1
|
Ciavolella G, Granet J, Goetz JG, Osmani N, Etchegaray C, Collin A. Deciphering circulating tumor cells binding in a microfluidic system thanks to a parameterized mathematical model. J Theor Biol 2024; 600:112029. [PMID: 39694322 DOI: 10.1016/j.jtbi.2024.112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
The spread of metastases is a crucial process in which some questions remain unanswered. In this work, we focus on tumor cells circulating in the bloodstream, the so-called Circulating Tumor Cells (CTCs). Our aim is to characterize their trajectories under the influence of hemodynamic and adhesion forces. We focus on already available in vitro measurements performed with a microfluidic device corresponding to the trajectories of CTCs - without or with different protein depletions - interacting with an endothelial layer. A key difficulty is the weak knowledge of the fluid velocity that has to be reconstructed. Our strategy combines a differential equation model - a Poiseuille model for the fluid velocity and an ODE system for the cell adhesion model - and a robust and well-designed calibration procedure. The parameterized model quantifies the strong influence of fluid velocity on adhesion and confirms the expected role of several proteins in the deceleration of CTCs. Finally, it enables the generation of synthetic cells, even for unobserved experimental conditions, opening the way to a digital twin for flowing cells with adhesion.
Collapse
Affiliation(s)
- Giorgia Ciavolella
- Institut Denis Poisson, Université d'Orléans, CNRS, Université de Tours, 45067 Orléans, France.
| | - Julien Granet
- Inria, Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France
| | - Jacky G Goetz
- INSERM UMR_S 1109, Univ. Strasbourg, FMTS, Équipe labellisée Ligue Contre le Cancer, F-67000 Strasbourg, France
| | - Naël Osmani
- INSERM UMR_S 1109, Univ. Strasbourg, FMTS, Équipe labellisée Ligue Contre le Cancer, F-67000 Strasbourg, France
| | - Christèle Etchegaray
- Inria, Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France
| | - Annabelle Collin
- Laboratoire de Mathématiques Jean Leray, Nantes Université, F-44100 Nantes, France
| |
Collapse
|
2
|
Quapp W, Bofill JM. Theory and Examples of Catch Bonds. J Phys Chem B 2024; 128:4097-4110. [PMID: 38634732 DOI: 10.1021/acs.jpcb.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We discuss slip bonds, catch bonds, and the tug-of-war mechanism using mathematical arguments. The aim is to explain the theoretical tool of molecular potential energy surfaces (PESs). For this, we propose simple 2-dimensional surface models to demonstrate how a molecule under an external force behaves. Examples are selectins. Catch bonds, in particular, are explained in more detail, and they are contrasted to slip bonds. We can support special two-dimensional molecular PESs for E- and L-selectin which allow the catch bond property. We demonstrate that Newton trajectories (NT) are powerful tools to describe these phenomena. NTs form the theoretical background of mechanochemistry.
Collapse
Affiliation(s)
- Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, Leipzig D-04009, Germany
| | - Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
3
|
Arora N, Hazra JP, Roy S, Bhati GK, Gupta S, Yogendran KP, Chaudhuri A, Sagar A, Rakshit S. Emergence of slip-ideal-slip behavior in tip-links serve as force filters of sound in hearing. Nat Commun 2024; 15:1595. [PMID: 38383683 PMCID: PMC10881517 DOI: 10.1038/s41467-024-45423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Tip-links in the inner ear convey force from sound and trigger mechanotransduction. Here, we present evidence that tip-links (collectively as heterotetrameric complexes of cadherins) function as force filters during mechanotransduction. Our force-clamp experiments reveal that the tip-link complexes show slip-ideal-slip bond dynamics. At low forces, the lifetime of the tip-link complex drops monotonically, indicating slip-bond dynamics. The ideal bond, rare in nature, is seen in an intermediate force regime where the survival of the complex remains constant over a wide range. At large forces, tip-links follow a slip bond and dissociate entirely to cut-off force transmission. In contrast, the individual tip-links (heterodimers) display slip-catch-slip bonds to the applied forces. While with a phenotypic mutant, we showed the importance of the slip-catch-slip bonds in uninterrupted hearing, our coarse-grained Langevin dynamics simulations demonstrated that the slip-ideal-slip bonds emerge as a collective feature from the slip-catch-slip bonds of individual tip-links.
Collapse
Affiliation(s)
- Nisha Arora
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Jagadish P Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sandip Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gaurav K Bhati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sarika Gupta
- National Institute of Immunology, New Delhi, India
| | - K P Yogendran
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Amin Sagar
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| |
Collapse
|
4
|
Jötten AM, Schepp A, Machon A, Moll K, Wahlgren M, Krüger T, Westerhausen C. Survival of P. falciparum infected red blood cell aggregates in elongational shear flow. LAB ON A CHIP 2024; 24:787-797. [PMID: 38204325 DOI: 10.1039/d3lc00552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Rosetting, the formation of red blood cell aggregates, is a life-threatening condition in malaria tropica and not yet fully understood. We study rosette stability using a set of microfluidic stenotic channels, with varied narrowing angle and erythrocytes of blood groups O and A. We find reduced ability of a rosette to pass a stenosis without disruption, the longer the tapered part of the constriction and the narrower the stenosis is. In general, this ability increases with rosette size and is 5-15% higher in blood group A. The experimental results are substantiated by equivalent experiments using lectin-induced red blood cell aggregates and a simulation of the underlying protein binding kinetics.
Collapse
Affiliation(s)
- Anna M Jötten
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Anabelle Schepp
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Adam Machon
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Timm Krüger
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - Christoph Westerhausen
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
- Center for Advanced Analytics and Predicitve Sciences, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
5
|
Characterizing the Biophysical Properties of Adhesive Proteins in Live Cells Using Single-Molecule Atomic Force Microscopy. Methods Mol Biol 2023; 2600:63-77. [PMID: 36587090 DOI: 10.1007/978-1-0716-2851-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell adhesion proteins play essential roles in the formation, regeneration, and maintenance of tissue. However, the molecular mechanisms by which cells regulate the conformation and binding properties of adhesion proteins are poorly understood. These biophysical properties can be resolved, with single-molecule resolution, using atomic force microscopy (AFM). Here, we outline how AFM force measurements can be used to study the conformation, cytoskeletal linkage, binding strength, and force-dependent bond lifetimes of adhesion proteins in live cells.
Collapse
|
6
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
7
|
Qiu J, Xing M, Zhang L, Zhang H, Liu L, Wang D, Qian W, Liu X. A superlattice composite of Zn-Fe layered double hydroxide and graphene oxide for antitumor application. J Mater Chem B 2022; 10:5556-5560. [PMID: 35848466 DOI: 10.1039/d2tb00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A superlattice composite of Zn-Fe layered double hydroxide and graphene oxide was fabricated on the titanium surface and showed lamellar morphology. It was found for the first time that this superlattice composite could inhibit cell adhesion and proliferation, and cause cell death of the cholangiocarcinoma cell line RBE cells in vitro and show tumor inhibition effect in vivo.
Collapse
Affiliation(s)
- Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Min Xing
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China.
| | - Ling Zhang
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China.
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Lu Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China. .,School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Wenhao Qian
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
8
|
Marbach S, Zheng JA, Holmes-Cerfon M. The nanocaterpillar's random walk: diffusion with ligand-receptor contacts. SOFT MATTER 2022; 18:3130-3146. [PMID: 35348560 DOI: 10.1039/d1sm01544c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particles with ligand-receptor contacts bind and unbind fluctuating "legs" to surfaces, whose fluctuations cause the particle to diffuse. Quantifying the diffusion of such "nanoscale caterpillars" is a challenge, since binding events often occur on very short time and length scales. Here we derive an analytical formula, validated by simulations, for the long time translational diffusion coefficient of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that the effective diffusion coefficient, which depends on the microscopic parameters governing the legs, can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies rapidly with temperature, and reproduces the striking variations seen in existing data and our own measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg is always linked to the surface, and when does it prefer to move by hopping, which requires all legs to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated colloids) and present guidelines to control the mode of motion for materials design.
Collapse
Affiliation(s)
- Sophie Marbach
- Courant Institute of Mathematical Sciences, New York University, NY, 10012, USA.
- CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | | | | |
Collapse
|
9
|
Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proc Natl Acad Sci U S A 2022; 119:2122030119. [PMID: 35165179 PMCID: PMC8872771 DOI: 10.1073/pnas.2122030119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 01/22/2023] Open
Abstract
Cell–cell contact formation is a key step in the evolution of multicellularity. While the molecular and cellular processes underlying cell–cell adhesion and contact formation have been extensively studied, comparably little is known about the physical principles guiding these processes. Actomyosin cortex tension differentially applied at the cell–cell and cell–medium interfaces was shown to promote expansion of the cell–cell contacts. Here, we uncover a nonlinear relationship between cortex tension and cell–cell contact size; in a low-tension regime, cell–cell contact size positively scales with cortex tension, while the high-tension regime promotes small contacts. This change in behavior is due to tension decreasing the turnover of adhesion molecules at the cell–cell contact, limiting contact expansion. Tension of the actomyosin cell cortex plays a key role in determining cell–cell contact growth and size. The level of cortical tension outside of the cell–cell contact, when pulling at the contact edge, scales with the total size to which a cell–cell contact can grow [J.-L. Maître et al., Science 338, 253–256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell–cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell–cell contact size is limited by tension-stabilizing E-cadherin–actin complexes at the contact.
Collapse
|
10
|
Vazquez K, Saraswathibhatla A, Notbohm J. Effect of substrate stiffness on friction in collective cell migration. Sci Rep 2022; 12:2474. [PMID: 35169196 PMCID: PMC8847350 DOI: 10.1038/s41598-022-06504-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
In collective cell migration, the motion results from forces produced by each cell and transmitted to the neighboring cells and to the substrate. Because inertia is negligible and the migration occurs over long time scales, the cell layer exhibits viscous behavior, where force and motion are connected by an apparent friction that results from the breaking and forming of adhesive bonds at the cell–cell and cell–substrate interfaces. Most theoretical models for collective migration include an apparent friction to connect force and motion, with many models making predictions that depend on the ratio of cell–cell and cell–substrate friction. However, little is known about factors that affect friction, leaving predictions of many theoretical models untested. Here, we considered how substrate stiffness and the number of adhesions affected friction at the cell–substrate interface. The experimental data were interpreted through prior theoretical models, which led to the same conclusion, that increased substrate stiffness increased the number of cell–substrate adhesions and caused increased cell–substrate friction. In turn, the friction affected the collective migration by altering the curvature at the edge of the cell layer. By revealing underlying factors affecting friction and demonstrating how friction perturbs the collective migration, this work provides experimental evidence supporting prior theoretical models and motivates the study of other ways to alter the collective migration by changing friction.
Collapse
Affiliation(s)
- Kelly Vazquez
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Paul A, Alper J. Calculating the force-dependent unbinding rate of biological macromolecular bonds from force-ramp optical trapping assays. Sci Rep 2022; 12:82. [PMID: 34996945 PMCID: PMC8741823 DOI: 10.1038/s41598-021-03690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
The non-covalent biological bonds that constitute protein–protein or protein–ligand interactions play crucial roles in many cellular functions, including mitosis, motility, and cell–cell adhesion. The effect of external force (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F$$\end{document}F) on the unbinding rate (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{\text{off}}\left(F\right)$$\end{document}koffF) of macromolecular interactions is a crucial parameter to understanding the mechanisms behind these functions. Optical tweezer-based single-molecule force spectroscopy is frequently used to obtain quantitative force-dependent dissociation data on slip, catch, and ideal bonds. However, analyses of this data using dissociation time or dissociation force histograms often quantitatively compare bonds without fully characterizing their underlying biophysical properties. Additionally, the results of histogram-based analyses can depend on the rate at which force was applied during the experiment and the experiment’s sensitivity. Here, we present an analytically derived cumulative distribution function-like approach to analyzing force-dependent dissociation force spectroscopy data. We demonstrate the benefits and limitations of the technique using stochastic simulations of various bond types. We show that it can be used to obtain the detachment rate and force sensitivity of biological macromolecular bonds from force spectroscopy experiments by explicitly accounting for loading rate and noisy data. We also discuss the implications of our results on using optical tweezers to collect force-dependent dissociation data.
Collapse
Affiliation(s)
- Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.,Eukaryotic Pathogens Innovation Center, Clemson University, SC, Clemson, USA.,Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA. .,Eukaryotic Pathogens Innovation Center, Clemson University, SC, Clemson, USA. .,Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
12
|
Lin J, Sorrells MG, Lam WA, Neeves KB. Physical forces regulating hemostasis and thrombosis: Vessels, cells, and molecules in illustrated review. Res Pract Thromb Haemost 2021; 5:e12548. [PMID: 34278188 PMCID: PMC8279127 DOI: 10.1002/rth2.12548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 01/31/2023] Open
Abstract
This illustrated review focuses on the physical forces that regulate hemostasis and thrombosis. These phenomena span from the vessel to the cellular to the molecular scales. Blood is a complex fluid with a viscosity that varies with how fast it flows and the size of the vessel through which it flows. Blood flow imposes forces on the vessel wall and blood cells that dictates the kinetics, structure, and stability of thrombi. The mechanical properties of blood cells create a segmented flowing fluid whereby red blood cells concentrate in the vessel core and platelets marginate to the near-wall region. At the vessel wall, shear stresses are highest, which requires a repertoire of receptors with different bond kinetics to roll, tether, adhere, and activate on inflamed endothelium and extracellular matrices. As a thrombus grows and then contracts, forces regulate platelet aggregation as well as von Willebrand factor function and fibrin mechanics. Forces can also originate from platelets as they respond to the external forces and sense the stiffness of their local environment.
Collapse
Affiliation(s)
- Jessica Lin
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGAUSA
| | - Matthew G. Sorrells
- Department of Chemical and Biological EngineeringColorado School of MinesGoldenCOUSA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGAUSA
- Division of Pediatric Hematology/OncologyDepartment of PediatricsAflac Cancer Center and Blood Disorder Service of Children’s Healthcare of AtlantaEmory University School of MedicineAtlantaGAUSA
| | - Keith B. Neeves
- Department of BioengineeringUniversity of Colorado DenverAnschutz Medical CampusAuroraCOUSA
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis CenterUniversity of Colorado DenverAnschutz Medical CampusAuroraCOUSA
| |
Collapse
|
13
|
Applications of atomic force microscopy in modern biology. Emerg Top Life Sci 2021; 5:103-111. [PMID: 33600596 DOI: 10.1042/etls20200255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/25/2020] [Accepted: 01/22/2021] [Indexed: 01/20/2023]
Abstract
Single-molecule force spectroscopy (SMFS) is an emerging tool to investigate mechanical properties of biomolecules and their responses to mechanical forces, and one of the most-used techniques for mechanical manipulation is the atomic force microscope (AFM). AFM was invented as an imaging tool which can be used to image biomolecules in sub-molecular resolution in physiological conditions. It can also be used as a molecular force probe for applying mechanical forces on biomolecules. In this brief review, we will provide exciting examples from recent literature which show how the advances in AFM have enabled us to gain deep insights into mechanical properties and mechanobiology of biomolecules. AFM has been applied to study mechanical properties of cells, tissues, microorganisms, viruses as well as biological macromolecules such as proteins. It has found applications in biomedical fields like cancer biology, where it has been used both in the diagnostic phases as well as drug discovery. AFM has been able to answer questions pertaining to mechanosensing by neurons, and mechanical changes in viruses during infection by the viral particles as well as the fundamental processes such as cell division. Fundamental questions related to protein folding have also been answered by SMFS like determination of energy landscape properties of variety of proteins and their correlation with their biological functions. A multipronged approach is needed to diversify the research, as a combination with optical spectroscopy and computer-based steered molecular dynamic simulations along with SMFS can help us gain further insights into the field of biophysics and modern biology.
Collapse
|
14
|
Garciafigueroa Y, Phillips BE, Engman C, Trucco M, Giannoukakis N. Neutrophil-Associated Inflammatory Changes in the Pre-Diabetic Pancreas of Early-Age NOD Mice. Front Endocrinol (Lausanne) 2021; 12:565981. [PMID: 33776903 PMCID: PMC7988208 DOI: 10.3389/fendo.2021.565981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
A growing body of evidence indicates that neutrophils are the first major leukocyte population accumulating inside the pancreas even before the onset of a lymphocytic-driven impairment of functional beta cells in type 1 diabetes mellitus (T1D). In humans, pancreata from T1D deceased donors exhibit significant neutrophil accumulation. We present a time course of previously unknown inflammatory changes that accompany neutrophil and neutrophil elastase accumulation in the pancreas of the non-obese diabetic (NOD) mouse strain as early as 2 weeks of age. We confirm earlier findings in NOD mice that neutrophils accumulate as early as 2 weeks of age. We also observe a concurrent increase in the expression of neutrophil elastase in this time period. We also detect components of neutrophil extracellular traps (NET) mainly in the exocrine tissue of the pancreas during this time as well as markers of vascular pathology as early as 2 weeks of age. Age- and sex-matched C57BL/6 mice do not exhibit these features inside the pancreas. When we treated NOD mice with inhibitors of myeloperoxidase and neutrophil elastase, two key effectors of activated neutrophil activity, alone or in combination, we were unable to prevent the progression to hyperglycemia in any manner different from untreated control mice. Our data confirm and add to the body of evidence demonstrating neutrophil accumulation inside the pancreas of mice genetically susceptible to T1D and also offer novel insights into additional pathologic mechanisms involving the pancreatic vasculature that have, until now, not been discovered inside the pancreata of these mice. However, inhibition of key neutrophil enzymes expressed in activated neutrophils could not prevent diabetes. These findings add to the body of data supporting a role for neutrophils in the establishment of early pathology inside the pancreas, independently of, and earlier from the time at onset of lymphocytic infiltration. However, they also suggest that inhibition of neutrophils alone, acting via myeloperoxidase and neutrophil elastase only, in the absence of other other effector cells, is insufficient to alter the natural course of autoimmune diabetes, at least in the NOD model of the disease.
Collapse
Affiliation(s)
- Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- *Correspondence: Nick Giannoukakis,
| |
Collapse
|
15
|
Mathelié-Guinlet M, Viela F, Alsteens D, Dufrêne YF. Stress-Induced Catch-Bonds to Enhance Bacterial Adhesion. Trends Microbiol 2020; 29:286-288. [PMID: 33353797 DOI: 10.1016/j.tim.2020.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Physical forces have a profound influence on bacterial cell physiology and disease. A striking example is the formation of catch-bonds that reinforce under mechanical stress. While mannose-binding by the Escherichia coli FimH adhesin has long been the only thoroughly studied microbial catch-bond, it has recently become clear that proteins from other species, such as staphylococci, are also engaged in such stress-dependent interactions.
Collapse
Affiliation(s)
- Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
| | - Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
16
|
Force-clamp spectroscopy identifies a catch bond mechanism in a Gram-positive pathogen. Nat Commun 2020; 11:5431. [PMID: 33110079 PMCID: PMC7591895 DOI: 10.1038/s41467-020-19216-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 01/17/2023] Open
Abstract
Physical forces have profound effects on cellular behavior, physiology, and disease. Perhaps the most intruiguing and fascinating example is the formation of catch-bonds that strengthen cellular adhesion under shear stresses. Today mannose-binding by the Escherichia coli FimH adhesin remains one of the rare microbial catch-bond thoroughly characterized at the molecular level. Here we provide a quantitative demonstration of a catch-bond in living Gram-positive pathogens using force-clamp spectroscopy. We show that the dock, lock, and latch interaction between staphylococcal surface protein SpsD and fibrinogen is strong, and exhibits an unusual catch-slip transition. The bond lifetime first grows with force, but ultimately decreases to behave as a slip bond beyond a critical force (~1 nN) that is orders of magnitude higher than for previously investigated complexes. This catch-bond, never reported for a staphylococcal adhesin, provides the pathogen with a mechanism to tightly control its adhesive function during colonization and infection.
Collapse
|
17
|
Fuchs M, Sigmund AM, Waschke J, Vielmuth F. Desmosomal Hyperadhesion Is Accompanied with Enhanced Binding Strength of Desmoglein 3 Molecules. Biophys J 2020; 119:1489-1500. [PMID: 33031738 DOI: 10.1016/j.bpj.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Intercellular adhesion of keratinocytes depends critically on desmosomes that, during maturation, acquire a hyperadhesive and thus Ca2+ independent state. Here, we investigated the roles of desmoglein (Dsg) 3 and plakophilins (Pkps) in hyperadhesion. Atomic force microscopy single molecule force mappings revealed increased Dsg3 molecules but not Dsg1 molecules binding strength in murine keratinocytes. However, keratinocytes lacking Dsg3 or Pkp1 or 3 revealed reduced Ca2+ independency. In addition, Pkp1- or 3-deficient keratinocytes did not exhibit changes in Dsg3 binding on the molecular level. Further, wild-type keratinocytes showed increased levels of Dsg3 oligomers during acquisition of hyperadhesion, and Pkp1 deficiency abolished the formation of Ca2+ independent Dsg3 oligomers. In concordance, immunostaining for Dsg1 but not for Dsg3 was reduced after 24 h of Ca2+ chelation in an ex vivo human skin model, suggesting that desmosomal cadherins may have different roles during acquisition of hyperadhesion. Taken together, these data indicate that hyperadhesion may not be a state acquired by entire desmosomes but rather is paralleled by enhanced binding of specific Dsg isoforms such as Dsg3, a process for which plaque proteins including Pkp 1 and 3 are required as well.
Collapse
Affiliation(s)
- Michael Fuchs
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anna Magdalena Sigmund
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Franziska Vielmuth
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
18
|
Structural determinants of protocadherin-15 mechanics and function in hearing and balance perception. Proc Natl Acad Sci U S A 2020; 117:24837-24848. [PMID: 32963095 PMCID: PMC7547225 DOI: 10.1073/pnas.1920444117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
When sound vibrations reach the inner ear, fine protein filaments called “tip links” stretch and open cochlear hair-cell mechanosensitive channels that trigger sensory perception. Similarly, vestibular hair cells use tip links to sense mechanical stimuli produced by head motions. Tip links are formed by cadherin-23 and protocadherin-15, two large proteins involved in hearing loss and balance disorders. Here we present multiple structures, models, and simulations that depict the lower end of the tip link, including the complete protocadherin-15 ectodomain. These models show an essential connection between cadherin-23 and protocadherin-15 with dual molecular “handshakes” and various protein sites that are mutated in inherited deafness. The simulations also reveal how the tip link responds to force to mediate hearing and balance sensing. The vertebrate inner ear, responsible for hearing and balance, is able to sense minute mechanical stimuli originating from an extraordinarily broad range of sound frequencies and intensities or from head movements. Integral to these processes is the tip-link protein complex, which conveys force to open the inner-ear transduction channels that mediate sensory perception. Protocadherin-15 and cadherin-23, two atypically large cadherins with 11 and 27 extracellular cadherin (EC) repeats, are involved in deafness and balance disorders and assemble as parallel homodimers that interact to form the tip link. Here we report the X-ray crystal structure of a protocadherin-15 + cadherin-23 heterotetrameric complex at 2.9-Å resolution, depicting a parallel homodimer of protocadherin-15 EC1-3 molecules forming an antiparallel complex with two cadherin-23 EC1-2 molecules. In addition, we report structures for 10 protocadherin-15 fragments used to build complete high-resolution models of the monomeric protocadherin-15 ectodomain. Molecular dynamics simulations and validated crystal contacts are used to propose models for the complete extracellular protocadherin-15 parallel homodimer and the tip-link bond. Steered molecular dynamics simulations of these models suggest conditions in which a structurally diverse and multimodal protocadherin-15 ectodomain can act as a stiff or soft gating spring. These results reveal the structural determinants of tip-link–mediated inner-ear sensory perception and elucidate protocadherin-15’s structural and adhesive properties relevant in disease.
Collapse
|
19
|
Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches. Proc Natl Acad Sci U S A 2020; 117:13519-13528. [PMID: 32461373 DOI: 10.1073/pnas.1911183117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Networks of branched actin filaments formed by Arp2/3 complex generate and experience mechanical forces during essential cellular functions, including cell motility and endocytosis. External forces regulate the assembly and architecture of branched actin networks both in vitro and in cells. Considerably less is known about how mechanical forces influence the disassembly of actin filament networks, specifically, the dissociation of branches. We used microfluidics to apply force to branches formed from purified muscle actin and fission yeast Arp2/3 complex and observed debranching events in real time with total internal reflection fluorescence microscopy. Low forces in the range of 0 pN to 2 pN on branches accelerated their dissociation from mother filaments more than two orders of magnitude, from hours to <1 min. Neither force on the mother filament nor thermal fluctuations in mother filament shape influenced debranching. Arp2/3 complex at branch junctions adopts two distinct mechanical states with different sensitivities to force, which we name "young/strong" and "old/weak." The "young/strong" state 1 has adenosine 5'-diphosphate (ADP)-P i bound to Arp2/3 complex. Phosphate release converts Arp2/3 complex into the "old/weak" state 2 with bound ADP, which is 20 times more sensitive to force than state 1. Branches with ADP-Arp2/3 complex are more sensitive to debranching by fission yeast GMF (glia maturation factor) than branches with ADP-P i -Arp2/3 complex. These findings suggest that aging of branch junctions by phosphate release from Arp2/3 complex and mechanical forces contribute to disassembling "old" actin filament branches in cells.
Collapse
|
20
|
Abstract
Integrins, and integrin-mediated adhesions, have long been recognized to provide the main molecular link attaching cells to the extracellular matrix (ECM) and to serve as bidirectional hubs transmitting signals between cells and their environment. Recent evidence has shown that their combined biochemical and mechanical properties also allow integrins to sense, respond to and interact with ECM of differing properties with exquisite specificity. Here, we review this work first by providing an overview of how integrin function is regulated from both a biochemical and a mechanical perspective, affecting integrin cell-surface availability, binding properties, activation or clustering. Then, we address how this biomechanical regulation allows integrins to respond to different ECM physicochemical properties and signals, such as rigidity, composition and spatial distribution. Finally, we discuss the importance of this sensing for major cell functions by taking cell migration and cancer as examples.
Collapse
|
21
|
MacKay L, Khadra A. The bioenergetics of integrin-based adhesion, from single molecule dynamics to stability of macromolecular complexes. Comput Struct Biotechnol J 2020; 18:393-416. [PMID: 32128069 PMCID: PMC7044673 DOI: 10.1016/j.csbj.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
The forces actively generated by motile cells must be transmitted to their environment in a spatiotemporally regulated manner, in order to produce directional cellular motion. This task is accomplished through integrin-based adhesions, large macromolecular complexes that link the actin-cytoskelton inside the cell to its external environment. Despite their relatively large size, adhesions exhibit rapid dynamics, switching between assembly and disassembly in response to chemical and mechanical cues exerted by cytoplasmic biochemical signals, and intracellular/extracellular forces, respectively. While in material science, force typically disrupts adhesive contact, in this biological system, force has a more nuanced effect, capable of causing assembly or disassembly. This initially puzzled experimentalists and theorists alike, but investigation into the mechanisms regulating adhesion dynamics have progressively elucidated the origin of these phenomena. This review provides an overview of recent studies focused on the theoretical understanding of adhesion assembly and disassembly as well as the experimental studies that motivated them. We first concentrate on the kinetics of integrin receptors, which exhibit a complex response to force, and then investigate how this response manifests itself in macromolecular adhesion complexes. We then turn our attention to studies of adhesion plaque dynamics that link integrins to the actin-cytoskeleton, and explain how force can influence the assembly/disassembly of these macromolecular structure. Subsequently, we analyze the effect of force on integrins populations across lengthscales larger than single adhesions. Finally, we cover some theoretical studies that have considered both integrins and the adhesion plaque and discuss some potential future avenues of research.
Collapse
Affiliation(s)
- Laurent MacKay
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Lancellotti S, Sacco M, Basso M, De Cristofaro R. Mechanochemistry of von Willebrand factor. Biomol Concepts 2019; 10:194-208. [PMID: 31778361 DOI: 10.1515/bmc-2019-0022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Von Willebrand factor (VWF), a blood multimeric protein with a very high molecular weight, plays a crucial role in the primary haemostasis, the physiological process characterized by the adhesion of blood platelets to the injured vessel wall. Hydrodynamic forces are responsible for extensive conformational transitions in the VWF multimers that change their structure from a globular form to a stretched linear conformation. This feature makes this protein particularly prone to be investigated by mechanochemistry, the branch of the biophysical chemistry devoted to investigating the effects of shear forces on protein conformation. This review describes the structural elements of the VWF molecule involved in the biochemical response to shear forces. The stretched VWF conformation favors the interaction with the platelet GpIb and at the same time with ADAMTS-13, the zinc-protease that cleaves VWF in the A2 domain, limiting its prothrombotic capacity. The shear-induced conformational transitions favor also a process of self-aggregation, responsible for the formation of a spider-web like network, particularly efficient in the trapping process of flowing platelets. The investigation of the biophysical effects of shear forces on VWF conformation contributes to unraveling the molecular mechanisms of many types of thrombotic and haemorrhagic syndromes.
Collapse
Affiliation(s)
- Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Monica Sacco
- Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| | - Maria Basso
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy.,Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| |
Collapse
|
23
|
Monemian Esfahani A, Rosenbohm J, Reddy K, Jin X, Bouzid T, Riehl B, Kim E, Lim JY, Yang R. Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion. Tissue Eng Part C Methods 2019; 25:631-640. [PMID: 31407627 PMCID: PMC6859692 DOI: 10.1089/ten.tec.2019.0098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023] Open
Abstract
Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. This mechanochemical coupling in cell-cell adhesion is required for a large number of cell behaviors, and perturbations of the cell-cell adhesion structure or related mechanotransduction pathways can lead to critical pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been a widely used method to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. These studies aimed to reveal the biophysical processes governing cell proliferation, wound healing, gene expression regulation, and cell differentiation in various tissues, including cardiac, muscle, vascular, and bone. This review explores techniques in mechanical stretching in two-dimensional settings with different stretching regimens on different cell types. The mechanotransduction responses from these different cell types will be discussed with an emphasis on their biophysical transformations during mechanical stretching and the cross talk between the cell-cell and cell-ECM adhesion complexes. Therapeutic aspects of mechanical stretching are reviewed considering these cellular responses after the application of mechanical forces, with a focus on wound healing and tissue regeneration. Impact Statement Mechanical stretching has been proposed as a therapeutic option for tissue regeneration and wound healing. It has been accepted that mechanotransduction processes elicited by mechanical stretching govern cellular response and behavior, and these studies have predominantly focused on the cell-extracellular matrix (ECM) sites. This review serves the mechanobiology community by shifting the focus of mechanical stretching effects from cell-ECM adhesions to the less examined cell-cell adhesions, which we believe play an equally important role in orchestrating the response pathways.
Collapse
Affiliation(s)
- Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Keerthana Reddy
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Brandon Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
24
|
Qvortrup K, Hultqvist LD, Nilsson M, Jakobsen TH, Jansen CU, Uhd J, Andersen JB, Nielsen TE, Givskov M, Tolker-Nielsen T. Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation. Front Chem 2019; 7:742. [PMID: 31737611 PMCID: PMC6838868 DOI: 10.3389/fchem.2019.00742] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/17/2019] [Indexed: 01/12/2023] Open
Abstract
Microbial biofilms are the cause of persistent infections associated with various medical implants and distinct body sites such as the urinary tract, lungs, and wounds. Compared with their free living counterparts, bacteria in biofilms display a highly increased resistance to immune system activities and antibiotic treatment. Therefore, biofilm infections are difficult or impossible to treat with our current armory of antibiotics. The challenges associated with biofilm infections have urged researchers to pursue a better understanding of the molecular mechanisms that are involved in the formation and dispersal of biofilms, and this has led to the identification of several steps that could be targeted in order to eradicate these challenging infections. Here we describe mechanisms that are involved in the regulation of biofilm development in Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii, and provide examples of chemical compounds that have been developed to specifically inhibit these processes. These compounds include (i) pilicides and curlicides which inhibit the initial steps of biofilm formation by E. coli; (ii) compounds that interfere with c-di-GMP signaling in P. aeruginosa and E. coli; and (iii) compounds that inhibit quorum-sensing in P. aeruginosa and A. baumannii. In cases where compound series have a defined molecular target, we focus on elucidating structure activity relationship (SAR) trends within the particular compound series.
Collapse
Affiliation(s)
- Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Louise Dahl Hultqvist
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Nilsson
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Jens Bo Andersen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Michael Givskov
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Tiberti M, Lechner BD, Fornili A. Binding Pockets in Proteins Induced by Mechanical Stress. J Chem Theory Comput 2019; 15:1-6. [PMID: 30525608 DOI: 10.1021/acs.jctc.8b00755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the first observation of a pocket that opens as a result of a mechanical force applied to an Ig-like domain from the cardiac muscle. This previously unseen mechanism of pocket formation is revealed by molecular dynamics simulations under force. Preliminary investigations show that this "mechano-pocket" is potentially druggable and could be found in other domains from the same fold family, suggesting the existence of a general mechanism of pocket formation under mechanical stress.
Collapse
Affiliation(s)
- Matteo Tiberti
- School of Biological and Chemical Sciences , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Bob-Dan Lechner
- School of Biological and Chemical Sciences , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Arianna Fornili
- School of Biological and Chemical Sciences , Queen Mary University of London , London E1 4NS , United Kingdom.,The Thomas Young Centre for Theory and Simulation of Materials , London , United Kingdom
| |
Collapse
|
26
|
Vernerey FJ, Shen T, Sridhar SL, Wagner RJ. How do fire ants control the rheology of their aggregations? A statistical mechanics approach. J R Soc Interface 2018; 15:20180642. [PMID: 30381347 PMCID: PMC6228480 DOI: 10.1098/rsif.2018.0642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Active networks are omnipresent in nature, from the molecular to the macro-scale. In this study, we explore the mechanical behaviour of fire ant aggregations, closely knit swarms that display impressive dynamics culminating with the aggregations' capacity to self-heal and adapt to the environment. Although the combined elasticity and rheology of the ant aggregation can be characterized by phenomenological mechanical models (e.g. linear Maxwell or Kelvin-Voigt model), it is not clear how the behaviour of individual ants affects the aggregations' emerging responses. Here, we explore an alternative way to think about these materials, describing them as a collection of individuals connected via elastic chains that associate and dissociate over time. Using our knowledge of these connections-e.g. their elasticity and attachment/dissociation rates-we construct a statistical description of connection stretch and derive an evolution equation for the corresponding stretch distribution. This time-evolving stretch distribution is then used to determine important macroscopic measures, e.g. stress, energy storage and energy dissipation, in the network. In this context, we show how the physical characteristics and activities of individual ants can explain the elasticity, flow and shear thinning of the aggregation. In particular, we find that experimental results are matched if the detachment rate between two individuals increases with tension in the connection.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado, Boulder, CO, USA
| | - Tong Shen
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado, Boulder, CO, USA
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado, Boulder, CO, USA
| | - Robert J Wagner
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado, Boulder, CO, USA
| |
Collapse
|
27
|
Krammer EM, de Ruyck J, Roos G, Bouckaert J, Lensink MF. Targeting Dynamical Binding Processes in the Design of Non-Antibiotic Anti-Adhesives by Molecular Simulation-The Example of FimH. Molecules 2018; 23:E1641. [PMID: 29976867 PMCID: PMC6099838 DOI: 10.3390/molecules23071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Located at the tip of type I fimbria of Escherichia coli, the bacterial adhesin FimH is responsible for the attachment of the bacteria to the (human) host by specifically binding to highly-mannosylated glycoproteins located on the exterior of the host cell wall. Adhesion represents a necessary early step in bacterial infection and specific inhibition of this process represents a valuable alternative pathway to antibiotic treatments, as such anti-adhesive drugs are non-intrusive and are therefore unlikely to induce bacterial resistance. The currently available anti-adhesives with the highest affinities for FimH still feature affinities in the nanomolar range. A prerequisite to develop higher-affinity FimH inhibitors is a molecular understanding of the FimH-inhibitor complex formation. The latest insights in the formation process are achieved by combining several molecular simulation and traditional experimental techniques. This review summarizes how molecular simulation contributed to the current knowledge of the molecular function of FimH and the importance of dynamics in the inhibitor binding process, and highlights the importance of the incorporation of dynamical aspects in (future) drug-design studies.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Jerome de Ruyck
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Goedele Roos
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Julie Bouckaert
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Marc F Lensink
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|
28
|
Feng Y, Reinherz EL, Lang MJ. αβ T Cell Receptor Mechanosensing Forces out Serial Engagement. Trends Immunol 2018; 39:596-609. [PMID: 30060805 PMCID: PMC6154790 DOI: 10.1016/j.it.2018.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022]
Abstract
T lymphocytes use αβ T cell receptors (TCRs) to recognize
sparse antigenic peptides bound to MHC molecules (pMHCs) arrayed on
antigen-presenting cells (APCs). Contrary to conventional receptor–ligand
associations exemplified by antigen-antibody interactions, forces play a crucial
role in nonequilibrium mechanosensor-based T cell activation. Both T cell
motility and local cytoskeleton machinery exert forces (i.e., generate loads) on
TCR–pMHC bonds. We review biological features of the load-dependent
activation process as revealed by optical tweezers single molecule/single cell
and other biophysical measurements. The findings link pMHC-triggered TCRs to
single cytoskeletal motors; define the importance of energized anisotropic
(i.e., force direction dependent) activation; and characterize immunological
synapse formation as digital, revealing no serial requirement. The emerging
picture suggests new approaches for the monitoring and design of cytotoxic T
lymphocyte (CTL)-based immunotherapy.
Collapse
Affiliation(s)
- Yinnian Feng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37235, USA.
| |
Collapse
|
29
|
Ghanti D, Patra S, Chowdhury D. Molecular force spectroscopy of kinetochore-microtubule attachment in silico: Mechanical signatures of an unusual catch bond and collective effects. Phys Rev E 2018; 97:052414. [PMID: 29906871 DOI: 10.1103/physreve.97.052414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 06/08/2023]
Abstract
Measurement of the lifetime of attachments formed by a single microtubule (MT) with a single kinetochore (kt) in vitro under force-clamp conditions had earlier revealed a catch-bond-like behavior. In the past, the physical origin of this apparently counterintuitive phenomenon was traced to the nature of the force dependence of the (de)polymerization kinetics of the MTs. Here, first the same model MT-kt attachment is subjected to external tension that increases linearly with time until rupture occurs. In our force-ramp experiments in silico, the model displays the well known "mechanical signatures" of a catch bond probed by molecular force spectroscopy. Exploiting this evidence, we have further strengthened the analogy between MT-kt attachments and common ligand-receptor bonds in spite of the crucial differences in their underlying physical mechanisms. We then extend the formalism to model the stochastic kinetics of an attachment formed by a bundle of multiple parallel microtubules with a single kt considering the effect of rebinding under force-clamp and force-ramp conditions. From numerical studies of the model we predict the trends of variation of the mean lifetime and mean rupture force with the increasing number of MTs in the bundle. Both the mean lifetime and the mean rupture force display nontrivial nonlinear dependence on the maximum number of MTs that can attach simultaneously to the same kt.
Collapse
Affiliation(s)
- Dipanwita Ghanti
- Department of Physics, Indian Institute of Technology Kanpur, 208016, India
| | | | | |
Collapse
|
30
|
Abstract
In this work, computer modeling has been used to show that longer ligands allow biological cells (e.g., blood platelets) to withstand stronger flows after their adhesion to solid walls. A mechanistic model of polymer-mediated ligand-receptor adhesion between a microparticle (cell) and a flat wall has been developed. The theoretical threshold between adherent and non-adherent regimes has been derived analytically and confirmed by simulations. These results lead to a deeper understanding of numerous biophysical processes, e.g., arterial thrombosis, and to the design of new biomimetic colloid-polymer systems.
Collapse
Affiliation(s)
- Aleksey V Belyaev
- M. V. Lomonosov Moscow State University, Faculty of Physics, 119991 Moscow, Russia
| |
Collapse
|
31
|
López-Martínez C, Huidobro C, Albaiceta GM, López-Alonso I. Mechanical stretch modulates cell migration in the lungs. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:28. [PMID: 29430445 DOI: 10.21037/atm.2017.12.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell migration is a core process to preserve homeostasis. Release of chemotactic signals induces changes in cell cytoskeleton to facilitate migration. This includes the rearrangement of cytoskeleton, genomic reprogramming and the modification of the surrounding extracellular matrix (ECM) to allow the motion of cells through. In the special case of repair after acute lung injury, cells must migrate while exposed to an increased mechanical stretch caused either by an increased work of breathing or positive-pressure ventilation. Interestingly, the cell response to this increased mechanical load can modify virtually all the mechanisms involved in cell migration. In this review we explore the interplay between stretch and the machinery responsible for cell migration. A translational approach to find new therapies in acute lung injury must take into account these interactions in order to develop effective treatments that promote lung repair.
Collapse
Affiliation(s)
- Cecilia López-Martínez
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Guillermo M Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
32
|
Zemła J, Danilkiewicz J, Orzechowska B, Pabijan J, Seweryn S, Lekka M. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 2018; 73:115-124. [DOI: 10.1016/j.semcdb.2017.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/27/2022]
|
33
|
Burgos-Bravo F, Figueroa NL, Casanova-Morales N, Quest AFG, Wilson CAM, Leyton L. Single-molecule measurements of the effect of force on Thy-1/αvβ3-integrin interaction using nonpurified proteins. Mol Biol Cell 2017; 29:326-338. [PMID: 29212879 PMCID: PMC5996956 DOI: 10.1091/mbc.e17-03-0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/10/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
Single-molecule measurements combined with a novel mathematical strategy were applied to accurately characterize how bimolecular interactions respond to mechanical force, especially when protein purification is not possible. Specifically, we studied the effect of force on Thy-1/αvβ3 integrin interaction, a mediator of neuron-astrocyte communication. Thy-1 and αvβ3 integrin mediate bidirectional cell-to-cell communication between neurons and astrocytes. Thy-1/αvβ3 interactions stimulate astrocyte migration and the retraction of neuronal prolongations, both processes in which internal forces are generated affecting the bimolecular interactions that maintain cell–cell adhesion. Nonetheless, how the Thy-1/αvβ3 interactions respond to mechanical cues is an unresolved issue. In this study, optical tweezers were used as a single-molecule force transducer, and the Dudko-Hummer-Szabo model was applied to calculate the kinetic parameters of Thy-1/αvβ3 dissociation. A novel experimental strategy was implemented to analyze the interaction of Thy-1-Fc with nonpurified αvβ3-Fc integrin, whereby nonspecific rupture events were corrected by using a new mathematical approach. This methodology permitted accurately estimating specific rupture forces for Thy-1-Fc/αvβ3-Fc dissociation and calculating the kinetic and transition state parameters. Force exponentially accelerated Thy-1/αvβ3 dissociation, indicating slip bond behavior. Importantly, nonspecific interactions were detected even for purified proteins, highlighting the importance of correcting for such interactions. In conclusion, we describe a new strategy to characterize the response of bimolecular interactions to forces even in the presence of nonspecific binding events. By defining how force regulates Thy-1/αvβ3 integrin binding, we provide an initial step towards understanding how the neuron–astrocyte pair senses and responds to mechanical cues.
Collapse
Affiliation(s)
- Francesca Burgos-Bravo
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Nataniel L Figueroa
- Physics Department, Pontificia Universidad Católica de Chile, 782-0436 Santiago, Chile
| | - Nathalie Casanova-Morales
- Biochemistry and Molecular Biology Department, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 838-0494 Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 838-0494 Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile .,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| |
Collapse
|
34
|
Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017; 28:3134-3155. [PMID: 28954860 PMCID: PMC5687017 DOI: 10.1091/mbc.e17-04-0228] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mechanosensing depicts the ability of a cell to sense mechanical cues, which under some circumstances is mediated by the surface receptors. In this review, a four-step model is described for receptor-mediated mechanosensing. Platelet GPIb, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Lining Ju
- Charles Perkins Centre and Heart Research Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Muaz Rushdi
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chenghao Ge
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
35
|
Abstract
The adhesion of malaria infected red blood cells (iRBCs) to host endothelial receptors in the microvasculature, or cytoadhesion, is associated with severe disease pathology such as multiple organ failure and cerebral malaria. Malaria iRBCs have been shown to bind to several receptors, of which intercellular adhesion molecule 1 (ICAM-1) upregulation in brain microvasculature is the only one correlated to cerebral malaria. We utilize a biophysical approach to study the interactions between iRBCs and ICAM-1. At the single molecule level, force spectroscopy experiments reveal that ICAM-1 forms catch bond interactions with Plasmodium falciparum parasite iRBCs. Flow experiments are subsequently conducted to understand multiple bond behavior. Using a robust model that smoothly transitions between our single and multiple bond results, we conclusively demonstrate that the catch bond behavior persists even under flow conditions. The parameters extracted from these experimental results revealed that the rate of association of iRBC-ICAM-1 bonds are ten times lower than iRBC-CD36 (cluster of differentiation 36), a receptor that shows no upregulation in the brains of cerebral malaria patients. Yet, the dissociation rates are nearly the same for both iRBC-receptor interactions. Thus, our results suggest that ICAM-1 may not be the sole mediator responsible for cytoadhesion in the brain.
Collapse
|
36
|
Liu Z, Yago T, Zhang N, Panicker SR, Wang Y, Yao L, Mehta-D'souza P, Xia L, Zhu C, McEver RP. L-selectin mechanochemistry restricts neutrophil priming in vivo. Nat Commun 2017; 8:15196. [PMID: 28497779 PMCID: PMC5437312 DOI: 10.1038/ncomms15196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo.
Collapse
Affiliation(s)
- Zhenghui Liu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Sumith R. Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Padmaja Mehta-D'souza
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Rodger P. McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
37
|
Chakrabarti S, Hinczewski M, Thirumalai D. Phenomenological and microscopic theories for catch bonds. J Struct Biol 2017; 197:50-56. [PMID: 27046010 PMCID: PMC5580263 DOI: 10.1016/j.jsb.2016.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022]
Abstract
Lifetimes of bound states of protein complexes or biomolecule folded states typically decrease when subject to mechanical force. However, a plethora of biological systems exhibit the counter-intuitive phenomenon of catch bonding, where non-covalent bonds become stronger under externally applied forces. The quest to understand the origin of catch-bond behavior has led to the development of phenomenological and microscopic theories that can quantitatively recapitulate experimental data. Here, we assess the successes and limitations of such theories in explaining experimental data. The most widely applied approach is a phenomenological two-state model, which fits all of the available data on a variety of complexes: actomyosin, kinetochore-microtubule, selectin-ligand, and cadherin-catenin binding to filamentous actin. With a primary focus on the selectin family of cell-adhesion complexes, we discuss the positives and negatives of phenomenological models and the importance of evaluating the physical relevance of fitting parameters. We describe a microscopic theory for selectins, which provides a structural basis for catch bonds and predicts a crucial allosteric role for residues Asn82-Glu88. We emphasize the need for new theories and simulations that can mimic experimental conditions, given the complex response of cell adhesion complexes to force and their potential role in a variety of biological contexts.
Collapse
Affiliation(s)
- Shaon Chakrabarti
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, OH 44106, United States
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
38
|
Manibog K, Yen CF, Sivasankar S. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy. Methods Enzymol 2016; 582:297-320. [PMID: 28062039 DOI: 10.1016/bs.mie.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges.
Collapse
Affiliation(s)
- K Manibog
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States
| | - C F Yen
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States
| | - S Sivasankar
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States.
| |
Collapse
|
39
|
Makarov DE. Perspective: Mechanochemistry of biological and synthetic molecules. J Chem Phys 2016; 144:030901. [PMID: 26801011 DOI: 10.1063/1.4939791] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
40
|
Nair A, Chandel S, Mitra MK, Muhuri S, Chaudhuri A. Effect of catch bonding on transport of cellular cargo by dynein motors. Phys Rev E 2016; 94:032403. [PMID: 27739836 DOI: 10.1103/physreve.94.032403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/17/2022]
Abstract
Recent experiments have demonstrated that dynein motors exhibit catch bonding behavior, in which the unbinding rate of a single dynein decreases with increasing force, for a certain range of force. Motivated by these experiments, we study the effect of catch bonding on unidirectional transport properties of cellular cargo carried by multiple dynein motors. We introduce a threshold force bond deformation (TFBD) model, consistent with the experiments, wherein catch bonding sets in beyond a critical applied load force. We find catch bonding can result in dramatic changes in the transport properties, which are in sharp contrast to kinesin-driven unidirectional transport, where catch bonding is absent. We predict that under certain conditions, the average velocity of the cellular cargo can actually increase as applied load is increased. We characterize the transport properties in terms of a velocity profile plot in the parameter space of the catch bond strength and the stall force of the motor. This plot yields predictions that may be experimentally accessed by suitable modifications of motor transport and binding properties.
Collapse
Affiliation(s)
- Anil Nair
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Sameep Chandel
- Indian Institute of Science Education and Research Mohali, Knowledge City, Punjab 140306, India
| | | | - Sudipto Muhuri
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Abhishek Chaudhuri
- Indian Institute of Science Education and Research Mohali, Knowledge City, Punjab 140306, India
| |
Collapse
|
41
|
Cytotoxicity and Initial Biocompatibility of Endodontic Biomaterials (MTA and Biodentine™) Used as Root-End Filling Materials. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7926961. [PMID: 27595108 PMCID: PMC4993924 DOI: 10.1155/2016/7926961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/23/2016] [Accepted: 07/13/2016] [Indexed: 01/31/2023]
Abstract
Objective. The aim of this study was to evaluate the cytotoxicity and cellular adhesion of Mineral Trioxide Aggregate (MTA) and Biodentine (BD) on periodontal ligament fibroblasts (PDL). Methods. PDL cells were obtained from nonerupted third molars and cultured; MTS cellular profusion test was carried out in two groups: MTA and BD, with respective controls at different time periods. Also, the LIVE/DEAD assay was performed at 24 h. For evaluation of cellular adhesion, immunocytochemistry was conducted to discern the expression of Integrin β1 and Vinculin at 12 h and 24 h. Statistical analysis was performed by the Kruskal-Wallis and Mann-Whitney U tests. Results. MTA and BD exhibited living cells up to 7 days. More expressions of Integrin β1 and Vinculin were demonstrated in the control group, followed by BD and MTA, which also showed cellular loss and morphological changes. There was a significant difference in the experimental groups cultured for 5 and 7 days compared with the control, but there was no significant statistical difference between both cements. Conclusions. Neither material was cytotoxic during the time evaluated. There was an increase of cell adhesion through the expression of focal contacts observed in the case of BD, followed by MTA, but not significantly.
Collapse
|
42
|
Seo D, Southard KM, Kim JW, Lee HJ, Farlow J, Lee JU, Litt DB, Haas T, Alivisatos AP, Cheon J, Gartner ZJ, Jun YW. A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time. Cell 2016; 165:1507-1518. [PMID: 27180907 PMCID: PMC4892966 DOI: 10.1016/j.cell.2016.04.045] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 02/17/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Tools capable of imaging and perturbing mechanical signaling pathways with fine spatiotemporal resolution have been elusive, despite their importance in diverse cellular processes. The challenge in developing a mechanogenetic toolkit (i.e., selective and quantitative activation of genetically encoded mechanoreceptors) stems from the fact that many mechanically activated processes are localized in space and time yet additionally require mechanical loading to become activated. To address this challenge, we synthesized magnetoplasmonic nanoparticles that can image, localize, and mechanically load targeted proteins with high spatiotemporal resolution. We demonstrate their utility by investigating the cell-surface activation of two mechanoreceptors: Notch and E-cadherin. By measuring cellular responses to a spectrum of spatial, chemical, temporal, and mechanical inputs at the single-molecule and single-cell levels, we reveal how spatial segregation and mechanical force cooperate to direct receptor activation dynamics. This generalizable technique can be used to control and understand diverse mechanosensitive processes in cell signaling. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Daeha Seo
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Chemistry and Department of Materials Sciences and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy NanoScience Institute, University of California, Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kaden M Southard
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ji-Wook Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Jung Lee
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Justin Farlow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jung-Uk Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - David B Litt
- Department of Chemistry and Department of Materials Sciences and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy NanoScience Institute, University of California, Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas Haas
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - A Paul Alivisatos
- Department of Chemistry and Department of Materials Sciences and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy NanoScience Institute, University of California, Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Young-Wook Jun
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA 94115, USA; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
43
|
Abstract
During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending on the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or nonspecific adhesion under various environmental conditions. This article reviews the recent advances in our understanding of the secretion, assembly, and regulation of the bacterial adhesins during biofilm formation, with a particular emphasis on the fimbrial, nonfimbrial, and discrete polysaccharide adhesins in Gram-negative bacteria.
Collapse
|
44
|
MacKay JL, Hammer DA. Stiff substrates enhance monocytic cell capture through E-selectin but not P-selectin. Integr Biol (Camb) 2015; 8:62-72. [PMID: 26626697 DOI: 10.1039/c5ib00199d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stiffening of blood vessel walls is associated with inflammatory diseases, including atherosclerosis, diabetes, and obesity. These diseases are driven by the excessive recruitment of inflammatory leukocytes out of the bloodstream and into tissues, but whether vascular stiffening plays a direct role in this process is not clear. In this study, we investigated the possibility that leukocyte capture from blood flow is enhanced on stiffer substrates. We modeled blood flow in vitro by perfusing monocytic cells over hydrogels that matched the stiffness of healthy and diseased arteries. The hydrogels were coated with either E-selectin or P-selectin, which are the endothelial adhesion proteins known to mediate immune cell capture from flow. Interestingly, we discovered that cell attachment to P-selectin coated gels was not dependent on substrate stiffness, while attachment through E-selectin was enhanced on stiffer gels. Specifically we found that on E-selectin coated gels, cells attached in greater numbers, remained attached for longer time periods, and rolled more slowly on stiff gels than soft gels. These results suggest that vascular stiffening could promote leukocyte adhesion to vessel walls where E-selectin is expressed, but may have less of an effect when P-selectin is also present.
Collapse
Affiliation(s)
- Joanna L MacKay
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Hoffman BD, Yap AS. Towards a Dynamic Understanding of Cadherin-Based Mechanobiology. Trends Cell Biol 2015; 25:803-814. [DOI: 10.1016/j.tcb.2015.09.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 01/23/2023]
|
46
|
Adherens Junctions Revisualized: Organizing Cadherins as Nanoassemblies. Dev Cell 2015; 35:12-20. [DOI: 10.1016/j.devcel.2015.09.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/27/2015] [Accepted: 09/17/2015] [Indexed: 01/31/2023]
|
47
|
Abstract
Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| |
Collapse
|
48
|
E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 2015; 17:533-9. [PMID: 25925582 DOI: 10.1038/ncb3136] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During epithelial morphogenesis, E-cadherin adhesive junctions play an important part in mechanically coupling the contractile cortices of cells together, thereby distributing the stresses that drive cell rearrangements at both local and tissue levels. Here we discuss the concept that cellular contractility and E-cadherin-based adhesion are functionally integrated by biomechanical feedback pathways that operate on molecular, cellular and tissue scales.
Collapse
|
49
|
Ross RJ, Yates C, Baker R. Inference of cell–cell interactions from population density characteristics and cell trajectories on static and growing domains. Math Biosci 2015; 264:108-18. [DOI: 10.1016/j.mbs.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 01/17/2023]
|
50
|
Ruggeri ZM, Mendolicchio GL. Interaction of von Willebrand factor with platelets and the vessel wall. Hamostaseologie 2015; 35:211-24. [PMID: 25612915 DOI: 10.5482/hamo-14-12-0081] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 01/19/2023] Open
Abstract
The initiation of thrombus formation at sites of vascular injury to secure haemostasis after tissue trauma requires the interaction of surface-exposed von Willebrand factor (VWF) with its primary platelet receptor, the glycoprotein (GP) Ib-IX-V complex. As an insoluble component of the extracellular matrix (ECM) of endothelial cells, VWF can directly initiate platelet adhesion. Circulating plasma VWF en-hances matrix VWF activity by binding to structures that become exposed to flowing blood, notably collagen type I and III in deeper layers of the vessel along with microfibrillar collagen type VI in the subendothelium. Moreover, plasma VWF is required to support platelet-to-platelet adhesion - i. e. aggregation - which promotes thrombus growth and consolidation. For these reasons, understanding how plasma VWF interaction with platelet receptors is regulated, particularly any distinctive features of GPIb binding to soluble as opposed to immobilized VWF, is of paramount importance in vascular biology. This brief review will highlight knowledge acquired and key problems that remain to be solved to elucidate fully the role of VWF in normal haemostasis and pathological thrombosis.
Collapse
Affiliation(s)
- Z M Ruggeri
- Zaverio M. Ruggeri, MD, The Scripps Research Institute, Maildrop: MEM 175, 10550 North Torrey Pines Road, La Jolla, California 92037, USA, Tel. 858/784 89 50, Fax 858/784 20 26, E-mail:
| | | |
Collapse
|