 33885305 DOI: 10.1021/acs.langmuir.1c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled lamellar films of poly(N-dodecyl acrylamide-stat-vinyl phosphonic acid) [p(DDA/VPA)] were formed via the segregation between the hydrophilic main chain and VPA and dodecyl side chains. p(DDA/VPA) copolymers were synthesized by free-radical copolymerization of DDA and VPA with VPA molar concentrations of 19% [p(DDA/VPA19)] and 64% [p(DDA/VPA64)]. Both copolymers exhibited a glass-transition temperature (Tg) and melting temperature for p(DDA/VPA19), but no crystalline or liquid-crystalline phase-transition temperatures, which suggests that both copolymers are amorphous. Thin films of the copolymers were prepared by spin coating, and the structure of the films was studied by X-ray diffraction (XRD) measurements. The as-cast films of the copolymers showed broad diffraction patterns, which suggested the formation of alkyl nanodomains similar to that observed in the pDDA homopolymers. On the other hand, the XRD patterns for both copolymer films showed a sharp Bragg diffraction in the low-q region after annealing at 60 °C. Furthermore, the p(DDA/VPA19) film showed first- and second-order Bragg diffractions with a ratio of 1:2. These XRD patterns suggest that the copolymer films form an ordered lamellar structure. We concluded that the main chain became more hydrophilic by the introduction of VPA, resulting in an increased segregation force relative to the hydrophobic dodecyl side chains, which induces the formation of lamellae. Moreover, doping a p(DDA/VPA64) film with imidazole increased the ordering and uniformity of the lamellar structures due to the increased segregation force by the formation of ion pairs in the hydrophilic comonomer. In their entirety, the results show that statistical copolymerization can be used as a new method to create self-assembled structures.
Collapse
|
17
|
Zhang X, Sun G, Liu H, Zhang X. Fabrication of porous polymer coating layers with selective wettability on filter papers via the breath figure method and their applications in oil/water separation. RSC Adv 2021; 11:14276-14284. [PMID: 35423976 PMCID: PMC8697688 DOI: 10.1039/d1ra01080h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/28/2021] [Indexed: 11/21/2022] Open
Abstract
A comb-like amphiphilic polymer (PBTF), composed of hydrophobic backbones and hydrophilic side chains, was employed to grow honeycomb coating layers in situ on a filter paper via directly casting a polymer solution and by the subsequent dynamic breath figure (BF) method. Through regulating the hydrophilic polymer side chain density and the solution concentration, a continuous honeycomb coating layer contouring to the filter paper surface profile, in addition to possessing a water contact angle (WCA) as high as 146°, was successfully fabricated. The present study also finds that increasing the hydrophilic side chain density will turn PBTF into a surfactant-like polymer, and thus, endow the PBTF solution with the capacity of numerous micro-nano-sized water droplets, rather than simply stabilizing the ordered water droplet arrays on the surface of the solution. With vast nano-sized water droplets in it, the once transparent PBTF solution changed into a translucent nano-emulsion, which demonstrates a strong Tyndall effect. While casting such nano-emulsion on a filter paper and then subjecting to the BF process, the polymeric solute takes both nano-emulsion intrinsic nano-sized water droplets and solvent evaporation-induced water droplets as templates and self-assembles into a bird-nest-like three-dimensional porous microstructure, which possesses micro-nano-sized communicating pores. By regulating the water content in the nano-emulsion, the bird-nest-like structure can be uniformly formed on the surface of the filter paper, which revealed a WCA of 152°. The coated filter papers possess selective wettability, and meanwhile, maintain the inherent permeability of the substrates, which therefore can be directly utilized as oil/water separation materials.
Collapse
Affiliation(s)
- Xu Zhang
- College of Materials Science and Engineering, Jilin University Changchun 130022 People's Republic of China
- College of Materials Science and Engineering, Jilin Jianzhu University Changchun 130118 People's Republic of China
| | - Guangping Sun
- College of Materials Science and Engineering, Jilin University Changchun 130022 People's Republic of China
| | - Heng Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology Qingdao 266061 People's Republic of China
| | - Xuequan Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology Qingdao 266061 People's Republic of China
| |
Collapse
|
18
|
Huang L, Wang Z, Chen J, Wang B, Chen Y, Huang W, Chi L, Marks TJ, Facchetti A. Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007041. [PMID: 33655643 DOI: 10.1002/adma.202007041] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Organic polymer electrochemical transistors (OECTs) are of great interest for flexible electronics and bioelectronics applications owing to their high transconductance and low operating voltage. However, efficient OECT operation must delicately balance the seemingly incompatible materials optimizations of redox chemistry, active layer electronic transport, and ion penetration/transport. The latter characteristics are particularly challenging since most high-mobility semiconducting polymers are hydrophobic, which hinders efficient ion penetration, hence limiting OECT performance. Here, the properties and OECT response of a series of dense and porous semiconducting polymer films are compared, the latter fabricated via a facile breath figure approach. This methodology enables fast ion doping, high transconductance (up to 364 S cm-1 ), and a low subthreshold swing for the hydrophobic polymers DPPDTT and P3HT, rivalling or exceeding the metrics of the relatively hydrophilic polymer, Pg2T-T. Furthermore, the porous morphology also enhances the transconductance of hydrophilic polymers, offering a general strategy for fabricating high-performance electrochemical transistors.
Collapse
Affiliation(s)
- Lizhen Huang
- Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Zhi Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yao Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Inc., 8025 Lamon Avenue, Skokie, IL, 60077, USA
| |
Collapse
|
19
|
Zhang C, Li M, Sun H, Yue X. Breath figure‐derived porous fluorine‐containing poly(ether sulfone) membranes with low dielectric constant. POLYM INT 2021. [DOI: 10.1002/pi.6217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chongyang Zhang
- Alan G MacDiarmid Institute College of Chemistry, Jilin University Changchun China
| | - Mengzhu Li
- Alan G MacDiarmid Institute College of Chemistry, Jilin University Changchun China
| | - Handong Sun
- Alan G MacDiarmid Institute College of Chemistry, Jilin University Changchun China
| | - Xigui Yue
- Alan G MacDiarmid Institute College of Chemistry, Jilin University Changchun China
| |
Collapse
|
20
|
Yin H, Zhan F, Li Z, Huang H, Marcasuzaa P, Luo X, Feng Y, Billon L. CO 2-Triggered ON/OFF Wettability Switching on Bioinspired Polylactic Acid Porous Films for Controllable Bioadhesion. Biomacromolecules 2021; 22:1721-1729. [PMID: 33666439 DOI: 10.1021/acs.biomac.1c00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bioinspired honeycomb-like porous films with switchable properties have drawn much attention recently owing to their potential application in scenarios in which the conversion between two opposite properties is required. Herein, the CO2-gas-triggered ON/OFF switching wettability of biocompatible polylactic acid (PLA) honeycomb porous films is fabricated. Highly ordered porous films with diameters between 2.0 and 2.8 μm are separately prepared from complexes of nonresponsive PLA and a CO2-sensitive melamine derivative [N2,N4,N6-tris(3-(dimethylamino)propyl)-1,3,5-triazine-2,4,6-triamine, MET] via the breath figure method. The hydrophilic CO2-sensitive groups can be precisely arranged in the pore's inner surface and/or top surface of the films by simply changing the PLA/MET ratio. The sensitive groups in the pore's inner surface act as a switch triggered by CO2 gas controlling water to enter the pores or not, thus resulting in ON/OFF switching wettability. The largest response of the water contact angle of honeycomb films reaches 35°, from 100 to 65°, leading to an obvious hydrophobic-hydrophilic conversion. The improved surface wettability enhances the interaction between the cell and honeycomb film surface, thus resulting in a better cell attachment. Such smart properties accompanying the biocompatible polymer and biological gas trigger facilitate possible biomedical and bioengineering applications in the future for these films.
Collapse
Affiliation(s)
- Hongyao Yin
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fuxing Zhan
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zongcheng Li
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Huiyu Huang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pierre Marcasuzaa
- Université de Pau & des Pays de l'Adour, E2S UPPA, CNRS, IPREM-UMR 5254, Pau 64000, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l'Adour, E2S UPPA, Pau 64000, France
| | - Xinjie Luo
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Laurent Billon
- Université de Pau & des Pays de l'Adour, E2S UPPA, CNRS, IPREM-UMR 5254, Pau 64000, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l'Adour, E2S UPPA, Pau 64000, France
| |
Collapse
|
21
|
Abdulhamid MA, Park SH, Zhou Z, Ladner DA, Szekely G. Surface engineering of intrinsically microporous poly(ether-ether-ketone) membranes: From flat to honeycomb structures. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Dong J, Li J, Wang H, Liu B, Peng B, Chen J, Lin S. Fabrication of Polypseudorotaxane-Based Responsive Film via Breath Figure Method. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Cheng R, Colombo RNP, Zhang L, Nguyen DHT, Tilley R, Cordoba de Torresi SI, Dai L, Gooding JJ, Gonçales VR. Porous Graphene Oxide Films Prepared via the Breath-Figure Method: A Simple Strategy for Switching Access of Redox Species to an Electrode Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55181-55188. [PMID: 33236632 DOI: 10.1021/acsami.0c16811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous materials can be modified with physical barriers to control the transport of ions and molecules through channels via an external stimulus. Such capability has brought attention toward drug delivery, separation methods, nanofluidics, and point-of-care devices. In this context, gated platforms on which access to an electrode surface of species in solution can be reversibly hindered/unhindered on demand are appearing as promising materials for sensing and microfluidic switches. The preparation of a reversible gated device usually requires mesoporous materials, nanopores, or molecularly imprinted polymers. Here, we show how the breath-figure method assembly of graphene oxide can be used as a simple strategy to produce gated electrochemical materials. This was achieved by forming an organized porous thin film of graphene oxide onto an ITO surface. Localized brushes of thermoresponsive poly(N-isopropylacrylamide) were then grown to specific sites of the porous film by in situ reversible addition-fragmentation chain-transfer polymerization. The gating mechanism relies on the polymeric chains to expand and contract depending on the thermal stimulus, thus modulating the accessibility of redox species inside the pores. The resulting platform was shown to reversibly hinder or facilitate the electron transfer of solution redox species by modulating temperature from the room value to 45 °C or vice versa.
