• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4625215)   Today's Articles (277)   Subscriber (49473)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Enders JJ, Cornwell ZA, Harrison AW, Murray C. Temperature-Dependent Kinetics of the Reactions of the Criegee Intermediate CH2OO with Aliphatic Aldehydes. J Phys Chem A 2024. [PMID: 39233465 DOI: 10.1021/acs.jpca.4c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
2
DeCecco AC, Conrad AR, Floyd AM, Jasper AW, Hansen N, Dagaut P, Moody NE, Popolan-Vaida DM. Tracking the reaction networks of acetaldehyde oxide and glyoxal oxide Criegee intermediates in the ozone-assisted oxidation reaction of crotonaldehyde. Phys Chem Chem Phys 2024;26:22319-22336. [PMID: 38980126 DOI: 10.1039/d4cp01942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
3
Jiang H, Liu Y, Xiao C, Yang X, Dong W. Reaction Kinetics of CH2OO and syn-CH3CHOO Criegee Intermediates with Acetaldehyde. J Phys Chem A 2024;128:4956-4965. [PMID: 38868987 DOI: 10.1021/acs.jpca.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
4
Derbel N, Kalalian C, Alijah A, Robertson SH, Chakir A, Roth E. Ozonolysis of 2-Methyl-2-pentenal: New Insights from Master Equation Modeling. J Phys Chem A 2024;128:2534-2542. [PMID: 38530340 PMCID: PMC11000216 DOI: 10.1021/acs.jpca.3c04965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
5
Debnath A, Rajakumar B. Experimental and theoretical study of Criegee intermediate (CH2OO) reactions with n-butyraldehyde and isobutyraldehyde: kinetics, implications and atmospheric fate. Phys Chem Chem Phys 2024;26:6872-6884. [PMID: 38332729 DOI: 10.1039/d3cp05482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
6
Luo PL, Chen IY, Khan MAH, Shallcross DE. Direct gas-phase formation of formic acid through reaction of Criegee intermediates with formaldehyde. Commun Chem 2023;6:130. [PMID: 37349562 DOI: 10.1038/s42004-023-00933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]  Open
7
Pham TV, Trang HTT. Mechanistic and Kinetic Approach on the Propargyl Radical (C3H3) with the Criegee Intermediate (CH2OO). ACS OMEGA 2023;8:16859-16868. [PMID: 37214685 PMCID: PMC10193399 DOI: 10.1021/acsomega.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
8
Zhang T, Wen M, Ding C, Zhang Y, Ma X, Wang Z, Lily M, Liu J, Wang R. Multiple evaluations of atmospheric behavior between Criegee intermediates and HCHO: Gas-phase and air-water interface reaction. J Environ Sci (China) 2023;127:308-319. [PMID: 36522063 DOI: 10.1016/j.jes.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/17/2023]
9
Reactions with criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]  Open
10
Begley JM, Aroeira GJR, Turney JM, Douberly GE, Schaefer HF. Enthalpies of formation for Criegee intermediates: A correlation energy convergence study. J Chem Phys 2023;158:034302. [PMID: 36681629 DOI: 10.1063/5.0127588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]  Open
11
Franzon L, Peltola J, Valiev R, Vuorio N, Kurtén T, Eskola A. An Experimental and Master Equation Investigation of Kinetics of the CH2OO + RCN Reactions (R = H, CH3, C2H5) and Their Atmospheric Relevance. J Phys Chem A 2023;127:477-488. [PMID: 36602183 PMCID: PMC9869398 DOI: 10.1021/acs.jpca.2c07073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
12
Debnath A, Rajakumar B. Investigation of kinetics and mechanistic insights of the reaction of criegee intermediate (CH2OO) with methyl-ethyl ketone (MEK) under tropospherically relevant conditions. CHEMOSPHERE 2023;312:137217. [PMID: 36370759 DOI: 10.1016/j.chemosphere.2022.137217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
13
Cornwell ZA, Enders JJ, Harrison AW, Murray C. Temperature‐dependent kinetics of the reactions of CH 2 OO with acetone, biacetyl, and acetylacetone. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
14
Zhao Q, Savoie BM. Algorithmic Explorations of Unimolecular and Bimolecular Reaction Spaces. Angew Chem Int Ed Engl 2022;61:e202210693. [PMID: 36074520 PMCID: PMC9827825 DOI: 10.1002/anie.202210693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
15
