1
|
Garcia-Roca A, Pérez-Soto R, Stoica G, Benet-Buchholz J, Maseras F, Kleij AW. Comprehensive Mechanistic Scenario for the Cu-Mediated Asymmetric Propargylic Sulfonylation Forging Tertiary Carbon Stereocenters. J Am Chem Soc 2023; 145:6442-6452. [PMID: 36883980 DOI: 10.1021/jacs.3c00188] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Metal-catalyzed propargylic transformations represent a powerful tool in organic synthesis to achieve new carbon-carbon and carbon-heteroatom bonds. However, detailed knowledge about the mechanistic intricacies related to the asymmetric formation of propargylic products featuring challenging heteroatom-substituted tertiary stereocenters is scarce and therefore provides an inspiring challenge. Here, we present a meticulous mechanistic analysis of a propargylic sulfonylation reaction promoted by a chiral Cu catalyst through a combination of experimental techniques and computational studies. Surprisingly, the enantio-discriminating step is not the coupling between the nucleophile and the propargylic precursor but rather the following proto-demetalation step, a scenario further validated by computing enantio-induction levels under other previously reported experimental conditions. A full mechanistic scenario for this propargylic substitution reaction is provided, including a catalyst pre-activation stage, a productive catalytic cycle, and an unanticipated non-linear effect at the Cu(I) oxidation level.
Collapse
Affiliation(s)
- Aleria Garcia-Roca
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Raúl Pérez-Soto
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Georgiana Stoica
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluïs Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Davydov R, Herzog AE, Jodts RJ, Karlin KD, Hoffman BM. End-On Copper(I) Superoxo and Cu(II) Peroxo and Hydroperoxo Complexes Generated by Cryoreduction/Annealing and Characterized by EPR/ENDOR Spectroscopy. J Am Chem Soc 2022; 144:377-389. [PMID: 34981938 PMCID: PMC8785356 DOI: 10.1021/jacs.1c10252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this report, we investigate the physical and chemical properties of monocopper Cu(I) superoxo and Cu(II) peroxo and hydroperoxo complexes. These are prepared by cryoreduction/annealing of the parent [LCuI(O2)]+ Cu(I) dioxygen adducts with the tripodal, N4-coordinating, tetradentate ligands L = PVtmpa, DMMtmpa, TMG3tren and are best described as [LCuII(O2•-)]+ Cu(II) complexes that possess end-on (η1-O2•-) superoxo coordination. Cryogenic γ-irradiation (77 K) of the EPR-silent parent complexes generates mobile electrons from the solvent that reduce the [LCuII(O2•-)]+ within the frozen matrix, trapping the reduced form fixed in the structure of the parent complex. Cryoannealing, namely progressively raising the temperature of a frozen sample in stages and then cooling back to low temperature at each stage for examination, tracks the reduced product as it relaxes its structure and undergoes chemical transformations. We employ EPR and ENDOR (electron-nuclear double resonance) as powerful spectroscopic tools for examining the properties of the states that form. Surprisingly, the primary products of reduction of the Cu(II) superoxo species are metastable cuprous superoxo [LCuI(O2•-)]+ complexes. During annealing to higher temperatures this state first undergoes internal electron transfer (IET) to form the end-on Cu(II) peroxo state, which is then protonated to form Cu(II)-OOH species. This is the first time these methods, which have been used to determine key details of metalloenzyme catalytic cycles and are a powerful tools for tracking PCET reactions, have been applied to copper coordination compounds.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Austin E Herzog
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Richard J Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| |
Collapse
|
3
|
Gómez‐Vidales V, Castillo I. Thioether‐Containing Copper Complexes as PHM, DβM, and TβM Model Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Virginia Gómez‐Vidales
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, CU 04510 México
| | - Ivan Castillo
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, CU 04510 México
| |
Collapse
|
4
|
Opalade AA, Parham JD, Day VW, Jackson TA. Characterization and chemical reactivity of room-temperature-stable Mn III-alkylperoxo complexes. Chem Sci 2021; 12:12564-12575. [PMID: 34703542 PMCID: PMC8494025 DOI: 10.1039/d1sc01976g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
