1
|
Schulz RA, Karaca US, Diefenbach M, Werthmann NJA, Dechert S, Hansmann MM, Holthausen MC, Meyer F. From a P-Bridging Phosphaketene to μ-Phosphinidenide and μ-Diphosphaurea Units at a Dinickel Core. Chemistry 2025; 31:e202404095. [PMID: 39584492 DOI: 10.1002/chem.202404095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
Salt metathesis of dinickel(II) complex LNi2Br (1; L is a dinucleating pyrazolate ligand with two β-diketiminato chelate arms) with Na(OCP) ⋅ (dioxane)2.5 yielded LNi2(PCO) (2) with a P-bridging phosphaethynolate. Further reaction of 2 with benzyl isocyanide or with an N-heterocyclic carbene (NHC) triggered decarbonylation and gave LNi2(PCN-CH2Ph) (3) and LNi2P(NHC) (4) with P-bridging cyanophosphide and NHC-phosphinidenide, respectively. Electronic structure analysis indicated a μ2-η2 : η1 binding mode of the PCO- anion between the two NiII ions in 2, which is even more pronounced for the [PCN(-CH2Ph)]- anion in 3. DFT assessment of the formation mechanism of 4 showed that attack at the phosphaketene-C atom is kinetically preferred but reversible and unproductive, while kinetically more demanding back-side SN2 attack at the phosphaketene-P atom triggers CO release with 4 as thermodynamic product. Nucleophilic addition at the phosphaketene-C could be demonstrated by the strongly exergonic reaction of 2 with KPPh2, giving unstable K[LNi2(P(O)CPPh2)] (5) with a P-bridging and K+-stabilized diphosphaurea derivative. All new complexes 2-5 have been comprehensively characterized, including by X-ray diffraction.
Collapse
Affiliation(s)
- Roland A Schulz
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Uhut S Karaca
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Martin Diefenbach
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
- Technische Universität Darmstadt, Theoretische Chemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Niclas J A Werthmann
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Sebastian Dechert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Max M Hansmann
- Technische Universität Dortmund, Lehrbereich Organische Chemie, Otto-Hahn-Str. 6, D-44227, Dortmund, Germany
| | - Max C Holthausen
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
- Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstrasse 6, D-37077, Göttingen, Germany
| |
Collapse
|
2
|
Czernetzki C, Arrowsmith M, Jürgensen M, Hagspiel S, Braunschweig H. Synthesis and structures of molecular beryllium Grignard analogues featuring terminal and bridging pseudohalides. Dalton Trans 2024; 53:18296-18303. [PMID: 39450448 DOI: 10.1039/d4dt02457e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The carbene-stabilised beryllium Grignards [(CAAC)BeBrR] (R = CAACH 1a, Dur 1b; CAAC/H = 1-(2,6-diisopropylphenyl)-2,2,4,4-tetramethylpyrrolidin-2-yl/idene; Dur = 2,3,5,6-tetramethylphenyl) undergo salt metathesis with various pseudohalide salt precursors. Whereas with [NaNCS] the thiocyanato Grignards [(CAAC)Be(NCS)R] (R = CAACH 2a, Dur 2b) are obtained selectively, salt metatheses with [Na(OCP)(dioxane)2.3] and [K(OCN)] are fraught with side reactions, in particular scrambling of both neutral and anionic ligands, leading to complex product mixtures, from which the first examples of beryllium phosphaethynolate Grignards [(thf)2(CAACH)Be(OCP)] (3) and [(CAAC)Be(OCP)R] (R = CAACH 4a, Dur 4b), as well as the isocyanate-bridged hexamer [(CAAC)BrBe(1,3-μ-OCN)]6 (7) were determined as the main products. The complexity of possible side reactions is seen in complex 5, a byproduct of the salt metathesis of 1b with [Na(OCP)(dioxane)2.3], which hints at radical redox processes, OCP homocoupling, OCP coupling with CAAC, as well as OCP insertion into the Be-R bond. Finally, the unstable, tetrameric cyano-bridged beryllium Grignard [(thf)(CAACH)Be(1,2-μ-CN)] (8) was obtained by salt metathesis of 1a with [Na/KSeCN] alongside one equiv. CAACSe. The new complexes were characterised by heteronuclear NMR and IR spectroscopy, as well X-ray crystallography.
Collapse
Affiliation(s)
- Corinna Czernetzki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Malte Jürgensen
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stephan Hagspiel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Nguyen THV, Chelli S, Mallet-Ladeira S, Breugst M, Lakhdar S. Reactivity of the phosphaethynolate anion with stabilized carbocations: mechanistic studies and synthetic applications. Chem Sci 2024:d4sc03518f. [PMID: 39165734 PMCID: PMC11331332 DOI: 10.1039/d4sc03518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024] Open
Abstract
The reactivity of sodium phosphaethynolate Na(OCP) towards various Mayr's reference electrophiles was investigated using conventional UV-visible and laser-flash photolysis techniques. The kinetic data, along with density functional theory (DFT) calculations, enabled the first experimental quantification of the phosphorus nucleophilicity of [OCP]-. Product studies of these reactions demonstrate the formation of secondary as well as tertiary phosphines. The mechanism of this unprecedented phosphorus-atom transfer reaction is thoroughly discussed, with key intermediates successfully isolated and characterized. Importantly, some bulky secondary phosphine oxides synthesized using this approach, have demonstrated high efficiency as ligands in the Suzuki coupling reaction.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Saloua Chelli
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz 09111 Chemnitz Germany
| | - Sami Lakhdar
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| |
Collapse
|
4
|
Taeufer T, Dankert F, Michalik D, Pospech J, Bresien J, Hering-Junghans C. Photochemical formation and reversible base-induced cleavage of a phosphagallene. Chem Sci 2023; 14:3018-3023. [PMID: 36937589 PMCID: PMC10016425 DOI: 10.1039/d2sc06292e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The reactivity of Cp*Ga (Cp* = C5Me5) towards phosphanylidenephosphoranes of the type ArTerP(PMe3) (ArTer = DipTer 2,6-(2,6-iPr2C6H3)2C6H3), TipTer 2,6-(2,4,6-iPr3C6H2)2C6H3 was investigated. While no thermal reaction was observed (in line with DFT results), irradiation at 405 nm at low temperatures resulted in the formation of phosphagallenes DipTerP = GaCp* (1a) and TipTerP = GaCp* (1b) accompanied by release of PMe3. When warming the reaction mixture to ambient temperatures without irradiation, the clean re-formation of ArTerP(PMe3) and Cp*Ga in a second-order reaction was observed. Upon removal of PMe3, 1a and 1b were isolated and fully characterized. Both derivatives were found to be labile and decomposed to the phosphafluorenes 2a and 2b, indicating generation of the transient phosphinidene ArTerP along with Cp*Ga. First reactivity studies show that CO2 and H2O cleanly reacted with 1a, affording DipTerPCO (3) and DipTerPH2 (4), respectively.