Collapse
Affiliation(s)
- Rumei Cheng
- School Ophthalmology & Optometry, School of Biomedicine Engineering, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rafael N P Colombo
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Long Zhang
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
| | - Duyen H T Nguyen
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
| | - Richard Tilley
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney NSW2052, Australia
| | | | - Liming Dai
- School of Chemistry Engineering, The University of New South Wales, Sydney NSW2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
| | - Vinicius R Gonçales
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
| |
Collapse
|
24
|
Alvarez S, Marcasuzaa P, Billon L. Bio-Inspired Silica Films Combining Block Copolymers Self-Assembly and Soft Chemistry: Paving the Way toward Artificial Exosqueleton of Seawater Diatoms. Macromol Rapid Commun 2020; 42:e2000582. [PMID: 33274818 DOI: 10.1002/marc.202000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Indexed: 11/09/2022]
Abstract
This review is in line with the principles of bio-inspiration and biomimicry in order to envisage a softer and more environmentally friendly chemistry. Here, the source of inspiration is a microalga from the oceans with the ability to build an exoskeleton of silica under ambient conditions. Following this model, this review is interested in different ways of creating porous silica films with a hierarchical porosity similar to diatoms. For this purpose, polymeric/hybrid/inorganic films structured in honeycomb using the breath figure method are reported. This versatile and easy to implement method based on the principle of rapid evaporation of a solvent in a humid atmosphere is widely used in the formation of structured films with micron-sized pores. In addition to this, the self-assembly of copolymer at the nanoscale can be addressed to obtain a hierarchically structured film. Following this structuration step, the degradation of a sacrificial block is then described from the most energy-intensive to soft process, allowing an added nanoporosity to the micron porosity of the BF method. Finally, hierarchical porous silica films are described using the sol-gel process, which is known as a soft chemistry process.
Collapse
Affiliation(s)
- Sandra Alvarez
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Pierre Marcasuzaa
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| |
Collapse
|
25
|
Wu L, Li Y, Fu Z, Su BL. Hierarchically structured porous materials: synthesis strategies and applications in energy storage. Natl Sci Rev 2020; 7:1667-1701. [PMID: 34691502 PMCID: PMC8288509 DOI: 10.1093/nsr/nwaa183] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
To address the growing energy demands of sustainable development, it is crucial to develop new materials that can improve the efficiency of energy storage systems. Hierarchically structured porous materials have shown their great potential for energy storage applications owing to their large accessible space, high surface area, low density, excellent accommodation capability with volume and thermal variation, variable chemical compositions and well controlled and interconnected hierarchical porosity at different length scales. Porous hierarchy benefits electron and ion transport, and mass diffusion and exchange. The electrochemical behavior of hierarchically structured porous materials varies with different pore parameters. Understanding their relationship can lead to the defined and accurate design of highly efficient hierarchically structured porous materials to enhance further their energy storage performance. In this review, we take the characteristic parameters of the hierarchical pores as the survey object to summarize the recent progress on hierarchically structured porous materials for energy storage. This is the first of this kind exclusively to survey the performance of hierarchically structured porous materials from different porous characteristics. For those who are not familiar with hierarchically structured porous materials, a series of very significant synthesis strategies of hierarchically structured porous materials are firstly and briefly reviewed. This will be beneficial for those who want to quickly obtain useful reference information about the synthesis strategies of new hierarchically structured porous materials to improve their performance in energy storage. The effect of different organizational, structural and geometric parameters of porous hierarchy on their electrochemical behavior is then deeply discussed. We outline the existing problems and development challenges of hierarchically structured porous materials that need to be addressed in renewable energy applications. We hope that this review can stimulate strong intuition into the design and application of new hierarchically structured porous materials in energy storage and other fields.
Collapse
Affiliation(s)
- Liang Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Namur B-5000, Belgium
| |
Collapse
|
26
|
Yuan H, Li G, Dai E, Lu G, Huang X, Hao L, Tan Y. Ordered
Honeycomb‐Pattern
Membrane
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Yuan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guangzhen Li
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Enhao Dai
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guolin Lu
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Xiaoyu Huang
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Longyun Hao
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Yeqiang Tan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| |
Collapse
|
27
|
Huang J, Zhu J, Sun W, Ji J. Versatile and Functional Surface Patterning of in Situ Breath Figure Pore Formation via Solvent Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47048-47058. [PMID: 32959646 DOI: 10.1021/acsami.0c14614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface patterning of in situ pore formation was studied in this research based on the solvent treatment breath figure (stBF) method. By applying the volatile solvent onto the preshaped polymeric objects under humid conditions, hexagonally arranged pore arrays were formed on the surface efficiently. The stBF method was performed on many different polymeric samples with planar and nonplanar surfaces, and facile pore formation was achieved on these surfaces by conducting the solvent treatment in different ways of dipping, casting, and vapor treatment. The water droplets condensed from the humid air were proved to be the origin of the pore arrays just like the case of classic BF process. The influencing factors including solvent types, surfactant addition, and polymer types were evaluated for their impact on the resultant stBF morphologies. In situ three-dimensional (3D) pore formation was achieved for both macroscopic- and microscopic-sized 3D-structured objects. Chemical patterning of the introduced minor component was also achieved in the stBF pore-forming process with high efficiency and site selectivity. Moreover, the capability of pore formation and erasure with high spatial accuracy using multiple solvent treatments was revealed for the stBF method to make rewritable and hierarchical patterns. Both the selective chemical decoration and rewritable patterning serve as intriguing features of the stBF method. The establishment of the stBF method makes the classic BF process more flexible to practice and less dependent on the external conditions, showing potential for applications such as facile surface patterning with multifunctionality on devices with complex geometry.
Collapse
Affiliation(s)
- Junjie Huang
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiafeng Zhu
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Sun
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
28
|
Pizarro GDC, Marambio OG, Jeria-Orell M, Sánchez J, Oyarzún DP, Martin-Trasanco R, Novio F. Morphological, optical and wettability characterization of honeycomb patterned films based on self-assembling copolymer under thermal annealing. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Pizarro GDC, Marambio OG, Martin-Trasanco R, Sánchez J, Jeria-Orell M, Oyarzún DP. Microporous hybrid films from amphiphilic copolymers: surface coated with ZnS nanoparticles using the breath figure (BF) methodology. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01091-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Zheng Y, Tang J, Li W, Yu J, Li X, Shi J, Miyazaki K. Control of the pore size of honeycomb polymer film from micrometers to nanometers via substrate-temperature regulation and its application to photovoltaic and heat-resistant polymer films. NANOTECHNOLOGY 2020; 31:015301. [PMID: 31530745 DOI: 10.1088/1361-6528/ab4521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Honeycomb porous polystyrene (PS) films with an aspect ratio of pore depth to pore diameter at approximately 1.0 were fabricated using the breath figure (BF) method. Two modes of water droplet coalescence in the pore growth were observed in real-time by optical microscopy. Pore size significantly increases with the increase in humidity and the decrease in substrate temperature. The porous pattern could emerge even at room temperature under high humidity of 80%. Boiling point and solvent density significantly influence the pore distribution and pore depth. Chloroform and tetrahydrofuran achieve more uniform hexagonal patterns than benzene and dichloromethane. Subsequently, to obtain nanometer porous PS film, the fast-evaporation BF process was designed by regulating the gradient substrate temperature and evaporation time, and porous mesoscopic PS film was obtained. The minimum pore diameter and corresponding pore depth are about 120 nm and 27 nm, respectively. Finally, the fast-evaporation BF process was applied to the honeycomb film formation of photovoltaic polymer poly(3-hexylthiophene) (P3HT), and the heat-resistant polymers polysulfone (PSF) and polyimide (PI).
Collapse
Affiliation(s)
- Yanqiong Zheng
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Ni B, Yin Y, Peng J. A Simple Route to Hierarchical Rings of Diblock Copolymer Micelles. Macromol Rapid Commun 2019; 41:e1900525. [PMID: 31778248 DOI: 10.1002/marc.201900525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Indexed: 11/07/2022]
Abstract
A hierarchically assembled necklace composed of amphiphilic diblock copolymer micelles is exquisitely produced by capitalizing on two concurrent self-assembly processes at different scales (i.e., "breath figure" strategy of diblock copolymer micelles solution evaporating in humid air to yield rings at the microscopic scale in conjunction with self-assembly of diblock copolymer micelles within individual ring at the nanometer scale). Intriguingly, hierarchical rings of diblock copolymer micelles comprising gold precursors or fluorescent dyes can also be crafted using this strategy. Upon exposure to hydrophilic block-selective solvent, core-corona inversion of micelles within the microscopic rings occurs. In contrast, such inversion is inhibited when the micelles are impregnated by gold precursors. This simple yet effective strategy for engineering diblock copolymer micelles may be extended to produce hierarchically assembled structures consisting of other functional block copolymers (e.g., stimuli-responsive block copolymer) and nanocrystals (e.g., semiconducting, magnetic, ferroelectric, etc.) with unique catalytic, magnetic, ferroelectric, optical, electronic, and optoelectronic properties.
Collapse
Affiliation(s)
- Bijun Ni
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yue Yin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
32
|
Mei L, Wang G, Deng J, Xiao J, Guo X. Tunable fabrication of concave microlens arrays by initiative cooling-based water droplet condensation. SOFT MATTER 2019; 15:9150-9156. [PMID: 31674620 DOI: 10.1039/c9sm01333d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microlens arrays (MLAs), as one of the key features in the optoelectronics field, have attracted a lot of attention recently. Unfortunately, existing fabrication methods of MLAs have many disadvantages, such as complex fabrication procedures and difficult morphology control. This paper presents a low-cost and tunable fabrication approach for concave MLAs on ultraviolet (UV) polymer surfaces. We used condensed water droplets, formed by initiative cooling, as the template for the formation of concave MLAs in this approach. A sacrificial layer of polymer material was introduced to fabricate concave MLAs with different morphology parameters. The three most important parameters of MLAs, i.e. diameter, cross-sectional profile, and packing distance, can be tuned by the proposed novel fabrication approach. By controlling the condensation time of water droplets, we can control the diameter of the concave MLAs. Moreover, the cross-sectional profile can be controlled by replacing the sacrificial layer material to change the interaction among the water droplets, sacrificial polymers, and UV polymers. In addition, the packing distance of the MLAs can also be adjusted by introducing the lateral flow of the sacrificial polymer, which was driven by the additional sacrificial polymer dispensed on the substrate. Furthermore, the UV polymer film with MLAs on its surface was applied for the packaging of high power green LEDs. Consequently, the optical output power of green LED modules is enhanced by 11.4% when using the MLAs at the driving current of 500 mA.
Collapse
Affiliation(s)
- Luyao Mei
- National Institute of LED on Si Substrate, Nanchang University, Nanchang 330047, China.
| | - Guangxu Wang
- National Institute of LED on Si Substrate, Nanchang University, Nanchang 330047, China.
| | - Jia Deng
- Department of Systems Science and Industrial Engineering, Binghamton University - State University of New York (SUNY), Binghamton, NY 13902, USA
| | - Junfeng Xiao
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Guo
- National Institute of LED on Si Substrate, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
33
|
Bormashenko E, Bormashenko Y, Frenkel M. Formation of Hierarchical Porous Films with Breath-Figures Self-Assembly Performed on Oil-Lubricated Substrates. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3051. [PMID: 31546980 PMCID: PMC6766328 DOI: 10.3390/ma12183051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022]
Abstract
Hierarchical honeycomb patterns were manufactured with breath-figures self-assembly by drop-casting on the silicone oil-lubricated glass substrates. Silicone oil promoted spreading of the polymer solution. The process was carried out with industrial grade polystyrene and polystyrene with molecular mass M w = 35 , 000 g m o l . Both polymers gave rise to patterns, built of micro and nano-scaled pores. The typical diameter of the nanopores was established as 125 nm. The mechanism of the formation of hierarchical patterns was suggested. Ordering of the pores was quantified with the Voronoi tessellations and calculation of the Voronoi entropy. The Voronoi entropy for the large scale pattern was S v o r = 0.6 - 0.9 , evidencing the ordering of pores. Measurement of the apparent contact angles evidenced the Cassie-Baxter wetting regime of the porous films.
Collapse
Affiliation(s)
- Edward Bormashenko
- Department of Chemical Engineering, Biotechnology and Materials, Engineering Sciences Faculty, Ariel University, Ariel 407000, Israel.
| | - Yelena Bormashenko
- Department of Chemical Engineering, Biotechnology and Materials, Engineering Sciences Faculty, Ariel University, Ariel 407000, Israel.
| | - Mark Frenkel
- Department of Chemical Engineering, Biotechnology and Materials, Engineering Sciences Faculty, Ariel University, Ariel 407000, Israel.
| |
Collapse
|
34
|
Yeh SC, Wu CH, Huang YC, Lee JY, Jeng RJ. In Search of a Green Process: Polymeric Films with Ordered Arrays via a Water Droplet Technique. Polymers (Basel) 2019; 11:E1473. [PMID: 31505874 PMCID: PMC6780950 DOI: 10.3390/polym11091473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022] Open
Abstract
As an efficient technique for the preparation of polymeric hexagonal orderly arrays, the breath figure (BF) process has opened a modern avenue for a bottom-up fabrication method for more than two decades. Through the use of the water vapor condensation on the solution surface, the water droplets will hexagonally pack into ordered arrays, acting as a template for controlling the regular micro patterns of polymeric films. Comparing to the top-down techniques, such as lithography or chemical etching, the use of water vapor as the template provides a simple fabrication process with sustainability. However, using highly hazardous solvents such as chloroform, carbon disulfide (CS2), benzene, dichloromethane, etc., to dissolve polymers might hinder the development toward green processes based on this technique. In this review, we will touch upon the contemporary techniques of the BF process, including its up-to-date applications first. More importantly, the search of greener processes along with less hazardous solvents for the possibility of a more sustainable BF process is the focal point of this review.
Collapse
Affiliation(s)
- Shih-Chieh Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Chien-Hsin Wu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Ying-Chih Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Jen-Yu Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
35
|
Bao L, Pinchasik BE, Lei L, Xu Q, Hao H, Wang X, Zhang X. Control of Femtoliter Liquid on a Microlens: A Way to Flexible Dual-Microlens Arrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27386-27393. [PMID: 31268287 DOI: 10.1021/acsami.9b06390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microlens arrays are key elements for light management in optoelectronic devices. The recent advancement in the wearable intelligent electronics has driven the development of flexible microlenses. In this work, we show a controllable and scalable surface-droplet-based strategy to create unconventional flexible polymer microlens arrays. The technique is underpinned by the morphological transition of femtoliter liquid on the surface of a microlens surrounded by a planar area. We found that the droplet liquid wetted the rim of the microlens first and gradually moved upward to the microlens surface with an increase in the liquid volume. The morphology evolution of the droplet is in good agreement with the predication from our simulations based on the interfacial energy minimization under the condition of the pinned boundary. The shape of the droplet on the microlens is well controlled by the droplet volume, aspect ratio of the microlens, and the interfacial energy of the droplets on the microlens. As a result, the obtained structures of one microlens partially covered by a droplet can be produced in arrays over a large scale, serving as templates for fabricating transparent polymer double microlens arrays for improved light emission from the optoelectronic device.
Collapse
Affiliation(s)
- Lei Bao
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | - Bat-El Pinchasik
- Department of Physics at Interfaces , Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
- School of Mechanical Engineering, Faculty of Engineering , Tel-Aviv University , Ramat Aviv , 69978 Tel-Aviv , Israel
| | - Lei Lei
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
- School of Civil Engineering , Xuzhou University of Technology , Xuzhou , Jiangsu Province 221000 , China
| | - Qiwei Xu
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Hao Hao
- Department of Chemistry and Biotechnology, School of Science , Swinburne University of Technology , Hawthorn , VIC 3122 , Australia
| | - Xihua Wang
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, Faculty of Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
36
|
Yin H, Zhan F, Yu Y, Li Z, Feng Y, Billon L. Direct formation of hydrophilic honeycomb film by self-assembly in breath figure templating of hydrophobic polylacticacid/ionic surfactant complexes. SOFT MATTER 2019; 15:5052-5059. [PMID: 31180399 DOI: 10.1039/c9sm00845d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Honeycomb-patterned porous films with good surface wettability have great potential applications in various areas. However, hydrophilic honeycomb films are difficult to obtain using the direct self-assembly of pure (co)polymers. Thus, additional and special treatments are required to improve film wettability, which makes the procedure complicated and difficult to access. In this study, a facile way to prepare hydrophilic honeycomb-structured porous films is proposed that uses the direct self-assembly of complexes of biocompatible hydrophobic poly(l-lactic acid) and dodecyltrimethylammonium chloride by breath figure templating. The addition of ionic surfactant not only improves film quality but also confers good wettability. The obtained hydrophilic pore arrays were found to effectively promote cell attachment. Such a hydrophilic honeycomb-patterned porous film could find potential applications where pore wetting is required, including tissue engineering, lithography, and nanoparticle embedding.
Collapse
Affiliation(s)
- Hongyao Yin
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | | | | | | | | | | |
Collapse
|
37
|
Liu J, Cui K, Zhao QL, Huang J, Jiang T, Ma Z. New ABA tri-block copolymers of poly(tert-butylacrylate)-b-poly(2,2,2-trifluoroethyl acrylate)-b-poly(tert-butylacrylate): Synthesis, self-assembly and fabrication of their porous films, spheres, and fibers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Daban G, Bayram C, Bozdoğan B, Denkbaş EB. Porous polyurethane film fabricated via the breath figure approach for sustained drug release. J Appl Polym Sci 2019. [DOI: 10.1002/app.47658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gizem Daban
- Bioengineering Division, Graduate School of Science and EngineeringHacettepe University, 06800 Ankara Turkey
| | - Cem Bayram
- Advanced Technologies Application and Research CenterHacettepe University, 06800 Ankara Turkey
| | - Betül Bozdoğan
- Chemistry Department, Faculty of Science and LettersAksaray University, 68100 Aksaray Turkey
| | - Emir Baki Denkbaş
- Bioengineering Division, Graduate School of Science and EngineeringHacettepe University, 06800 Ankara Turkey
- Biomedical Engineering Department, Faculty of EngineeringBaşkent University, 06530 Bağlıca, Ankara Turkey
| |
Collapse
|
39
|
Ou Y, Zhou D, Xu ZK, Wan LS. Surface modification of self-assembled isoporous polymer membranes for pressure-dependent high-resolution separation. Polym Chem 2019. [DOI: 10.1039/c9py00560a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polymer membranes with narrow pore size distribution demonstrate great performance in high-resolution and high-efficiency separation.
Collapse
Affiliation(s)
- Yang Ou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
40
|
Marcasuzaa P, Yin H, Feng Y, Billon L. CO2-Driven reversible wettability in a reactive hierarchically patterned bio-inspired honeycomb film. Polym Chem 2019. [DOI: 10.1039/c9py00488b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A triple structured honeycomb film is fabricated through block copolymer directed self-assembly in “Breath Figure” templating as a clickable patterned platform to enhance its reversible surface wettability between hydrophobicity and hydrophilicity upon a biological CO2 trigger.
Collapse
Affiliation(s)
- Pierre Marcasuzaa
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- PR China
| | - Hongyao Yin
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- PR China
| | - Yujun Feng
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- PR China
| | - Laurent Billon
- CNRS
- E2S/Univ Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux
- UMR5254
| |
Collapse
|
41
|
Yan J, Zheng L, Hu K, Li L, Li C, Zhu L, Wang H, Xiao Y, Wu S, Liu J, Zhang B, Zhang F. Cationic polyesters with antibacterial properties: Facile and controllable synthesis and antibacterial study. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Fragal VH, Fragal EH, Rubira AF, Silva R. Water Droplet Self-Assembly to Au Nanoporous Films with Special Light Trapping and Surface Electromagnetic Field Enhancement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14124-14133. [PMID: 30380882 DOI: 10.1021/acs.langmuir.8b01794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gold nano "breath figure" films are for the first time reported and their function as ideal systems for plasmonics demonstrated. Metal nano-breath figure substrates are metal thin films containing nanohole arrays supported on a solid substrate. Au nanohole arrays are prepared from the dynamic breath figure phenomenon, in which the pore formation is controlled to provide holes smaller than 100 nm. Au layer is deposited on polymer substrates containing breath figure topology. The breath figure topology can be fully translated to the Au layer. The nanofabrication process is completed within few minutes. A simplified preparation process but very impressive light trapping and surface electromagnetic field enhancement are related to the Au breath figure films obtained in this work. The porous films demonstrated higher absorbance in the region of 500-1100 nm than nonporous Au films. In the case of 10 nm Au film, the plasmon absorbance becomes more intense than the electronic band absorbance. The electromagnetic enhancement is proved by surface enhanced Raman spectroscopy effect, which is found to be very close to the maximum possible value predicted for nonresonant species.
Collapse
Affiliation(s)
- Vanessa H Fragal
- Departamento de Química , Universidade Estadual de Maringá , Avenida Colombo 5790 , 87020-900 Maringá , Paraná , Brazil
| | - Elizângela H Fragal
- Departamento de Química , Universidade Estadual de Maringá , Avenida Colombo 5790 , 87020-900 Maringá , Paraná , Brazil
| | - Adley F Rubira
- Departamento de Química , Universidade Estadual de Maringá , Avenida Colombo 5790 , 87020-900 Maringá , Paraná , Brazil
| | - Rafael Silva
- Departamento de Química , Universidade Estadual de Maringá , Avenida Colombo 5790 , 87020-900 Maringá , Paraná , Brazil
| |
Collapse
|
43
|
Ju Y, Ding L, Zhu J, Sun W. Fabrication of honeycomb‐structured protein arrays via one‐step method. J Appl Polym Sci 2018. [DOI: 10.1002/app.47084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuanlai Ju
- Department of Materials Science and Engineering, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Lingyun Ding
- Department of Materials Science and Engineering, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Jiafeng Zhu
- Department of Materials Science and Engineering, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Wei Sun
- Department of Materials Science and Engineering, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| |
Collapse
|
44
|
Wang Y, Zhou W, Kang Q, Chen J, Li Y, Feng X, Wang D, Ma Y, Huang W. Patterning Islandlike MnO 2 Arrays by Breath-Figure Templates for Flexible Transparent Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27001-27008. [PMID: 29999308 DOI: 10.1021/acsami.8b06710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although plenty of active materials could be used as supercapacitor electrodes, only limited ones have been engineered to construct transparent supercapacitors. Specially, it is a great challenge to make opaque metal oxides, which often own high energy density, into transparent films. Here, we demonstrate a novel approach to fabricate transparent MnO2 films for flexible transparent supercapacitors. By utilizing breath-figure polymer films with ordered pores as template, arrays of MnO2 islands were electrochemically deposited, with high light transmission. The thickness and interspace distance of MnO2 island arrays could be adjusted by tuning deposition time so that the capacitance and transparency of the electrodes are changed accordingly. Such island array structure can effectively eliminate the internal stress existing in the composite film to avoid cracks during bending operation. The assembled transparent supercapacitor shows a transmittance of 44% at 550 nm and can yield a high capacitance of 4.73 mF/cm2 at a current density of 50 μA/cm2, demonstrating high flexibility and stability.
Collapse
Affiliation(s)
- Yizhou Wang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Weixin Zhou
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Qi Kang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Jun Chen
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Yi Li
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Dan Wang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Yanwen Ma
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| |
Collapse
|
45
|
Guo L, Philippi M, Steinhart M. Substrate Patterning Using Regular Macroporous Block Copolymer Monoliths as Sacrificial Templates and as Capillary Microstamps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801452. [PMID: 30027622 DOI: 10.1002/smll.201801452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) monoliths containing regular arrays of macropores (diameter ≈1.1 µm, depth ≈0.7 µm) at their surfaces are used to pattern substrates by patterning modes going beyond the functionality of classical solid elastomer stamps. In a first exemplary application, the macroporous PS-b-P2VP monoliths are employed as sacrificial templates for the deposition of NaCl nanocrystals and topographically patterned iridium films. One NaCl nanocrystal per macropore is formed by evaporation of NaCl solutions filling the macropores followed by iridium coating. Thermal PS-b-P2VP decomposition yields topographically patterned iridium films consisting of ordered arrays of hexagonal cells, each of which contains one NaCl nanocrystal. For the second exemplary application, spongy-continuous mesopore systems are generated in the macroporous PS-b-P2VP monoliths by selective-swelling induced pore generation. Infiltrating the spongy-continuous mesopore systems with ink allows capillary microstamping of continuous ink films with holes at the positions of the macropores onto glass slides compatible with advanced light microscopy. Capillary microstamping can be performed multiple times under ambient conditions without reinking and without quality deterioration of the stamped patterns. The macroporous PS-b-P2VP monoliths are prepared by double replication of primary macroporous silicon molds via secondary polydimethylsiloxane molds.
Collapse
Affiliation(s)
- Leiming Guo
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069, Osnabrück, Germany
| | - Michael Philippi
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069, Osnabrück, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069, Osnabrück, Germany
| |
Collapse
|
46
|
Benoot N, Marcasuzaa P, Pessoni L, Chasvised S, Reynaud S, Bousquet A, Billon L. Hierarchically organized honeycomb films through block copolymer directed self-assembly in "breath figure" templating and soft microwave-triggered annealing. SOFT MATTER 2018; 14:4874-4880. [PMID: 29850760 DOI: 10.1039/c8sm00137e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hierarchically organized polymer films are produced with a high level of order from the combination of block copolymer nanophase segregation, "breath figure" methodology and microwave irradiation. A block copolymer based on poly(methyl methacrylate) and poly(n-butylacrylate) featuring cylindrical nanopatterns is involved in the "breath figure" process to create a microporous honeycomb structure. These films are submitted to microwave annealing to enhance the degree of ordering of the nano-segregation without the destruction of the honeycomb microstructure, which is not possible by classical thermal or solvent annealing. Ellipsometry, optical and atomic force microscopy are used to study three key parameters; the substrate nature, the film thickness and the microwave irradiation power. The silicon wafer is the substrate of choice to efficiently act as the heating transfer element and 60 seconds at 10 watts are enough to nicely order the 1 μm thick copolymer films. These conditions are eventually applied on hierarchically organized polymer films to obtain a hexagonal array of 100 nm deep holes within a matrix of perpendicularly aligned nano-cylinders.
Collapse
Affiliation(s)
- Nicolas Benoot
- Univ Pau & Pays Adour, CNRS UMR 5254, IPREM, Equipe Physique & Chimie des Polymères, 2 avenue Angot, 64053, Pau, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Matharu RK, Porwal H, Ciric L, Edirisinghe M. The effect of graphene-poly(methyl methacrylate) fibres on microbial growth. Interface Focus 2018; 8:20170058. [PMID: 29696090 PMCID: PMC5915660 DOI: 10.1098/rsfs.2017.0058] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 11/30/2022] Open
Abstract
A novel class of ultra-thin fibres, which affect microbial growth, were explored. The microbial properties of poly(methyl methacrylate) fibres containing 2, 4 and 8 wt% of graphene nanoplatelets (GNPs) were studied. GNPs were dispersed in a polymeric solution and processed using pressurized gyration. Electron microscopy was used to characterize GNP and fibre morphology. Scanning electron microscopy revealed the formation of beaded porous fibres. GNP concentration was found to dictate fibre morphology. As the GNP concentration increased, the average fibre diameter increased from 0.75 to 2.71 µm, while fibre porosity decreased. Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa were used to investigate the properties of 2, 4 and 8 wt% GNP-loaded fibres. GNP-loaded fibres (0 wt%) were used as the negative control. The fibres were incubated for 24 h with the bacteria; bacterial colony-forming units were enumerated by adopting the colony-counting method. The presence of 2 and 4 wt% GNP-loaded fibres promoted microbial growth, while 8 wt% GNP-loaded fibres showed antimicrobial activity. These results indicate that the minimum inhibitory concentration of GNPs required within a fibre is 8 wt%.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Harshit Porwal
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
48
|
Zhang W, Zhao Q, Yuan J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew Chem Int Ed Engl 2018; 57:6754-6773. [PMID: 29124842 PMCID: PMC6001701 DOI: 10.1002/anie.201710272] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/27/2023]
Abstract
The past decade has witnessed rapid advances in porous polyelectrolytes and there is tremendous interest in their synthesis as well as their applications in environmental, energy, biomedicine, and catalysis technologies. Research on porous polyelectrolytes is motivated by the flexible choice of functional organic groups and processing technologies as well as the synergy of the charge and pores spanning length scales from individual polyelectrolyte backbones to their nano-/micro-superstructures. This Review surveys recent progress in porous polyelectrolytes including membranes, particles, scaffolds, and high surface area powders/resins as well as their derivatives. The focus is the interplay between surface chemistry, Columbic interaction, and pore confinement that defines new chemistry and physics in such materials for applications in energy conversion, molecular separation, water purification, sensing/actuation, catalysis, tissue engineering, and nanomedicine.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
- Department of Materials and Environmental Chemistry (MMK)Stockholm University10691StockholmSweden
| |
Collapse
|
49
|
Ruan X, Zhang K, Jiang X, Zhang X, Yan X, Zhang N, He G. Facile fabrication of reinforced homoporous MF membranes by in situ breath figure and thermal adhesion method on substrates. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Zhang W, Zhao Q, Yuan J. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
- Department of Materials and Environmental Chemistry (MMK); Stockholm University; 10691 Stockholm Schweden
| |
Collapse
|