While alkylperoxomanganese(iii) (MnIII-OOR) intermediates are proposed in the catalytic cycles of several manganese-dependent enzymes, their characterization has proven to be a challenge due to their inherent thermal instability. Fundamental understanding of the structural and electronic properties of these important intermediates is limited to a series of complexes with thiolate-containing N4S- ligands. These well-characterized complexes are metastable yet unreactive in the direct oxidation of organic substrates. Because the stability and reactivity of MnIII-OOR complexes are likely to be highly dependent on their local coordination environment, we have generated two new MnIII-OOR complexes using a new amide-containing N5 - ligand. Using the 2-(bis((6-methylpyridin-2-yl)methyl)amino)-N-(quinolin-8-yl)acetamide (H6Medpaq) ligand, we generated the [MnIII(OO t Bu)(6Medpaq)]OTf and [MnIII(OOCm)(6Medpaq)]OTf complexes through reaction of their MnII or MnIII precursors with t BuOOH and CmOOH, respectively. Both of the new MnIII-OOR complexes are stable at room-temperature (t 1/2 = 5 and 8 days, respectively, at 298 K in CH3CN) and capable of reacting directly with phosphine substrates. The stability of these MnIII-OOR adducts render them amenable for detailed characterization, including by X-ray crystallography for [MnIII(OOCm)(6Medpaq)]OTf. Thermal decomposition studies support a decay pathway of the MnIII-OOR complexes by O-O bond homolysis. In contrast, direct reaction of [MnIII(OOCm)(6Medpaq)]+ with PPh3 provided evidence of heterolytic cleavage of the O-O bond. These studies reveal that both the stability and chemical reactivity of MnIII-OOR complexes can be tuned by the local coordination sphere.
Collapse
Affiliation(s)
- Adedamola A Opalade
- The University of Kansas, Department of Chemistry, Center for Environmentally Beneficial Catalysis 1567 Irving Hill Road Lawrence KS 66045 USA +1-785-864-3968
| | - Joshua D Parham
- The University of Kansas, Department of Chemistry, Center for Environmentally Beneficial Catalysis 1567 Irving Hill Road Lawrence KS 66045 USA +1-785-864-3968
| | - Victor W Day
- The University of Kansas, Department of Chemistry, Center for Environmentally Beneficial Catalysis 1567 Irving Hill Road Lawrence KS 66045 USA +1-785-864-3968
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry, Center for Environmentally Beneficial Catalysis 1567 Irving Hill Road Lawrence KS 66045 USA +1-785-864-3968
| |
Collapse
|
5
|
Romo AIB, Carepo MP, Levín P, Nascimento OR, Díaz DE, Rodríguez-López J, León IE, Bezerra LF, Lemus L, Diógenes ICN. Synergy of DNA intercalation and catalytic activity of a copper complex towards improved polymerase inhibition and cancer cell cytotoxicity. Dalton Trans 2021; 50:11931-11940. [PMID: 34374389 DOI: 10.1039/d1dt01358k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the binding of metal complexes to DNA to boost cancer cell cytotoxicity requires fine tuning of their structural and chemical properties. Copper has been used as a metal center in compounds containing intercalating ligands due to its ability to catalytically generate reactive oxygen species (ROS), such as hydroxyl radicals (OH˙). We envision the synergy of DNA binding and ROS generation in proximity to target DNA as a powerful chemotherapy treatment. Here, we explore the use of [Cu(2CP-Bz-SMe)]2+ (2CP-Bz-SMe = 1,3-bis(1,10-phenanthrolin-2-yloxy)-N-(4-(methylthio)benzylidene)propan-2-amine) for this purpose by characterizing its cytotoxicity, DNA binding, and ability to affect DNA replication through the polymerase chain reaction - PCR and nuclease assays. We determined the binding (Kb) and Stern-Volmer constants (KSV) for complex-DNA association of 5.8 ± 0.14 × 104 and 1.64 (±0.08), respectively, through absorption titration and competitive fluorescence experiments. These values were superior to those of other Cu-complex intercalators. We hypothesize that the distorted trigonal bipyramidal geometry of [Cu(2CP-Bz-SMe)]2+ allows the phenanthroline fragments to be better accommodated into the DNA double helix. Moreover, the aromaticity of these fragments increases the local hydrophobicity thus increasing the affinity for the hydrophobic domains of DNA. Nuclease assays in the presence of common reducing agents ascorbic acid, nicotinamide adenine dinucleotide, and glutathione showed the effective degradation of DNA due to the in situ generation of OH˙. The [Cu(2CP-Bz-SMe)]2+ complex showed cytotoxicity against the following human cancer cells lines A549, MCF-7, MDA-MB-231 and MG-63 with half maximal inhibitory concentration (IC50) values of 4.62 ± 0.48, 5.20 ± 0.76, 5.70 ± 0.42 and 2.88 ± 0.66 μM, respectively. These low values of IC50, which are promising if compared to that of cisplatin, are ascribed to the synergistic effect of ROS generation with the intercalation ability into the DNA minor grooves and blocking DNA replication. This study introduces new principles for synergizing the chemical and structural properties of intercalation compounds for improved drug-DNA interactions targeting cancer.