Collapse
Affiliation(s)
- T Taeufer
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - F Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - D Michalik
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
- Institute of Chemistry, University of Rostock A.-Einstein.-Str. 3a 18059 Rostock Germany https://www.chemie.uni-rostock.de/arbeitsgruppen/anorganische-chemie/dr-jonas-bresien/
| | - J Pospech
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - J Bresien
- Institute of Chemistry, University of Rostock A.-Einstein.-Str. 3a 18059 Rostock Germany https://www.chemie.uni-rostock.de/arbeitsgruppen/anorganische-chemie/dr-jonas-bresien/
| | - C Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| |
Collapse
|
5
|
Urwin SJ, Goicoechea JM. Formation, Reactivity and Decomposition of Aryl Phospha-Enolates. Chemistry 2023; 29:e202203081. [PMID: 36367092 PMCID: PMC10108052 DOI: 10.1002/chem.202203081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Two lithium phospha-enolates [RP=C(Sii Pr3 )OLi]2 were prepared by reaction of triisopropyl silyl phosphaethynolate, i Pr3 SiPCO, with aryl lithium reagents LiR (R=Mes: 1,3,5-trimethyl phenyl; or Mes*: 1,3,5,-tri-tertbutyl phenyl). Monomer/dimer aggregation of the enolates can be modulated by addition of 12-crown-4. Substitution of lithium for a heavier alkali metal was achieved through initial formation of a silyl enol ether, followed by reaction with KOt Bu to form the corresponding potassium phospha-enolate [MesP=C(Sii Pr3 )OK]2 . On addition of water, the enolates are protonated to afford RP=C(Sii Pr3 )(OH). For the sterically less demanding system (R=Mes), this phospha-enol rapidly tautomerises to the corresponding acyl phosphine MesP(H)C(Sii Pr3 )(O), which on heating extrudes CO. In contrast, bulkier phospha-enol (R=Mes*) is stable to rearrangement at room temperature and thermally decomposes to RH and i Pr3 SiPCO.
Collapse
Affiliation(s)
- Stephanie J Urwin
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
6
|
Hood TM, Lau S, Webster RL. Taming PH 3: State of the Art and Future Directions in Synthesis. J Am Chem Soc 2022; 144:16684-16697. [PMID: 36070395 PMCID: PMC9501927 DOI: 10.1021/jacs.2c07688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Appetite for reactions
involving PH3 has grown in the
past few years. This in part is due to the ability to generate PH3 cleanly and safely via digestion of cheap metal phosphides
with acids, thus avoiding pressurized cylinders and specialized equipment.
In this perspective we highlight current trends in forming new P–C/P–OC
bonds with PH3 and discuss the challenges involved with
selectivity and product separation encumbering these reactions. We
highlight the reactivity of PH3 with main group reagents,
building on the early pioneering work with transition metal complexes
and PH3. Additionally, we highlight the recent renewal
of interest in alkali metal sources of H2P– which are proving to be useful synthons for chemistry across the
periodic table. Such MPH2 sources are being used to generate
the desired products in a more controlled fashion and are allowing
access to unexplored phosphorus-containing species.
Collapse
Affiliation(s)
- Thomas M Hood
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Samantha Lau
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Ruth L Webster
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
7
|
Timofeeva V, Baeza JML, Nougué R, Syroeshkin M, Segundo Rojas Guerrero R, Saffon-Merceron N, Altınbaş Özpınar G, Rathjen S, Müller T, Baceiredo A, Kato T. Reductive Elimination at Pb(II) Center of an (Amino)plumbylene-Substituted Phosphaketene: New Pathway for Phosphinidene Synthesis. Chemistry 2022; 28:e202201615. [PMID: 35638144 PMCID: PMC9401577 DOI: 10.1002/chem.202201615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/27/2022]
Abstract
A stable (amino)plumbylene‐substituted phosphaketene 3 was synthesized by the successive reactions of PbCl2 with two anionic reagents (lithium amidophosphine and NaPCO). Of particular interest, the thermal evolution of 3, at 80 °C, leads to the transient formation of corresponding amino‐ and phosphanylidene‐phosphaketenes (6 and 7), via a reductive elimination at the PbII center forming new N−P and P−P bonds. Further evolution of 6 gives a new cyclic (amino)phosphanylidene phosphorane 4, which shows a unique reactivity as a phosphinidene. This result provides a new synthetic route to phosphinidenes, extending and facilitating further their access.