Zhao YC, Long B, Francisco JS. Quantitative Kinetics of the Reaction between CH2OO and H2O2 in the Atmosphere. J Phys Chem A 2022;126:6742-6750. [DOI: 10.1021/acs.jpca.2c04408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Qiu J, Fujita M, Tonokura K, Enami S. Stability of Terpenoid-Derived Secondary Ozonides in Aqueous Organic Media. J Phys Chem A 2022;126:5386-5397. [PMID: 35921086 PMCID: PMC9393869 DOI: 10.1021/acs.jpca.2c04077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Salta Z, Vega-Teijido M, Katz A, Tasinato N, Barone V, Ventura ON. Dipolar 1,3-cycloaddition of thioformaldehyde S-methylide (CH2 SCH2 ) to ethylene and acetylene. A comparison with (valence) isoelectronic O3 , SO2 , CH2 OO and CH2 SO. J Comput Chem 2022;43:1420-1433. [PMID: 35662073 DOI: 10.1002/jcc.26946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
18
Wang PB, Truhlar DG, Xia Y, Long B. Temperature-dependent kinetics of the atmospheric reaction between CH2OO and acetone. Phys Chem Chem Phys 2022;24:13066-13073. [PMID: 35583864 DOI: 10.1039/d2cp01118b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
19
Conrad AR, Hansen N, Jasper AW, Thomason NK, Hidaldo-Rodrigues L, Treshock SP, Popolan-Vaida DM. Identification of the acetaldehyde oxide Criegee intermediate reaction network in the ozone-assisted low-temperature oxidation of trans-2-butene. Phys Chem Chem Phys 2021;23:23554-23566. [PMID: 34651147 DOI: 10.1039/d1cp03126k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Cornwell ZA, Harrison AW, Murray C. Kinetics of the Reactions of CH2OO with Acetone, α-Diketones, and β-Diketones. J Phys Chem A 2021;125:8557-8571. [PMID: 34554761 DOI: 10.1021/acs.jpca.1c05280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
21
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee‐Intermediate über die Ozonolyse hinaus: Ein Einblick in Synthesen und Mechanismen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
22
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights. Angew Chem Int Ed Engl 2021;60:15138-15152. [PMID: 33283439 PMCID: PMC8359312 DOI: 10.1002/anie.202014974] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
23
Zhao Q, Savoie BM. Simultaneously improving reaction coverage and computational cost in automated reaction prediction tasks. NATURE COMPUTATIONAL SCIENCE 2021;1:479-490. [PMID: 38217124 DOI: 10.1038/s43588-021-00101-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/18/2021] [Indexed: 01/15/2024]
24
Zhou X, Chen Y, Liu Y, Li X, Dong W, Yang X. Kinetics of CH2OO and syn-CH3CHOO reaction with acrolein. Phys Chem Chem Phys 2021;23:13276-13283. [PMID: 34095924 DOI: 10.1039/d1cp00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Long B, Wang Y, Xia Y, He X, Bao JL, Truhlar DG. Atmospheric Kinetics: Bimolecular Reactions of Carbonyl Oxide by a Triple-Level Strategy. J Am Chem Soc 2021;143:8402-8413. [PMID: 34029069 DOI: 10.1021/jacs.1c02029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
26
Li Y, Lin C, Lin Y, Lin JJ. Temperature‐dependent kinetics of the simplest Criegee intermediate reaction with dimethyl sulfoxide. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
27
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
28
Newland MJ, Nelson BS, Muñoz A, Ródenas M, Vera T, Tárrega J, Rickard AR. Trends in stabilisation of Criegee intermediates from alkene ozonolysis. Phys Chem Chem Phys 2020;22:13698-13706. [PMID: 32525165 DOI: 10.1039/d0cp00897d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
29
Liu Y, Zhou X, Chen Y, Chen M, Xiao C, Dong W, Yang X. Temperature- and pressure-dependent rate coefficient measurement for the reaction of CH2OO with CH3CH2CHO. Phys Chem Chem Phys 2020;22:25869-25875. [DOI: 10.1039/d0cp04316h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Cai J, Lu Y, Wang W, Chen L, Liu F, Wang W. Reaction mechanism and kinetics of Criegee intermediate CH2OO with CH2 = C(CH3)CHO. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
31
Li YL, Lin YH, Yin C, Takahashi K, Chiang CY, Chang YP, Lin JJM. Temperature-Dependent Rate Coefficient for the Reaction of CH3SH with the Simplest Criegee Intermediate. J Phys Chem A 2019;123:4096-4103. [PMID: 31017782 DOI: 10.1021/acs.jpca.8b12553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
32