Collapse
Affiliation(s)
- Adolfo I B Romo
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Cx. Postal 6021, Fortaleza, CE 60451-970, Brasil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Morimoto Y, Kawai M, Nakanishi A, Sugimoto H, Itoh S. Controlling the Reactivity of Copper(II) Acylperoxide Complexes. Inorg Chem 2021; 60:8554-8565. [PMID: 33848148 DOI: 10.1021/acs.inorgchem.1c00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The redox state of the metallomonooxygenases is finely tuned by imposing specific coordination environments on the metal center to reduce the activation energy for the generation of active-oxygen species and subsequent substrate oxygenation reactions. In this study, copper(II) complexes supported by a series of linear tetradentate ligands consisting of a rigid 6-, 7-, or 8-membered cyclic diamine with two pyridylmethyl (-CH2Py) side arms (L6Pym2, L7Pym2, and L8Pym2) are employed to examine the effects of the coordination environment on the reactivity of their acylperoxide adduct complexes. The UV-vis and electron paramagnetic resonance spectroscopic data indicate that the ligand-field splitting between the dx2-y2 and dz2 orbitals of the starting copper(II) complexes increase with an increase of the ring size of the diamine moiety (L6Pym2 → L7Pym2 → L8Pym2). In the reaction of these copper(II) complexes with m-chloroperbenzoic acid (m-CPBA), the L6Pym2 complex gives a stable m-CPBA adduct complex, whereas the L7Pym2 and L8Pym2 complexes are immediately converted to the corresponding m-chlorobenzoic acid (m-CBA) adducts, indicating that the reactivity of the copper(II) acylperoxide complexes largely depends on the coordination environment induced by the supporting ligands. Density functional theory (DFT) calculations on the m-CPBA adduct complexes show that the ligand-field-splitting energy increases with an increase of the ring size of the diamine moiety, as in the case of the starting copper(II) complexes, which enhances the reactivity of the m-CPBA adduct complexes. The reasons for such different reactivities of the m-CPBA adduct complexes are evaluated by using DFT calculations.
Collapse
Affiliation(s)
- Yuma Morimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makito Kawai
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aya Nakanishi
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Bhadra M, Transue WJ, Lim H, Cowley RE, Lee JYC, Siegler MA, Josephs P, Henkel G, Lerch M, Schindler S, Neuba A, Hodgson KO, Hedman B, Solomon EI, Karlin KD. A Thioether-Ligated Cupric Superoxide Model with Hydrogen Atom Abstraction Reactivity. J Am Chem Soc 2021; 143:3707-3713. [PMID: 33684290 DOI: 10.1021/jacs.1c00260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The central role of cupric superoxide intermediates proposed in hormone and neurotransmitter biosynthesis by noncoupled binuclear copper monooxygenases like dopamine-β-monooxygenase has drawn significant attention to the unusual methionine ligation of the CuM ("CuB") active site characteristic of this class of enzymes. The copper-sulfur interaction has proven critical for turnover, raising still-unresolved questions concerning Nature's selection of an oxidizable Met residue to facilitate C-H oxygenation. We describe herein a model for CuM, [(TMGN3S)CuI]+ ([1]+), and its O2-bound analog [(TMGN3S)CuII(O2•-)]+ ([1·O2]+). The latter is the first reported cupric superoxide with an experimentally proven Cu-S bond which also possesses demonstrated hydrogen atom abstraction (HAA) reactivity. Introduction of O2 to a precooled solution of the cuprous precursor [1]B(C6F5)4 (-135 °C, 2-methyltetrahydrofuran (2-MeTHF)) reversibly forms [1·O2]B(C6F5)4 (UV/vis spectroscopy: λmax 442, 642, 742 nm). Resonance Raman studies (413 nm) using 16O2 [18O2] corroborated the identity of [1·O2]+ by revealing Cu-O (446 [425] cm-1) and O-O (1105 [1042] cm-1) stretches, and extended X-ray absorption fine structure (EXAFS) spectroscopy showed a Cu-S interatomic distance of 2.55 Å. HAA reactivity between [1·O2]+ and TEMPO-H proceeds rapidly (1.28 × 10-1 M-1 s-1, -135 °C, 2-MeTHF) with a primary kinetic isotope effect of kH/kD = 5.4. Comparisons of the O2-binding behavior and redox activity of [1]+ vs [2]+, the latter a close analog of [1]+ but with all N atom ligation (i.e., N3S vs N4), are presented.
Collapse
Affiliation(s)
- Mayukh Bhadra
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wesley J Transue
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ryan E Cowley
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jung Yoon C Lee
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick Josephs
- Department of Chemistry, University of Paderborn, Paderborn D-33098, Germany
| | - Gerald Henkel
- Department of Chemistry, University of Paderborn, Paderborn D-33098, Germany
| | - Markus Lerch
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig University of Gießen, Giessen D-35392, Germany
| | - Siegfried Schindler
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig University of Gießen, Giessen D-35392, Germany
| | - Adam Neuba
- Department of Chemistry, University of Paderborn, Paderborn D-33098, Germany
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Kleinhans G, Chan AKW, Leung MY, Liles DC, Fernandes MA, Yam VWW, Fernández I, Bezuidenhout DI. Synthesis and Photophysical Properties of T-Shaped Coinage-Metal Complexes. Chemistry 2020; 26:6993-6998. [PMID: 32182384 PMCID: PMC7317956 DOI: 10.1002/chem.202000726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 11/28/2022]
Abstract
The photophysical properties of a series of T‐shaped coinage d10 metal complexes, supported by a bis(mesoionic carbene)carbazolide (CNC) pincer ligand, are explored. The series includes a rare new example of a tridentate T‐shaped AgI complex. Post‐complexation modification of the AuI complex provides access to a linear cationic AuI complex following ligand alkylation, or the first example of a cationic square planar AuIII−F complex from electrophilic attack on the metal centre. Emissions ranging from blue (CuI) to orange (AgI) are obtained, with variable contributions of thermally‐dependent fluorescence and phosphorescence to the observed photoluminescence. Green emissions are observed for all three gold complexes (neutral T‐shaped AuI, cationic linear AuI and square planar cationic AuIII). The higher quantum yield and longer decay lifetime of the linear gold(I) complex are indicative of increased phosphorescence contribution.
Collapse
Affiliation(s)
- George Kleinhans
- Chemistry Department, University of Pretoria, Private X20, Hatfield, 0028, South Africa.,Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Alan K-W Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - David C Liles
- Chemistry Department, University of Pretoria, Private X20, Hatfield, 0028, South Africa
| | - Manuel A Fernandes
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Vivian W-W Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Israel Fernández
- Departamento de Química Orgánica I, Centro de Innovación en Química Avanzado (ORFEO-CINQA) and, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Daniela I Bezuidenhout
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.,Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
10
|
Nag SS, Mukherjee G, Barman P, Sastri CV. Influence of induced steric on the switchover reactivity of mononuclear Cu(II)-alkylperoxo complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Mandal S, Hari N, Mondal S, Mohanta S. Dinuclear, dimer-of-dinuclear and new type of polymeric metal complexes of copper(II)–zinc(II)/cadmium(II) derived from a less explored compartmental ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Itoh S, Abe T, Morimoto Y, Sugimoto H. 2-(2-Pyridyl)ethylamine (Pye) ligands in copper(I)-dioxygen chemistry. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Jia X, Peng P, Cui J, Xin N, Huang X. Four N,O-Bidentate-Chelated Ligand-Tunable Copper(II) Complexes: Synthesis, Structural Characterization and Exceptional Catalytic Properties for Chan-Lam Coupling Reactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xuefeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Pai Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Jing Cui
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Nana Xin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry & Chemical Engineering; Liaocheng University; Liaocheng Shandong Province 252059 China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry & Chemical Engineering; Liaocheng University; Liaocheng Shandong Province 252059 China
| |
Collapse
|
14
|
Quist DA, Diaz DE, Liu JJ, Karlin KD. Activation of dioxygen by copper metalloproteins and insights from model complexes. J Biol Inorg Chem 2017; 22:253-288. [PMID: 27921179 PMCID: PMC5600896 DOI: 10.1007/s00775-016-1415-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/11/2016] [Indexed: 02/08/2023]
Abstract
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O2-activation in copper proteins are addressed.
Collapse
Affiliation(s)
- David A Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Daniel E Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeffrey J Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
15
|
Hong S, Lee YM, Ray K, Nam W. Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.07.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chem Rev 2017; 117:2059-2107. [PMID: 28103018 PMCID: PMC5963733 DOI: 10.1021/acs.chemrev.6b00636] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A longstanding research goal has been to understand the nature and role of copper-oxygen intermediates within copper-containing enzymes and abiological catalysts. Synthetic chemistry has played a pivotal role in highlighting the viability of proposed intermediates and expanding the library of known copper-oxygen cores. In addition to the number of new complexes that have been synthesized since the previous reviews on this topic in this journal (Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013-1046 and Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076), the field has seen significant expansion in the (1) range of cores synthesized and characterized, (2) amount of mechanistic work performed, particularly in the area of organic substrate oxidation, and (3) use of computational methods for both the corroboration and prediction of proposed intermediates. The scope of this review has been limited to well-characterized examples of copper-oxygen species but seeks to provide a thorough picture of the spectroscopic characteristics and reactivity trends of the copper-oxygen cores discussed.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Nicole L Gagnon
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin D Neisen
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Debanjan Dhar
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andrew D Spaeth
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Gereon M Yee
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Kim B, Jeong D, Cho J. Nucleophilic reactivity of copper(ii)–alkylperoxo complexes. Chem Commun (Camb) 2017; 53:9328-9331. [DOI: 10.1039/c7cc03965d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper(ii)–alkylperoxo adducts, [Cu(CHDAP)(OOR)]+ (CHDAP = N,N′-dicyclohexyl-2,11-diaza[3,3](2,6)pyridinophane; R = C(CH3)2Ph and tBu), perform aldehyde deformylation (i.e., nucleophilic reactivity) under the stoichiometric reaction conditions.
Collapse
Affiliation(s)
- Bohee Kim
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| | - Donghyun Jeong
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| |
Collapse
|
18
|
Zeng Y, Liu SJ, Liu CM, Xie YR, Du ZY. Diversified magnetic behaviors of new nickel(ii) and copper(ii) azido coordination polymers templated by diethyl or triethyl amines. NEW J CHEM 2017. [DOI: 10.1039/c6nj03268k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The reactions of NiII or CuII ions with N3− anions in the presence of templated diethyl or triethyl amines afford three new azido-bridged coordination polymers, which exhibit metamagnetism, spin glass and canted ferromagnetism, respectively.
Collapse
Affiliation(s)
- Ying Zeng
- Key Laboratory of Jiangxi University for Functional Materials Chemistry
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Sui-Jun Liu
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Yong-Rong Xie
- Key Laboratory of Jiangxi University for Functional Materials Chemistry
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Zi-Yi Du
- Key Laboratory of Jiangxi University for Functional Materials Chemistry
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| |
Collapse
|
19
|
Mandal BH, Rahman ML, Yusoff MM, Chong KF, Sarkar SM. Bio-waste corn-cob cellulose supported poly(hydroxamic acid) copper complex for Huisgen reaction: Waste to wealth approach. Carbohydr Polym 2017; 156:175-181. [DOI: 10.1016/j.carbpol.2016.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022]
|
20
|
Abstract
Primary copper(I)-dioxygen (O2) adducts, cupric-superoxide complexes, have been proposed intermediates in copper-containing dioxygen-activating monooxygenase and oxidase enzymes. Here, mechanisms of C-H activation by reactive copper-(di)oxygen intermediates are discussed, with an emphasis on cupric-superoxide species. Over the past 25 years, many synthetically derived cupric-superoxide model complexes have been reported. Due to the thermal instability of these intermediates, early studies focused on increasing their stability and obtaining physical characterization. More recently, in an effort to gain insight into the possible substrate oxidation step in some copper monooxygenases, several cupric-superoxide complexes have been used as surrogates to probe substrate scope and reaction mechanisms. These cupric superoxides are capable of oxidizing substrates containing weak O-H and C-H bonds. Mechanistic studies for some enzymes and model systems have supported an initial hydrogen-atom abstraction via the cupric-superoxide complex as the first step of substrate oxidation.
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Chemistry, Johns Hopkins University, Baltimore MD 21218 (USA)
| | - Daniel E Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore MD 21218 (USA)
| | - David A Quist
- Department of Chemistry, Johns Hopkins University, Baltimore MD 21218 (USA)
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore MD 21218 (USA)
| |
Collapse
|
21
|
Romo AIB, Abreu DS, de F. Paulo T, Carepo MSP, Sousa EHS, Lemus L, Aliaga C, Batista AA, Nascimento OR, Abruña HD, Diógenes ICN. Hydroxyl Radical Generation and DNA Nuclease Activity: A Mechanistic Study Based on a Surface-Immobilized Copper Thioether Clip-Phen Derivative. Chemistry 2016; 22:10081-9. [DOI: 10.1002/chem.201601719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Adolfo I. B. Romo
- Departamento de Química Orgânica e Inorgânica; Universidade Federal do Ceará; Cx. Postal 6021 Fortaleza, CE 60451-970 Brasil
| | - Dieric S. Abreu
- Departamento de Química Orgânica e Inorgânica; Universidade Federal do Ceará; Cx. Postal 6021 Fortaleza, CE 60451-970 Brasil
| | - Tércio de F. Paulo
- Departamento de Química Orgânica e Inorgânica; Universidade Federal do Ceará; Cx. Postal 6021 Fortaleza, CE 60451-970 Brasil
| | - Marta S. P. Carepo
- Departamento de Química Orgânica e Inorgânica; Universidade Federal do Ceará; Cx. Postal 6021 Fortaleza, CE 60451-970 Brasil
| | - Eduardo H. S. Sousa
- Departamento de Química Orgânica e Inorgânica; Universidade Federal do Ceará; Cx. Postal 6021 Fortaleza, CE 60451-970 Brasil
| | - Luis Lemus
- Facultad de Química y Biología; Universidad de Santiago de Chile, Alameda 3363, Estación Central; Santiago Chile
| | - Carolina Aliaga
- Facultad de Química y Biología; Universidad de Santiago de Chile, Alameda 3363, Estación Central; Santiago Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología; CEDENNA; Santiago Chile
| | - Alzir A. Batista
- Departamento de Química; Universidade Federal de São Carlos; CP 676, CEP 13565-905 São Carlos, SP Brazil
| | - Otaciro R. Nascimento
- Departamento de Física e Informática; Instituto de Física de São Carlos; Universidade de São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology; Cornell University; Ithaca NY 14853-1301 USA
| | - Izaura C. N. Diógenes
- Departamento de Química Orgânica e Inorgânica; Universidade Federal do Ceará; Cx. Postal 6021 Fortaleza, CE 60451-970 Brasil
| |
Collapse
|
22
|
Uhl W, Bruchhage JS, Willeke M, Hepp A, Kösters J. Reactivity of a Monomeric Aluminium Hydrazide towards Isocyanates and Isothiocyanates: Active Lewis Pair Behaviour versus Classical Insertion Reactions. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Werner Uhl
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstrasse 3048149MünsterGermany
| | - Julia Silissa Bruchhage
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstrasse 3048149MünsterGermany
| | - Matthias Willeke
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstrasse 3048149MünsterGermany
| | - Alexander Hepp
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstrasse 3048149MünsterGermany
| | - Jutta Kösters
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstrasse 3048149MünsterGermany
| |
Collapse
|
23
|
Itoh S. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions. Acc Chem Res 2015; 48:2066-74. [PMID: 26086527 DOI: 10.1021/acs.accounts.5b00140] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex. Reactivity of a mononuclear copper(II)-alkylperoxide complex has also been examined to get insights into the intrinsic reactivity of copper(II)-peroxide species, which is usually considered as a sluggish oxidant or just a precursor of copper-oxyl radical type reactive species. However, our studies have unambiguously demonstrated that copper(II)-alkylperoxide complex can be a direct oxidant for C-H bond activation of organic substrates, when the C-H bond activation is coupled with O-O bond cleavage (concerted mechanism). The reactivity studies of these mononuclear copper(II) active-oxygen species (superoxide and alkylperoxide) will provide significantly important insights into the catalytic mechanism of copper monooxygenases as well as copper-catalyzed oxidation reactions in synthetic organic chemistry.
Collapse
Affiliation(s)
- Shinobu Itoh
- Department of Material and
Life Science, Division of Advanced Science and Biotechnology, Graduate
School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Kim S, Lee JY, Cowley RE, Ginsbach JW, Siegler MA, Solomon EI, Karlin KD. A N3S(thioether)-ligated Cu(II)-superoxo with enhanced reactivity. J Am Chem Soc 2015; 137:2796-9. [PMID: 25697226 DOI: 10.1021/ja511504n] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Previous efforts to synthesize a cupric superoxide complex possessing a thioether donor have resulted in the formation of an end-on trans-peroxo-dicopper(II) species, [{(Ligand)Cu(II)}2(μ-1,2-O2(2-))](2+). Redesign/modification of previous N3S tetradentate ligands has now allowed for the stabilization of the monomeric, superoxide product possessing a S(thioether) ligation, [((DMA)N3S)Cu(II)(O2(•-))](+) (2(S)), as characterized by UV-vis and resonance Raman spectroscopies. This complex mimics the putative Cu(II)(O2(•-)) active species of the copper monooxygenase PHM and exhibits enhanced reactivity toward both O-H and C-H substrates in comparison to close analogues [(L)Cu(II)(O2(•-))](+), where L contains only nitrogen donor atoms. Also, comparisons of [(L)Cu(II/I)](n+) compound reduction potentials (L = various N4 vs (DMA)N3S ligands) provide evidence that (DMA)N3S is a weaker donor to copper ion than is found for any N4 ligand-complex.
Collapse
Affiliation(s)
- Sunghee Kim
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Abe T, Morimoto Y, Tano T, Mieda K, Sugimoto H, Fujieda N, Ogura T, Itoh S. Geometric Control of Nuclearity in Copper(I)/Dioxygen Chemistry. Inorg Chem 2014; 53:8786-94. [DOI: 10.1021/ic501461n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tsukasa Abe
- Department of Material and Life Science, Division of
Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuma Morimoto
- Department of Material and Life Science, Division of
Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuro Tano
- Department of Material and Life Science, Division of
Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kaoru Mieda
- Picobiology Institute,
Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideki Sugimoto
- Department of Material and Life Science, Division of
Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobutaka Fujieda
- Department of Material and Life Science, Division of
Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Ogura
- Picobiology Institute,
Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shinobu Itoh
- Department of Material and Life Science, Division of
Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|