Collapse
Affiliation(s)
- Vladislava Timofeeva
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France.,N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - José Miguel Léon Baeza
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France.,Departamento de Química Inorganica, Facultad de Química, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, 22, Chile
| | - Raphael Nougué
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Mikhail Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - Rene Segundo Rojas Guerrero
- Departamento de Química Inorganica, Facultad de Química, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, 22, Chile
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Gül Altınbaş Özpınar
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Saskia Rathjen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
8
|
Duvinage D, Janssen M, Lork E, Grützmacher H, Mebs S, Beckmann J. Kinetic Stabilization of Heavier Bis(m‐terphenyl)pnictogen Phosphaethynolates. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | - Jens Beckmann
- Universität Bremen Institut fuer Biologie und Chemie Leobener Str. 28359 Bremen GERMANY
| |
Collapse
|
9
|
Horváth Á, Benkő Z. Understanding the Mechanism of Diels-Alder Reactions with Anionic Dienophiles: A Systematic Comparison of [ECX] - (E = P, As; X = O, S, Se) Anions. Inorg Chem 2022; 61:7922-7934. [PMID: 35533395 PMCID: PMC9131451 DOI: 10.1021/acs.inorgchem.2c00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
While Diels–Alder
(DA) reactions involving neutral or cationic
dienophiles are well-known, the characteristics of the analogous reactions
with anionic dienophiles are practically unexplored. Herein we present
the first comparative computational investigations on the characteristics
of DA cycloadditions with anionic dienophiles on the basis of the
reactions of [ECX]− anions (E = P, As; X = O, S,
Se) with 2H-pyran-2-one. All of these reactions were
found to be both kinetically and thermodynamically feasible, enabling
synthetic access toward 2-phosphaphenolate and arsaphenolate derivatives
in the future. This study also reveals that the [ECO]− anions show clear regioselectivity, while for [ECS]− and [ECSe]− anions, the two possible reaction
channels have very similar energetics. Additionally, the activation
barriers for the [ECO]− anions are lower than those
of the heavier analogues. The observed differences can be traced back
to the starkly differing nucleophilic character of the pnictogen center
in the anions, leading to a barrier-lowering effect in the case of
the [ECO]− anions. Furthermore, analysis of the
geometries and electron distributions of the corresponding transition
states revealed structure–property relationships, and thus
a direct comparison of the cycloaddition reactivity of these anions
was achieved. Along one of the two pathways, a good correlation was
found between the activation barriers and suitable nucleophilicity
descriptors (nucleophilic Parr function and global nucleophilicity).
Additionally, the tendency of the reaction energies can be explained
by the changing aromaticity of the products. In contrast to the phosphaethynolate [PCO]− anion, the cycloaddition reactivity of the heavier congeners ([ECX]−, where E = P, As and X = O, S, Se) is unexplored.
In this computational study, the Diels−Alder reaction between
the known [ECX]− anions and 2-pyrone was employed
to compare the reactivity patterns. The first activation barrier of
these reactions correlates with the nucleophilicity of the anions,
indicating a barrier-lowering effect. The feasibility of the studied
reactions, leading to P and As heterocycles, was also explored.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Müegyetem rkp. 3, Budapest H-1111, Hungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Müegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
10
|
Sharma MK, Dhawan P, Helling C, Wölper C, Schulz S. Bis-Phosphaketenes LM(PCO) 2 (M=Ga, In): A New Class of Reactive Group 13 Metal-Phosphorus Compounds. Chemistry 2022; 28:e202200444. [PMID: 35226777 PMCID: PMC9314960 DOI: 10.1002/chem.202200444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Phosphaketenes are versatile reagents in organophosphorus chemistry. We herein report on the synthesis of novel bis-phosphaketenes, LM(PCO)2 (M=Ga 2 a, In 2 b; L=HC[C(Me)N(Ar)]2 ; Ar=2,6-i-Pr2 C6 H3 ) by salt metathesis reactions and their reactions with LGa to metallaphosphenes LGa(OCP)PML (M=Ga 3 a, In 3 b). 3 b represents the first compound with significant In-P π-bonding contribution as was confirmed by DFT calculations. Compounds 3 a and 3 b selectively activate the N-H and O-H bonds of aniline and phenol at the Ga-P bond and both reactions proceed with a rearrangement of the phosphaethynolate group from Ga-OCP to M-PCO bonding. Compounds 2-5 are fully characterized by heteronuclear (1 H, 13 C{1 H}, 31 P{1 H}) NMR and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Pratima Dhawan
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Christoph Helling
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
- Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| |
Collapse
|
11
|
Radius U, Philipp MS. A Versatile Route To Cyclic (Alkyl)(Amino)Carbene‐stabilized Stibinidenes. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Udo Radius
- Universität Würzburg Institut für Anorganische Chemie Am Hubland 97074 Würzburg GERMANY
| | | |
Collapse
|
12
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
13
|
Shen Q, Xu J, Chen X. π- delocalization in phosphaphthalimide and its ambident reactivity (O/P) toward main-group electrophiles. Dalton Trans 2022; 51:10240-10248. [DOI: 10.1039/d2dt01163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The report on phosphaphthalimide (1), the phosphorus analogue of the phthalimide anion, dates back to forty years ago. However, the presence of π-delocalization between two-coordinated phosphorus centre and neighbouring carbonyl...
Collapse
|
14
|
Duvinage D, Janssen M, Lork E, Grützmacher H, Mebs S, Beckmann J. Heavier Bis(m-terphenyl)element phosphaethynolates of Group 13. Dalton Trans 2022; 51:7622-7629. [DOI: 10.1039/d2dt00907b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and reactivity of the heavier group 13 phosphaketene complexes (2,6-Mes2C6H3)2EPCO (1, E = Ga; 2, E = In) were reported. The reaction of 1 and 2 with 1,2,3,4-tetramethylimidazolin-2-ylidene,...
Collapse
|
15
|
Barlow KR, Goodlett SM, Arradondo SN, Tschumper GS. Fundamental vibrational frequencies of isolated 2-phosphaethynolate and 2-phosphaethynthiolate anions: OCP – and SCP –. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1967495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kayleigh R. Barlow
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Stephen M. Goodlett
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | | | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| |
Collapse
|
16
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik M, Mindiola DJ. Phosphorus‐Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yerin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - David M. Kaphan
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
17
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik MH, Mindiola DJ. Phosphorus-Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021; 60:24411-24417. [PMID: 34435422 PMCID: PMC8559866 DOI: 10.1002/anie.202107475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/11/2022]
Abstract
A low-spin and mononuclear vanadium complex, (Me nacnac)V(CO)(η2 -P≡Ct Bu) (2) (Me nacnac- =[ArNC(CH3 )]2 CH, Ar=2,6-i Pr2 C6 H3 ), was prepared upon treatment of the vanadium neopentylidyne complex (Me nacnac)V≡Ct Bu(OTf) (1) with Na(OCP)(diox)2.5 (diox=1,4-dioxane), while the isoelectronic ate-complex [Na(15-crown-5)]{([ArNC(CH2 )]CH[C(CH3 )NAr])V(CO)(η2 -P≡Ct Bu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5 and ([ArNC(CH2 )]CH[C(CH3 )NAr])V≡Ct Bu(OEt2 ) (3) in the presence of crown-ether. Computational studies suggest that the P-atom transfer proceeds by [2+2]-cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V-C≡O linkage. The nature of the electronic ground state in diamagnetic complexes, 2 and 4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X-ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X-ray single-crystal structural characterization. In combination, these data are consistent with a low-valent vanadium ion in complexes 2 and 4. This study represents the first example of a metathesis reaction between the P-atom of [PCO]- and an alkylidyne ligand.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Obi AD, Machost HR, Dickie DA, Gilliard RJ. A Thermally Stable Magnesium Phosphaethynolate Grignard Complex. Inorg Chem 2021; 60:12481-12488. [PMID: 34346670 DOI: 10.1021/acs.inorgchem.1c01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 2-phosphaethynolate (OCP) anion has found versatile applications across the periodic table but remains underexplored in group 2 chemistry due to challenges in isolating thermally stable complexes. By rationally modifying their coordination environments using 1,3-dialkyl-substituted N-heterocyclic carbenes (NHCs), we have now isolated and characterized thermally stable, structurally diverse, and hydrocarbon soluble magnesium phosphaethynolate complexes (2, 4Me, and 8-10), including the novel phosphaethynolate Grignard reagent (2iPr). The methylmagnesium phosphaethynolate and magnesium diphosphaethynolate complexes readily activate dioxane with subsequent H-atom abstraction to form [(NHC)MgX(μ-OEt)]2 [X = Me (3) or OCP (8 and 9)] complexes. Their reactivities increased with the Lewis acidity of the Mg2+ cation and may be attenuated by Lewis base saturation or a slight increase in carbene sterics. Solvent effects were also investigated and led to the surreptitious isolation of an ether-free sodium phosphaethynolate (NHC)3Na(OCP) (6), which is soluble in aromatic hydrocarbons and can be independently prepared by the reaction of NHC and [Na(dioxane)2][OCP] in toluene. Under forcing conditions (105 °C, 3 days), the magnesium diphosphaethynolate complex (NHC)3Mg(OCP)2 (10) decomposes to a mixture of organophosphorus complexes, among which a thermal decarbonylation product [(NHC)2PI][OCP] (11) was isolated.
Collapse
Affiliation(s)
- Akachukwu D Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Haleigh R Machost
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
19
|
Petrone DA, Szkop KM, Miao L, St Onge P, Qu ZW, Grimme S, Stephan DW. A Primary Acyl Phosphine Stabilized by a Phosphonium Ylide. Angew Chem Int Ed Engl 2021; 60:18547-18551. [PMID: 34125463 DOI: 10.1002/anie.202106846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 11/07/2022]
Abstract
Primary acyl-phosphines are scarce in the literature. Here we show that the reaction of Ph3 GePCO with the ylide Ph3 PCH2 proceeds to give the species Ph3 PCHC(O)PH(GePh3 ) 1. Deprotonation of 1 with Na[N(SiMe3 )2 ] generates the salt [Na(THF)2 ][Ph3 PCHC(O)P(GePh3 )] 2 which provides subsequent access to the bis-germanylated acylphosphine, Ph3 PCHC(O)P(GePh3 )2 3. Alternatively, treatment of 1 with HCl in dioxane affords the primary acylphosphine Ph3 PCHC(O)PH2 4. Compound 4 is a rare example of an air stable primary acyl-phosphines and the first devoid of a stabilizing heteroatom adjacent to the carbonyl fragment.
Collapse
Affiliation(s)
- David A Petrone
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada
| | - Kevin M Szkop
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada
| | - Linkun Miao
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada
| | - Piers St Onge
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Douglas W Stephan
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada
| |
Collapse
|
20
|
Petrone DA, Szkop KM, Miao L, St. Onge P, Qu Z, Grimme S, Stephan DW. A Primary Acyl Phosphine Stabilized by a Phosphonium Ylide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David A. Petrone
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
| | - Kevin M. Szkop
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
| | - Linkun Miao
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
| | - Piers St. Onge
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Douglas W. Stephan
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
| |
Collapse
|
21
|
Abstract
![]()
The cyanide ion plays
a key role in a number of industrially relevant
chemical processes, such as the extraction of gold and silver from
low grade ores. Metal cyanide compounds were arguably some of the
earliest coordination complexes studied and can be traced back to
the serendipitous discovery of Prussian blue by Diesbach in 1706.
By contrast, heavier cyanide analogues, such as the cyaphide ion,
C≡P–, are virtually unexplored despite the
enormous potential of such ions as ligands in coordination compounds
and extended solids. This is ultimately due to the lack of a suitable
synthesis of cyaphide salts. Herein we report the synthesis and isolation
of several magnesium–cyaphido complexes by reduction of iPr3SiOCP with a magnesium(I) reagent.
By analogy with Grignard reagents, these compounds can be used for
the incorporation of the cyaphide ion into the coordination sphere
of metals using a simple salt-metathesis protocol.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Stephanie J Urwin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Eric S Yang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jose M Goicoechea
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
22
|
Yu J, Liu K, Wu Q, Li B, Kong X, Hu K, Mei L, Yuan L, Chai Z, Shi W. Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bin Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Institute of Industrial Technology Chinese Academy of Sciences, Ningbo Zhejiang 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
23
|
Walley JE, Warring LS, Kertész E, Wang G, Dickie DA, Benkő Z, Gilliard RJ. Indirect Access to Carbene Adducts of Bismuth- and Antimony-Substituted Phosphaketene and Their Unusual Thermal Transformation to Dipnictines and [(NHC) 2OCP][OCP]. Inorg Chem 2021; 60:4733-4743. [PMID: 33689349 PMCID: PMC8277130 DOI: 10.1021/acs.inorgchem.0c03683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
The
synthesis and thermal redox chemistry of the first antimony
(Sb)– and bismuth (Bi)–phosphaketene adducts are described.
When diphenylpnictogen chloride [Ph2PnCl (Pn = Sb or Bi)]
is reacted with sodium 2-phosphaethynolate [Na[OCP]·(dioxane)x], tetraphenyldipnictogen (Ph2Pn–PnPh2) compounds are produced, and an insoluble
precipitate forms from solution. In contrast, when the N-heterocyclic carbene adduct (NHC)–PnPh2Cl is combined
with [Na[OCP]·(dioxane)x], Sb–
and Bi–phosphaketene complexes are isolated. Thus, NHC serves
as an essential mediator for the reaction. Immediately after the formation
of an intermediary pnictogen–phosphaketene NHC adduct [NHC–PnPh2(PCO)], the NHC ligand transfers from the Pn center to the
phosphaketene carbon atom, forming NHC–C(O)P-PnPh2 [Pn = Sb (3) or Bi (4)]. In the solid
state, 3 and 4 are dimeric with short intermolecular
Pn–Pn interactions. When compounds 3 and 4 are heated in THF at 90 and 70 °C, respectively, the
pnictogen center PnIII is thermally reduced to PnII to form tetraphenyldipnictines (Ph2Pn–PnPh2) and an unusual bis-carbene-supported OCP
salt, [(NHC)2OCP][OCP] (5). The formation
of compound 5 and Ph2Pn–PnPh2 from 3 or 4 is unique in comparison to
the known thermal reactivity for group 14 carbene–phosphaketene
complexes, further highlighting the diverse reactivity of [OCP]− with main-group elements. All new compounds have been
fully characterized by single-crystal X-ray diffraction, multinuclear
NMR spectroscopy (1H, 13C, and 31P), infrared spectroscopy, and elemental analysis (1, 2, and 5). The electronic structure of 5 and the mechanism of formation were investigated using density
functional theory (DFT). An N-heterocyclic carbene (NHC) was used
to support the otherwise unstable Ph2Sb—P=C=O
and Ph2Bi—P=C=O moieties. Exploration
of the thermal chemistry of these NHC−phosphaketene adducts
reveals the formation of the salt [NHC2OCP][OCP]. This
present work demonstrates the thermal chemistry of the 2-phospaethynolate
anion with heavier pnictogens (Sb and Bi).
Collapse
Affiliation(s)
- Jacob E Walley
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Levi S Warring
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Erik Kertész
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Guocang Wang
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| |
Collapse
|
24
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Multi-Talented Gallaphosphene for Ga-P-Ga Heteroallyl Cation Generation, CO 2 Storage, and C(sp 3 )-H Bond Activation. Angew Chem Int Ed Engl 2021; 60:6784-6790. [PMID: 33368922 PMCID: PMC7986129 DOI: 10.1002/anie.202014381] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/12/2022]
Abstract
Gallaphosphene L(Cl)GaPGaL (2; L=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ), which is synthesized by reaction of LGa(Cl)PCO (1) with LGa, reacts with [Na(OCP)(dioxane)2.5 ] to LGa(OCP)PGaL (3), whereas chloride abstraction with LiBArF 4 yields [LGaPGaL][BArF 4 ] (4; BArF 4 =B(C6 F5 )4 ). 4 represents a heteronuclear analog of the allyl cation according to quantum chemical calculations. Remarkably, 2 reversibly reacts with CO2 to yield L(Cl)Ga-P[μ-C(O)O]2 GaL (5), while reactions with acetophenone and acetone selectively give compounds 6 and 7 by C(sp3 )-H bond activation.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Gebhard Haberhauer
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| |
Collapse
|
25
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Vielseitiges Gallaphosphen: Von einem Ga‐P‐Ga‐Heteroallylkation über CO
2
‐Speicherung hin zu C(sp
3
)‐H‐Bindungsaktivierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahendra K. Sharma
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Christoph Wölper
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Gebhard Haberhauer
- Institut für Organische Chemie Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Stephan Schulz
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| |
Collapse
|
26
|
Werner L, Horrer G, Philipp M, Lubitz K, Kuntze‐Fechner MW, Radius U. A General Synthetic Route to NHC‐Phosphinidenes: NHC‐mediated Dehydrogenation of Primary Phosphines. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luis Werner
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Günther Horrer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Philipp
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Katharina Lubitz
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | | | - Udo Radius
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
27
|
Wilson DWN, Myers WK, Goicoechea JM. Synthesis and decarbonylation chemistry of gallium phosphaketenes. Dalton Trans 2020; 49:15249-15255. [PMID: 33084675 DOI: 10.1039/d0dt03174g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of gallium phosphaketenyl complexes supported by a 1,2-bis(aryl-imino)acenaphthene ligand (Dipp-Bian) are reported. Photolysis of one such species induced decarbonylation to afford a gallium substituted diphosphene. Addition of Lewis bases, specifically trimethylphosphine and the gallium carbenoid Ga(Nacnac) (Nacnac = HC[C(Me)N-(C6H3)-2,6-iPr2]2), resulted in displacement of the phosphaketene carbonyl to yield base-stabilised phosphinidenes. In several of these transformations, the redox non-innocence of the Dipp-Bian ligand was found to give rise to radical intermediates and/or side-products.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - William K Myers
- Department of Chemistry, University of Oxford, Centre for Advanced ESR, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
28
|
Suter R, Wagner M, Querci L, Conti R, Benkő Z, Grützmacher H. 1,3,4-Azadiphospholides as building blocks for scorpionate and bidentate ligands in multinuclear complexes. Dalton Trans 2020; 49:8201-8208. [PMID: 32501468 DOI: 10.1039/d0dt01864c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulated oxy-substituted 1,3,4-azadiphospholides such as the anion in Na[1] are readily accessible phosphorus heterocycles made from the phosphaethynolate anion (OCP)- and 2-chloropyridines. The sodium salt Na[1] reacts with oxophilic element halides such as OPCl3, PhSiCl3, PhBCl2 and CpTiCl3 at room temperature to form exclusively the oxygen bound tris-substituted compounds E(1)3 (with E = OP, PhSi, PhB- or CpTi). Six equivalents of Na[1] with group four metal chlorides MCl4 (M = Ti, Zr, Hf) form cleanly the hexa-substituted dianions (Na2[M(1)6]) which are isolated in excellent yields. The titanium complexes are deeply coloured species due to ligand to metal charge transfer (LMCT) excitations. In all complexes, the phosphorus atoms of the azadiphosphole moieties are able to coordinate to a soft metal center as shown in their reactions with [Mo(CO)3Mes], yielding complexes in which the Mo(CO)3 binds in a fac manner. Functionalization of the oxy group with amino phosphanes allows isolation of tridentate ligands, which have been used as synthons for macrocyclic molybdenum carbonyl complexes.
Collapse
Affiliation(s)
- Riccardo Suter
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
29
|
Szkop KM, Jupp AR, Razumkov H, Stephan DW. Avenue to phosphaalkenes from Ph 3GePCO. Dalton Trans 2020; 49:885-890. [PMID: 31859304 DOI: 10.1039/c9dt04590b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reactions of Ph3GePCO with KP(t-Bu)2 and Ph3SiCl, or direct reaction with Ph3SiP(t-Bu)2 provides the (Z)- and (E)-isomers of the phosphaalkene (t-Bu2)PC(OSiPh3)P(GePh3) 2, respectively. These isomers interconvert thermally and photochemically, while 2 also undergoes silyl and phosphide exchange with silylphosphines, consistent with a mechanism involving the reversible silylphosphination of Ph3GePCO.
Collapse
Affiliation(s)
- Kevin M Szkop
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada.
| | | | | | | |
Collapse
|
30
|
Wilson DWN, Franco MP, Myers WK, McGrady JE, Goicoechea JM. Base induced isomerisation of a phosphaethynolato-borane: mechanistic insights into boryl migration and decarbonylation to afford a triplet phosphinidene. Chem Sci 2019; 11:862-869. [PMID: 34123064 PMCID: PMC8145529 DOI: 10.1039/c9sc05969e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP ([B] = N,N′-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), to its linkage isomer, a phosphaketenyl-borane, [B]PCO. Mechanistic insight into this unusual isomerisation was gained through a series of stoichiometric reactions of [B]OCP with isocyanides and theoretical calculations at the Density Functional Theory (DFT) level. [B]PCO decarbonylates under photolytic conditions to afford a novel boryl-substituted diphosphene, [B]P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
P[B]. This reaction proceeds via a transient triplet phosphinidene which we have been able to observe spectroscopically by Electron Paramagnetic Resonance (EPR) spectroscopy. We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP, to its linkage isomer, a phosphaketenyl-borane, [B]PCO.![]()
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Mauricio P Franco
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - William K Myers
- Department of Chemistry, University of Oxford, Centre for Advanced ESR, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - John E McGrady
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
31
|
Grant LN, Mindiola DJ. The Rise of Phosphaethynolate Chemistry in Early Transition Metals, Actinides, and Rare‐Earth Complexes. Chemistry 2019; 25:16171-16178. [DOI: 10.1002/chem.201902871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Lauren N. Grant
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
32
|
LaFortune JHW, Qu Z, Bamford KL, Trofimova A, Westcott SA, Stephan DW. Double Phosphinoboration of CO 2 : A Facile Route to Diphospha-Ureas. Chemistry 2019; 25:12063-12067. [PMID: 31355971 PMCID: PMC6916295 DOI: 10.1002/chem.201903407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 12/27/2022]
Abstract
The reactions of CO2 with a series of phosphinoboranes, including R2 PBpin (R=Ph, tBu; pin=pinacol), R2 PBMes2 (R=Ph, tBu; Mes=2,4,6-Me3 -C6 H2 ), and R2 PBcat (R=Ph, tBu, Mes; cat=catechol) are described. Although R2 PBpin and R2 PBMes2 afford products of the form R2 PCO2 Bpin (R=Ph 1, tBu 4) and R2 PCO2 BMes2 (R=Ph 2, tBu 3), respectively, R2 PBcat lead to further reaction affording the diphospha-ureas, (R2 P)2 CO (R=Ph 5, tBu 6, Mes 7), together with O(Bcat)2 . Computational studies provide insight into the mechanism, revealing an intermediate derived from double phosphinoboration of CO2 .
Collapse
Affiliation(s)
- James H. W. LaFortune
- Department of ChemistryUniversity of Toronto80 St. George St.TorontoOntarioM5S 3H6Canada
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstrasse 453115BonnGermany
| | - Karlee L. Bamford
- Department of ChemistryUniversity of Toronto80 St. George St.TorontoOntarioM5S 3H6Canada
| | - Alina Trofimova
- Department of ChemistryUniversity of Toronto80 St. George St.TorontoOntarioM5S 3H6Canada
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNew BrunswickE4L 1G8Canada
| | - Douglas W. Stephan
- Department of ChemistryUniversity of Toronto80 St. George St.TorontoOntarioM5S 3H6Canada
| |
Collapse
|
33
|
Szkop KM, Jupp AR, Razumkov H, Xu M, Stephan DW. Diphospha-Ureas from the Phosphaketene Ph 3 GePCO. Chemistry 2019; 25:10084-10087. [PMID: 31215687 DOI: 10.1002/chem.201902789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 11/12/2022]
Abstract
The phosphaketene Ph3 GePCO is shown to react with the phosphide KP(tBu)2 to generate the anion [Ph3 GePC(O)P(tBu)2 ]- 1. This species reacts with CH3 I or ClGePh3 to give the dissymmetric diphospha-ureas (tBu)2 PC(O)P(GePh3 )(CH3 ) 2 and (Ph3 Ge)2 PC(O)P(tBu)2 3 respectively. Sequential treatment of 2 with a base and CH3 I affords a route to (tBu)2 PC(O)P(CH3 )2 5. These species are products of the first modular diphospha-urea synthesis. The subsequent thermal and photochemical reactivity of these species was also probed and described.
Collapse
Affiliation(s)
- Kevin M Szkop
- Department of Chemistry, University of Toronto, 80 St. George St. Toronto, Ontario, M5S3H6, Canada
| | - Andrew R Jupp
- Department of Chemistry, University of Toronto, 80 St. George St. Toronto, Ontario, M5S3H6, Canada
| | - Hlib Razumkov
- Department of Chemistry, University of Toronto, 80 St. George St. Toronto, Ontario, M5S3H6, Canada
| | - Maotong Xu
- Department of Chemistry, University of Toronto, 80 St. George St. Toronto, Ontario, M5S3H6, Canada
| | - Douglas W Stephan
- Department of Chemistry, University of Toronto, 80 St. George St. Toronto, Ontario, M5S3H6, Canada
| |
Collapse
|
34
|
Grant LN, Krzystek J, Pinter B, Telser J, Grützmacher H, Mindiola DJ. Finding a soft spot for vanadium: a P-bound OCP ligand. Chem Commun (Camb) 2019; 55:5966-5969. [PMID: 31050697 DOI: 10.1039/c9cc01500k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transmetallation studies with the phosphaethynolate ion, [OCP]-, have largely resulted in coordination according to classical Lewis acid-base theory. That is, for harder early transition metal ions, O-bound coordination has been observed, whereas in the case of softer late transition metal ions, P-bound coordination predominates. Herein, we report the use of a V(iii) complex, namely [(nacnac)VCl(OAr)] (1) (nacnac- = [ArNC(CH3)]2CH; Ar = 2,6-iPr2C6H3), to transmetallate [OCP]- and bind via the P-atom as [(nacnac)V(OAr)(PCO)] (2), the first example of a 3d early transition metal that binds [OCP]-via the P-atom. Full characterization studies of this molecule including HFEPR spectroscopy, SQuID measurements, and theoretical studies are presented.
Collapse
Affiliation(s)
- Lauren N Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg1, Hönggerberg, Zürich 8093, Switzerland
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Mehta M, McGrady JE, Goicoechea JM. B(C 6 F 5 ) 3 -Enabled Synthesis of a Cyclic cis-Arsaphosphene. Chemistry 2019; 25:5445-5450. [PMID: 30835903 DOI: 10.1002/chem.201901022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 11/06/2022]
Abstract
The synthesis and characterization of an (arsino)phosphaketene, As(PCO){[N(Dipp)](CH2 )}2 (Dipp=2,6-diisopropylphenyl) is reported along with its subsequent reactivity with B(C6 F5 )3 . When reacted in a stoichiometric ratio, B(C6 F5 )3 drove the insertion of the P=C bond of the phosphaketene into one of the As-N bonds of the arsino functionality, affording an acid-stabilized, seven-membered, cyclic arsaphosphene. In contrast, when catalytic amounts of B(C6 F5 )3 were employed, dimeric species, which formed through a formal [2+2] cycloaddition of the cyclic arsaphosphene, were generated. The cyclic arsaphosphene product represents the first example of such a compound in which the two substituents are arranged in a cis-configuration.
Collapse
Affiliation(s)
- Meera Mehta
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - John E McGrady
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
36
|
Borger JE, Le Corre G, Mei Y, Suter R, Schrader E, Grützmacher H. Transient Dipnictyl Analogues of Acrylamides, R−E=E′−CONR
2
, and a Related Diphosphadigalletane from Na[OCP] and (R
2
N)
2
ECl (E, E′=P, As, Ga). Chemistry 2019; 25:3957-3962. [DOI: 10.1002/chem.201806116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jaap E. Borger
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Grégoire Le Corre
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Yanbo Mei
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Riccardo Suter
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Erik Schrader
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
- School of ChemistryLehn Institute of Functional Materials (LIFM)Sun Yat-sen University 135 West Xingang Road Guangzhou 510275 P. R. China
| |
Collapse
|
37
|
Mei Y, Borger JE, Wu DJ, Grützmacher H. Salen supported Al–O–CP and Ga–PCO complexes. Dalton Trans 2019; 48:4370-4374. [DOI: 10.1039/c9dt00485h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis and reactivity of salen supported OCP adducts of aluminium and gallium is reported.
Collapse
Affiliation(s)
- Yanbo Mei
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Jaap E. Borger
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Dong-Jun Wu
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
- Lehn Institute of Functional Materials (LIFM)
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
- Lehn Institute of Functional Materials (LIFM)
| |
Collapse
|
38
|
Affiliation(s)
- Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | | |
Collapse
|
39
|
Goicoechea JM, Grützmacher H. The Chemistry of the 2-Phosphaethynolate Anion. Angew Chem Int Ed Engl 2018; 57:16968-16994. [PMID: 29770548 DOI: 10.1002/anie.201803888] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 11/07/2022]
Abstract
In all likelihood the first synthesis of the phosphaethynolate anion, PCO- , was performed in 1894 when NaPH2 was reacted with CO in an attempt to make Na(CP) accompanied by elimination of water. This reaction was repeated 117 years later when it was discovered that Na(OCP) and H2 are the products of this remarkable transformation. Li(OCP) was synthesized and fully characterized in 1992 but this salt proved to be too unstable to allow for a detailed investigation of its chemistry. It was not until the heavier analogues of this lithium salt were isolated, Na(OCP) and K(OCP) (both of which are remarkably stable and can be even dissolved in water), that the chemistry of this new functional group could be explored. Here we review the chemistry of the 2-phosphaethynolate anion, a heavier phosphorus-containing analogue of the cyanate anion, and describe the wide breadth of chemical transformations for which it has been thus far employed. Its use as a ligand, in decarbonylative and deoxygenative processes, and as a building block for novel heterocycles is described. In the mere twenty-six years since Becker first reported the isolation of this remarkable anion, it has become a fascinating reagent for the synthesis of a vast library of, often unprecedented, molecules and compounds.
Collapse
Affiliation(s)
- Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biology, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
40
|
Tambornino F, Hinz A, Köppe R, Goicoechea JM. A General Synthesis of Phosphorus‐ and Arsenic‐Containing Analogues of the Thio‐ and Seleno‐cyanate Anions. Angew Chem Int Ed Engl 2018; 57:8230-8234. [DOI: 10.1002/anie.201805348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Frank Tambornino
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander Hinz
- Karlsruhe Institute of TechnologyInstitute of Inorganic Chemistry Engesserstr. 15 76131 Karlsruhe Germany
| | - Ralf Köppe
- Karlsruhe Institute of TechnologyInstitute of Inorganic Chemistry Engesserstr. 15 76131 Karlsruhe Germany
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
41
|
Tambornino F, Hinz A, Köppe R, Goicoechea JM. A General Synthesis of Phosphorus‐ and Arsenic‐Containing Analogues of the Thio‐ and Seleno‐cyanate Anions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Frank Tambornino
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander Hinz
- Karlsruhe Institute of TechnologyInstitute of Inorganic Chemistry Engesserstr. 15 76131 Karlsruhe Germany
| | - Ralf Köppe
- Karlsruhe Institute of TechnologyInstitute of Inorganic Chemistry Engesserstr. 15 76131 Karlsruhe Germany
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
42
|
Krachko T, Slootweg JC. N-Heterocyclic Carbene-Phosphinidene Adducts: Synthesis, Properties, and Applications. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800459] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tetiana Krachko
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
| | - J. Chris Slootweg
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
43
|
Hinz A, Goicoechea JM. Limitations of Steric Bulk: Towards Phospha-germynes and Phospha-stannynes. Chemistry 2018; 24:7358-7363. [PMID: 29573494 DOI: 10.1002/chem.201801329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 11/06/2022]
Abstract
The use of bulky aryl(silyl)amides (R) as substituents for the stabilisation of phospha-germynes and phospha-stannynes (R-Ge≡P and R-Sn≡P, respectively) is described. Such species can be transiently generated by photolysis of the phosphaketene precursors (RE(PCO); E=Ge, Sn). Utilisation of bulky amides R1 and R2 (R1 =Ar**NSi(OtBu)3 , where Ar**=2,6-bis[bis(4-tert-butylphenyl)methyl]-4-methylphenyl; R2 =Ar***NSi(iPr)3 , where Ar***=2,6-bis[bis(3,5-di-tert-butylphenyl)methyl]-4-methylphenyl) facilitates the formation of diphosphene-type dimers, [(RGe)P]2 and [(RSn)P]2 . In an effort to circumvent dimerisation, the bulkier R3 substituent (R3 =Ar***NSi(4-tert-butylphenyl)3 ) was employed in an analogous series of experiments. This affords cyclic germylenes and stannylenes due to insertion of the terminal phosphide into Si-C bonds of the R3 substituent, which in case of the stannylene could act as a trap for another R3 -Sn≡P moiety. All attempts to isolate terminal phosphide species were unsuccessful due to the reactivity of such compounds towards the organic periphery of the bulky amides, highlighting the limitations of highly sterically demanding functionalities.
Collapse
Affiliation(s)
- Alexander Hinz
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jose M Goicoechea
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
44
|
Weber L. 2-Phospha- and 2-Arsaethynolates - Versatile Building Blocks in Modern Synthetic Chemistry. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800179] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lothar Weber
- Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
45
|
Gilliard RJ, Heift D, Benkő Z, Keiser JM, Rheingold AL, Grützmacher H, Protasiewicz JD. An isolable magnesium diphosphaethynolate complex. Dalton Trans 2018; 47:666-669. [PMID: 29242885 DOI: 10.1039/c7dt04539e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of magnesium chloride with two equivalents of sodium phosphaethynolate, Na[OCP]·(dioxane)2.5 (1), yields a magnesium diphosphaethynolate complex, [(THF)4Mg(OCP)2] (3). The formation of compound 3 goes through a monosubstituted chloromagnesium phosphaethynolate Mg(OCP)Cl (2). The structure of 3 was determined via a single crystal X-ray diffraction study. For comparison, we also report the structure of a monomeric sodium phosphaethynolate complex, [Na(OCP)(dibenzo-18-crown-6)] (4).
Collapse
Affiliation(s)
- Robert J Gilliard
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Dominikus Heift
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland. and Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK
| | - Zoltán Benkő
- Budapest University of Technology and Economics, H.111 Budapest Szent Gellért tér 4, Hungary
| | - Jerod M Keiser
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Arnold L Rheingold
- Department of Chemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - John D Protasiewicz
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
46
|
Wilson DWN, Hinz A, Goicoechea JM. An Isolable Phosphaethynolatoborane and Its Reactivity. Angew Chem Int Ed Engl 2018; 57:2188-2193. [DOI: 10.1002/anie.201712624] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/05/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander Hinz
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M. Goicoechea
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
47
|
Wilson DWN, Hinz A, Goicoechea JM. An Isolable Phosphaethynolatoborane and Its Reactivity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712624] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander Hinz
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M. Goicoechea
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
48
|
Ballestero-Martínez E, Hadlington TJ, Szilvási T, Yao S, Driess M. From zinco(ii) arsaketenes to silylene-stabilised zinco arsinidene complexes. Chem Commun (Camb) 2018; 54:6124-6127. [DOI: 10.1039/c8cc01928b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The steric congestion of a N-heterocyclic silylene promotes the formation of a monomeric As-metallated silylene-arsinidene compound with somewhat double bond character through replacement of CO in the LZn–AsCO precursor (L = β-diketiminate).
Collapse
Affiliation(s)
- Ernesto Ballestero-Martínez
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Terrance J. Hadlington
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Tibor Szilvási
- Department of Chemical & Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| | - Shenglai Yao
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Matthias Driess
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
49
|
Grant LN, Pinter B, Manor BC, Grützmacher H, Mindiola DJ. A Scandium‐Stabilized Diisophosphaethynolate Ligand: [OCPPCO]
4−. Angew Chem Int Ed Engl 2017; 57:1049-1052. [DOI: 10.1002/anie.201710757] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Lauren N. Grant
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Balazs Pinter
- Department of General Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Brian C. Manor
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1, Hönggerberg 8093 Zürich Switzerland
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
50
|
Grant LN, Pinter B, Manor BC, Grützmacher H, Mindiola DJ. A Scandium‐Stabilized Diisophosphaethynolate Ligand: [OCPPCO]
4−. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lauren N. Grant
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Balazs Pinter
- Department of General Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Brian C. Manor
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1, Hönggerberg 8093 Zürich Switzerland
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|