Rousso AC, Hansen N, Jasper AW, Ju Y. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Phys Chem Chem Phys 2019;21:7341-7357. [DOI: 10.1039/c9cp00473d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Sun C, Xu B, Lv L, Zhang S. Theoretical investigation on the reaction mechanism and kinetics of a Criegee intermediate with ethylene and acetylene. Phys Chem Chem Phys 2019;21:16583-16590. [DOI: 10.1039/c9cp02644d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Sun C, Zhang S, Yue J, Zhang S. Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein. J Phys Chem A 2018;122:8729-8737. [DOI: 10.1021/acs.jpca.8b06897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
35
Kaipara R, Rajakumar B. Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation. J Phys Chem A 2018;122:8433-8445. [DOI: 10.1021/acs.jpca.8b06603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
36
Eskola AJ, Döntgen M, Rotavera B, Caravan RL, Welz O, Savee JD, Osborn DL, Shallcross DE, Percival CJ, Taatjes CA. Direct kinetics study of CH2OO + methyl vinyl ketone and CH2OO + methacrolein reactions and an upper limit determination for CH2OO + CO reaction. Phys Chem Chem Phys 2018;20:19373-19381. [PMID: 29999060 DOI: 10.1039/c8cp03606c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
37
Long B, Bao JL, Truhlar DG. Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere. Proc Natl Acad Sci U S A 2018;115:6135-6140. [PMID: 29844185 PMCID: PMC6004451 DOI: 10.1073/pnas.1804453115] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
38
Ma Q, Lin X, Yang C, Long B, Gai Y, Zhang W. The influences of ammonia on aerosol formation in the ozonolysis of styrene: roles of Criegee intermediate reactions. ROYAL SOCIETY OPEN SCIENCE 2018;5:172171. [PMID: 29892406 PMCID: PMC5990818 DOI: 10.1098/rsos.172171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
39
Fu CD, Pfaendtner J. Lifting the Curse of Dimensionality on Enhanced Sampling of Reaction Networks with Parallel Bias Metadynamics. J Chem Theory Comput 2018;14:2516-2525. [DOI: 10.1021/acs.jctc.7b01289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
40
Grambow CA, Jamal A, Li YP, Green WH, Zádor J, Suleimanov YV. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods. J Am Chem Soc 2018;140:1035-1048. [DOI: 10.1021/jacs.7b11009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
41
Misiewicz JP, Elliott SN, Moore KB, Schaefer HF. Re-examining ammonia addition to the Criegee intermediate: converging to chemical accuracy. Phys Chem Chem Phys 2018;20:7479-7491. [DOI: 10.1039/c7cp08582f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
42
Smith MC, Chao W, Kumar M, Francisco JS, Takahashi K, Lin JJM. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide. J Phys Chem A 2017;121:938-945. [DOI: 10.1021/acs.jpca.6b12303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
43
Elsamra RMI, Jalan A, Buras ZJ, Middaugh JE, Green WH. Temperature- and Pressure-Dependent Kinetics of CH2OO + CH3COCH3and CH2OO + CH3CHO: Direct Measurements and Theoretical Analysis. INT J CHEM KINET 2016. [DOI: 10.1002/kin.21007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
44
Wei WM, Yang X, Zheng RH, Qin YD, Wu YK, Yang F. Theoretical studies on the reactions of the simplest Criegee intermediate CH2OO with CH3CHO. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
45
Kuwata KT, Guinn EJ, Hermes MR, Fernandez JA, Mathison JM, Huang K. A Computational Re-examination of the Criegee Intermediate–Sulfur Dioxide Reaction. J Phys Chem A 2015;119:10316-35. [DOI: 10.1021/acs.jpca.5b06565] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
46
Suleimanov YV, Green WH. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods. J Chem Theory Comput 2015;11:4248-59. [DOI: 10.1021/acs.jctc.5b00407] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
47
Osborn DL, Taatjes CA. The physical chemistry of Criegee intermediates in the gas phase. INT REV PHYS CHEM 2015. [DOI: 10.1080/0144235x.2015.1055676] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
48
Lee YP. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates. J Chem Phys 2015;143:020901. [DOI: 10.1063/1.4923165] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
49
Vereecken L, Glowacki DR, Pilling MJ. Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chem Rev 2015;115:4063-114. [DOI: 10.1021/cr500488p] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
50
Vereecken L, Rickard AR, Newland MJ, Bloss WJ. Theoretical study of the reactions of Criegee intermediates with ozone, alkylhydroperoxides, and carbon monoxide. Phys Chem Chem Phys 2015;17:23847-58. [DOI: 10.1039/c5cp03862f] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA