1
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
2
|
Zhao X, Tang L, Zhang S, Wang J, Czech B, Oleszczuk P, Minkina T, Gao Y. Formation and biotoxicity of environmentally persistent free radicals in steelworks soil under thermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133697. [PMID: 38325092 DOI: 10.1016/j.jhazmat.2024.133697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Thermal treatment are commonly used to address organic contaminated soils. In particular, the pyrolysis of organic substances can result in the creation of environmentally persistent free radicals (EPFRs). We investigated a steelworks site in Chongqing (China) to observe changes in EPFRs before and after thermal treatment. Our findings revealed that the EPFRs were carbon-centered radicals with a g-factor < 2.0030 and a spin density ranging from n.d.-5.23 × 1015 spins/mg. The formation of EPFRs was driving by polycyclic aromatic hydrocarbons (PAHs), Mn, Cu, and total organic carbon (TOC). Following the thermal treatment, the spin densities of EPFRs increased by a factor of 0.25 to 1.81, with maximum levels reached at 300 °C. High molecular weight PAHs exhibited high heat capacity, enabling the generation of more EPFRs. The thermal decay of EPFRs occurred in two stages, with the shortest 1/e lifetime lasting up to 16.8 h. Raising the temperature or prolonging time can significantly reduce EPFRs levels. Thermal treatment increased the generation of EPFRs, hydroxyl radicals (•OH) and superoxide radical (•O2-), leading to a decrease in bacterial luminescence. Specifically, •OH contributed to approximately 73% of the B. brilliantus inhibition. Our results highlight that the thermal treatment significantly enhance EPFRs concentrations, and the treated soil remained ecologically risky. The knowledge of the formation of EPFRs and their biotoxicity is shedding new light on the thermal treatment risk management.
Collapse
Affiliation(s)
- Xuqiang Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuai Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Tatiana Minkina
- Department of Soil Science, Southern Federal University, Rostov-on-Don, Russia
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
3
|
Panwar V, Lzaod S, Dutta T. Thermostable Bacterial Laccase: Catalytic Properties and Its Application in Biotransformation of Emerging Pollutants. ACS OMEGA 2023; 8:34710-34719. [PMID: 37779991 PMCID: PMC10536042 DOI: 10.1021/acsomega.3c03627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Laccases have been predominantly reported in fungi, and primarily, fungal laccases are currently exploited in industrial applications. However, extremophilic bacterial laccases possess immense potential, as they can withstand extreme temperatures, pH, and salt concentrations. In addition, unlike fungal laccases, the production of bacterial laccases is cost-effective. Therefore, bacterial laccases are gaining significant attention for their large-scale applications. Previously, we reported a novel thermostable laccase (LacT) from Brevibacillus agri. Herein, we have confirmed that LacT shares a high sequence similarity with CotA laccase from Bacillus amyloliquefaciens. Peptide mass fingerprinting of LacT was conducted via matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF/MS-MS). Inductively coupled plasma-optical emission spectroscopic (ICP-OES) analysis revealed the presence of ∼3.95 copper ions per protein molecule. Moreover, the secondary and tertiary structure of LacT was studied using circular dichroism (CD) and fluorescence spectroscopy. The absence of notable shifts in CD and fluorescence spectra with an increase in temperature established that LacT remains intact even at elevated temperatures. Analysis of the thermal denaturation profile of LacT by thermogravimetric analysis (TGA) also confirmed its temperature stability. Thereafter, we exploited LacT in its application for the bioremediation of phenolic endocrine disruptors, namely, triclosan, 4,4'-dihydroxybiphenyl, and dienestrol. LacT oxidizes 4,4'-dihydroxybiphenyl and triclosan but no LacT activity was detected with dienestrol. The rate of biotransformation of 4,4'-dihydroxybiphenyl and triclosan increased in the presence of CuSO4 and a redox mediator, ABTS. Transformation of dienestrol was observed only with LacT in the presence of ABTS. This study establishes the application of LacT for the bioremediation of phenolic compounds.
Collapse
Affiliation(s)
- Varsha Panwar
- Enzyme
Technology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Stanzin Lzaod
- Enzyme
Technology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tanmay Dutta
- Enzyme
Technology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Baltrėnaitė-Gedienė E, Lomnicki S, Guo C. Impact of biochar, fertilizers and cultivation type on environmentally persistent free radicals in agricultural soil. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102755. [PMID: 38881717 PMCID: PMC11178321 DOI: 10.1016/j.eti.2022.102755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Environmentally persistent free radicals (EPFRs) have been considered as emerging contaminants due to their detrimental effects on human health. The adverse health impacts are attributed to oxidative stress induced by EPFRs through the formation of reactive oxygen species (ROS). In soils, it may also increase the degradation process of polymeric organic matter and/or undesired organic pollutants through hydroxyl radical activity. The biochar pyrolysis process entails the thermal decomposition of organic compounds in the biomass, with the carbonization conditions and feedstock type facilitating the formation of EPFRs. When biochar is used to amend soil, these radicals may promote the formation of ROS, and thus influence the transformation of organic and inorganic contaminants in soil and impact the rhizosphere. Agricultural soils are being amended with biochar to mainly increase carbon content and facilitate the plant growing conditions. Therefore, agricultural soils may become a source of EPFRs. However, the fate and transformations of EPFRs in soils after biochar amendment are not well understood or studied. This paper presents the first (to our knowledge) studies of EPFRs behaviour in agricultural soil with different input of biochar, cultivation types and residence time period. Different cultivation types, addition of fertilisers and variation in biochar input, on the one hand, and presence of metals in soil, biochar and fertilizers, on the other hand, provide different conditions for EPFRs formation, accumulation and fate in agricultural soils. Two significant factors have been found to determine the fate of EPFRs in soil: transition metal content (particularly those in reaction available form) and cultivation level of soil. Cultivation significantly decreased presence of EPFRs, both carbon-centered and oxygen-centered, in relatively short periods of time, while metal presence (and particularly through fertilizer supplementation) increases the half-life of radicals and transforms organic matter to more oxygen-centered EPFRs. The amount of biochar addition plays a secondary role as the EPFRs content in the soils is in a longer term primarily controlled by the other two factors.
Collapse
Affiliation(s)
- Edita Baltrėnaitė-Gedienė
- Vilnius Gediminas Technical University (VilniusTech), Saulėtekio al. 11, LT–10245, Vilnius, Lithuania
| | - Slawomir Lomnicki
- Department of Environmental Sciences, Louisiana State University, 1251 Energy Coast & Environment Bldg., Baton Rouge, LA 70803, United States
| | - Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, 1251 Energy Coast & Environment Bldg., Baton Rouge, LA 70803, United States
| |
Collapse
|
5
|
Li Q, Dai L, Wang M, Su G, Wang T, Zhao X, Liu X, Xu Y, Meng J, Shi B. Distribution, influence factors, and biotoxicity of environmentally persistent free radical in soil at a typical coking plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155493. [PMID: 35483459 DOI: 10.1016/j.scitotenv.2022.155493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants in contaminated soils and have attracted significant attention. Chinese coke production making a great contribution to the globe is increasingly identified as the non-ignorable source of EPFRs. However, the distribution level, influence factors, and biotoxicity of EPFRs at coking sites remain poorly understood. Herein, a typical coking plant in Tangshan, China, featuring two functional regions (the reconstructed project (RP) and elimination engineering (EE)) was used to study the existence of EPFRs. The spin density of the EPFRs in coking soils was 3.20 × 1020-3.11 × 1021 spins/g with g-factor values of 2.0020-2.0036. The EPFRs presented higher concentrations and g-factor values in RP region than in EE region, and a mixture of carbon-centered radicals and carbon-centered radicals with adjacent oxygen atoms as well as carbon-centered radical was ascertained in the former and the latter, respectively. Correlation analysis and FT-ICR-MS results indicated that polycyclic aromatic hydrocarbons (PAH) together with other unsaturated hydrocarbons and condensed aromatic contaminants, might contribute to the EPFRs formation in the soils of RP region, whereas PAHs were the main source of EPFRs in EE region. Soil components were determined to investigate the influence factors in EPFRs formation. Cu and Fe2O3 were recognized as the markedly positive influence factors, while TOC had a negative impact on EPFR formation. Visible light irradiation can induce the transformation and generation of EPFRs. As representative contaminants, both toluene and 2-chlorophenol can create EPFRs in coking soil under visible light irradiation. The potential biotoxicity tests of Photobacterium phosphoreum T3 spp. showed that EPFRs from the soils diminished bacterial luminescence. Such effect was proven to be induced by the OH based on the quenching experiment. Understanding the influence factors of EPFRs formation and their biotoxicity in coking soils is critical for developing risk assessments and prevention strategies.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Xu Zhao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xihui Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulin Xu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li X, Zhao H, Qu B, Tian Y. Photoformation of environmentally persistent free radicals on particulate organic matter in aqueous solution: Role of anthracene and formation mechanism. CHEMOSPHERE 2022; 291:132815. [PMID: 34752830 DOI: 10.1016/j.chemosphere.2021.132815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Environmentally persistent free radicals (EPFRs) generated under irradiation have been widely detected in soil particles, atmospheric particles and microplastic particles, but the formation of EPFRs in water is not well understood. This study investigated the formation of EPFRs on particulate organic matter (POM) in water contaminated by anthracene (Ant) under irradiation. The photoformation and decay progress of EPFRs was represented with the help of electron paramagnetic resonance (EPR) technique on both actual POM and Fe(III)-montmorillonite simulated samples. EPR signals at the range of 1016 to 1017 spin/g were detected and the half-life time of EPFRs stored in water was at around 16.62 h and 60.80 h, much shorter than those in the air. The g factors were all larger than 2.0040, which indicated the generation of oxygen centered EPFRs. The primary intermediates were identified by gas chromatography-mass spectrometer (GC-MS) and a possible EPFR formation pathway during Ant degradation was proposed. The interaction between Ant and POM, and the hydroxylation and carbonylation of the intermediates made contributions to the generation of EPFRs. Meanwhile, the indirect photodegradation of bisphenol A (BPA) has been demonstrated by analyzing the reactive oxygen species (ROS) and photogenerated electrons in the solution with POM containing EPFRs. It is found that hydroxyl radicals (•OH) and singlet oxygen (1O2) were induced and might promote the photodegration. Overall, our present study provided useful information to understand the photoformation of EPFRs on POM and their fate in aqueous environments.
Collapse
Affiliation(s)
- Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Baocheng Qu
- Dalian Ocean University, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT, Harbin, 150090, China.
| |
Collapse
|
7
|
Zhen Y, Zhu S, Sun Z, Tian Y, Li Z, Yang C, Ma J. Identifying the Persistent Free Radicals (PFRs) Formed as Crucial Metastable Intermediates during Peroxymonosulfate (PMS) Activation by N-Doped Carbonaceous Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9293-9304. [PMID: 34139837 DOI: 10.1021/acs.est.1c01974] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A nonradical mechanism involved in peroxymonosulfate (PMS) activation in carbonaceous materials (CMs) is still controversial. In this study, we prepared N-doped CMs, including hollow carbon spheres (NHCSs) and carbon nanotubes (N-CNTs), to probe the crucial intermediates during PMS activation. The results suggested that the higher efficiency and lower activation energy (13.72 kJ mol-1) toward phenol (PN) degradation in an NHCS/PMS system than PMS alone (∼24.07 kJ mol-1) depended on a typical nonradical reaction. Persistent free radicals (PFRs) with a g factor of 2.0033-2.0045, formed as crucial metastable intermediates on NHCS or N-CNT in the presence of PMS, contribute largely to the organic degradation (∼73.4%). Solid evidence suggested that the formation of PFRs relied on the attack of surface-bonded •OH and SO4•- or peroxides in PMS, among which surface-bonded SO4•- was most thermodynamically favorable based on theoretical calculations. Electron holes within PFRs on NHCSs shifted the Fermi level to the positive energy with the valance band increasing from 1.18 to 1.98 eV, promoting the reactivity toward nucleophilic substances. The degradation intermediates of aromatic compounds (e.g., PN) and electron rearrangement triggered the evolution of PFRs from oxygen-centered to carbon-centered radicals. Moreover, due to the specific electron configuration, graphitic N on NHCS was critical for stabilizing the PFRs. This study provides insightful understanding of the fate of organic contaminants and the structure-activity relationship of reactivity of CMs toward PMS activation.
Collapse
Affiliation(s)
- Yufei Zhen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Chen Yang
- State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
8
|
Liu X, Yang L, Liu G, Zheng M. Formation of Environmentally Persistent Free Radicals during Thermochemical Processes and their Correlations with Unintentional Persistent Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6529-6541. [PMID: 33956443 DOI: 10.1021/acs.est.0c08762] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Attention is increasingly being paid to environmentally persistent free radicals (EPFRs), which are organic pollutants with the activities of free radicals and stabilities of organic pollutants. EPFRs readily form during thermal processes through the decomposition of organic precursors such as phenols, halogenated phenols, and quinone-type molecules, which are also important precursors of toxic unintentionally produced persistent organic pollutants (UPOPs). We have found that EPFRs are important intermediates for UPOP formation during thermal-related processes. However, interest in EPFRs is currently mostly focused on the toxicities and formation mechanisms of EPFRs themselves. Little information is available on the important roles EPFRs play in toxic UPOP formation during thermal processes. Here, we review the mechanisms involved in EPFR formation and transformation into UPOPs during thermal processes. The review is focused on typical EPFRs, including cyclopentadiene, phenoxy, and semiquinone radicals. The reaction temperature, metal species present, and oxygen concentration strongly affect EPFR and UPOP formation during thermal-related processes. Gaps in current knowledge and future directions for research into EPFR and UPOP formation, transformation, and control are presented. Understanding the relationships between EPFRs and UPOPs will allow synergistic control strategies to be developed for thermal-related industrial sources of EPFRs and UPOPs.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
9
|
Guan X, Truong L, M. Lomnicki S, L. Tanguay R, A. Cormier S. Developmental Hazard of Environmentally Persistent Free Radicals and Protective Effect of TEMPOL in Zebrafish Model. TOXICS 2021; 9:toxics9010012. [PMID: 33467068 PMCID: PMC7829864 DOI: 10.3390/toxics9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Environmentally persistent free radicals (EPFRs) can be detected in ambient PM2.5, cigarette smoke, and soils and are formed through combustion and thermal processing of organic materials. The hazards of EPFRs are largely unknown. In this study, we assess the developmental toxicity of EPFRs and the ability of TEMPOL (4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) to protect against such hazards using zebrafish embryos. Particles containing EPFRs were acquired by dosing dichlorobenzene (DCB) vapor on the Cab-o-sil/5% CuO particles at 230 °C in vacuo (referred to as DCB-230). The particles were suspended in ultrapure water to make 1 mg/mL of stock solution from which series dilution was undertaken to obtain 10, 20, 30, 40, 50, 60, 80, and 100 µg/mL final test solutions, which were then placed in individual wells with a 4 h postfertilization (hpf) zebrafish embryo. Plates were run in duplicate to obtain a sample size of 24 animals per concentration; 12 embryos were exposed per concentration per plate. Statistical analysis of the morphology endpoints was performed. We investigated overt toxicity responses to DCB-230 in a 22-endpoint battery that included developing zebrafish from 24–120 hpf. Exposure to concentrations greater than 60 µg/mL of DCB-230 induced high mortality in the developmental zebrafish model. Exposure to EPFRs induced developmental hazards that were closely related to the concentrations of free radicals and EPFRs. The potential protective effects of TEMPOL against EPFRs’ toxicity in zebrafish were investigated. Exposure to EPFRs plus TEMPOL shifted the concentration to an induced 50% adverse effect (EC50), from 23.6 to 30.8 µg/mL, which verifies TEMPOL’s protective effect against EPFRs in the early phase of zebrafish development.
Collapse
Affiliation(s)
- Xia Guan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (X.G.); (S.M.L.)
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.T.); (R.L.T.)
| | - Slawomir M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (X.G.); (S.M.L.)
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.T.); (R.L.T.)
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Pennington Biomedical Research Center, Baton Rouge, LA 70803, USA
- Correspondence:
| |
Collapse
|
10
|
Evaluation for the Removal Efficiency of VOCs and Heavy Metals by Zeolites-Based Materials in the Wastewater: A Case Study in the Tito Scalo Industrial Area. Processes (Basel) 2020. [DOI: 10.3390/pr8111519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The current study was designed to demonstrate the efficiency of selected zeolites in the immobilization of heavy metals and volatile organic compounds from water in the industrial area of Tito Scalo (Basilicata Region in Southern Italy). The efficiency of zeolite materials has been evaluated by analyzing real water samples, by a multi-technique approach. Gas chromatography (GC) and inductively coupled plasma optical emission spectrometry (ICP-OES) were selected for the detection of volatile organic compounds (VOCs) and heavy metals respectively, and then by thermal analysis (TG, DTA) and X-ray powder diffraction (XRD) to verify the presence of contaminants in the structural channels of the adsorbents. ZSM-5 zeolite (MFI topology) was suitable for volatile organic compounds, showing removal efficiencies 87%. 13X (FAU topology) was more selective for in situ abatements of heavy metals, with efficiencies up to 100%. After VOCs and heavy metals removal, structure refinements of loaded zeolites highlighted variations of both lattice parameters and extraframework content confirming the pollutants immobilization in the framework microporosities. The occurrence of these species was also confirmed by DTA curves showing different phenomena explained on the basis of the nature and number of extraframework species hosted in the zeolite micropores.
Collapse
|
11
|
Odinga ES, Waigi MG, Gudda FO, Wang J, Yang B, Hu X, Li S, Gao Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. ENVIRONMENT INTERNATIONAL 2020; 134:105172. [PMID: 31739134 DOI: 10.1016/j.envint.2019.105172] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 05/22/2023]
Abstract
Biochars are used globally in agricultural crop production and environmental remediation. However, environmentally persistent free radicals (EPFRs), which are stable emerging pollutants, are generated as a characteristic feature during biomass pyrolysis. EPFRs can induce the formation of reactive oxygen species, which poses huge agro-environmental and human health risks. Their half-lives and persistence in both biochar residues and in the atmosphere may lead to potentially adverse risks in the environment. This review highlights the comprehensive research into these bioreactive radicals, as well as the bottlenecks of biochar production leading up to the formation and persistence of EPFRs. Additionally, a way forward has been proposed, based on two main recommendations. A global joint initiative to create an all-encompassing regulations policy document that will improve both the technological and the quality control aspects of biochars to reduce EPFR generation at the production level. Furthermore, environmental impact and risk assessment studies should be conducted in the extensive applications of biochars in order to protect the environmental and human health. The highlighted key research directions proposed herein will shape the production, research, and adoption aspects of biochars, which will mitigate the considerable concerns raised on EPFRs.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunyao Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Zhang Y, Guo X, Si X, Yang R, Zhou J, Quan X. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:348-354. [PMID: 31207524 DOI: 10.1016/j.scitotenv.2019.06.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are detected in the clay, mineral or humic part of the soil, especially in soil contaminated with phenolic compounds. To clarify the detailed information on the formation of EPFRs, we used the contaminated soil with catechol to mimic their formation process in laboratory scale and tested their biotoxicity with luminescent bacteria (Photobacterium phosphoreum, P. phosphoreum). Our results showed that the concentration of EPFRs reached the maximum at pyrolysis temperature of 300 °C, and EPFRs could significantly inhibit the luminescence of P. phosphoreum. Based on the detection of OH radicals in the aquatic system we used, we speculated that the generation of OH may be a crucial contributor to the toxicity of EPFRs. Our results aid to understand the detailed process on the formation of EPFRs in contaminated soil, as well as the basic biotoxicity data of EPFRs, which will be helpful and essential for their potential environmental risk assessments.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xi Guo
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Si
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruixin Yang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Jia H, Zhao S, Shi Y, Zhu K, Gao P, Zhu L. Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:92-98. [PMID: 30236946 DOI: 10.1016/j.jhazmat.2018.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 05/16/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have been widely detected in superfund sites and atmospheric particles contaminated with organic contaminants, but the impacts of environmental factors such as light irradiation on the formation and evolution of EPFRs remain unclear. In the present study, in-situ irradiated Fourier transform infrared spectrometer and electron paramagnetic resonance were applied to probe the formation mechanisms of EPFRs during photo-transformation of polycyclic aromatic hydrocarbons (PAHs) on montmorillonite surface. EPFRs were only detected on Fe(III)-montmorillonite containing PAHs with relatively high electron-donating ability, such as anthracene (ANT), but not in the systems of Fe(III)-montmorillonite spiked with phenanthrene or Na(I)-montmorillonite. The 1/e lifetime of the EPFRs was much shorter under light irradiation (5.49 h) than in dark (30.3 h), suggesting that light irradiation facilitated the transformation of EPFRs. On the one hand, light irradiation promoted direct electron transfer from ANT to the mineral surface, accelerating the formation of PAHs-type radical cations. On the other hand, light irradiation induced the generation of reactive oxygen species, which facilitated the transformation from radical cations to oxygenic EPFRs, which finally led to ANT degradation. This work clarified the underlying mechanisms for EPFRs generation and evolution on clay minerals.
Collapse
Affiliation(s)
- Hanzhong Jia
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China
| | - Song Zhao
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China
| | - Yafang Shi
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lingyan Zhu
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
14
|
Qin Y, Li G, Gao Y, Zhang L, Ok YS, An T. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. WATER RESEARCH 2018; 137:130-143. [PMID: 29547776 DOI: 10.1016/j.watres.2018.03.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
With the increased concentrations and kinds of refractory organic contaminants (ROCs) in aquatic environments, many previous reviews systematically summarized the applications of carbon-based materials in the adsorption and catalytic degradation of ROCs for their economically viable and environmentally friendly behavior. Interestingly, recent studies indicated that carbon-based materials in natural environment can also mediate the transformation of ROCs directly or indirectly due to their abundant persistent free radicals (PFRs). Understanding the formation mechanisms of PFRs in carbo-based materials and their interactions with ROCs is essential to develop their further applications in environment remediation. However, there is no comprehensive review so far about the direct and indirect removal of ROCs mediated by PFRs in amorphous, porous and crystalline carbon-based materials. The review aims to evaluate the formation mechanisms of PFRs in carbon-based materials synthesized through pyrolysis and hydrothermal carbonization processes. The influence of synthesis conditions (temperature and time) and carbon sources on the types as well as the concentrations of PFRs in carbon-based materials are also discussed. In particular, the effects of metals on the concentrations and types of PFRs in carbon-based materials are highlighted because they are considered as the catalysts for the formation of PFRs. The formation mechanisms of reactive species and the further transformation mechanisms of ROCs are briefly summarized, and the surface properties of carbon-based materials including surface area, types and number of functional groups, etc. are found to be the key parameters controlling their activities. However, due to diversity and complexity of carbon-based materials, the exact relationships between the activities of carbon-based materials and PFRs are still uncertain. Finally, the existing problems and current challenges for the ROCs transformation with carbon-based materials are also pointed out.
Collapse
Affiliation(s)
- Yaxin Qin
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
15
|
Jaligama S, Patel VS, Wang P, Sallam A, Harding J, Kelley M, Mancuso SR, Dugas TR, Cormier SA. Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor. Part Fibre Toxicol 2018; 15:20. [PMID: 29724254 PMCID: PMC5934866 DOI: 10.1186/s12989-018-0255-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/20/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Pollutant particles containing environmentally persistent free radicals (EPFRs) are formed during many combustion processes (e.g. thermal remediation of hazardous wastes, diesel/gasoline combustion, wood smoke, cigarette smoke, etc.). Our previous studies demonstrated that acute exposure to EPFRs results in dendritic cell maturation and Th17-biased pulmonary immune responses. Further, in a mouse model of asthma, these responses were enhanced suggesting exposure to EPFRs as a risk factor for the development and/or exacerbation of asthma. The aryl hydrocarbon receptor (AHR) has been shown to play a role in the differentiation of Th17 cells. In the current study, we determined whether exposure to EPFRs results in Th17 polarization in an AHR dependent manner. RESULTS Exposure to EPFRs resulted in Th17 and IL17A dependent pulmonary immune responses including airway neutrophilia. EPFR exposure caused a significant increase in pulmonary Th17 cytokines such as IL6, IL17A, IL22, IL1β, KC, MCP-1, IL31 and IL33. To understand the role of AHR activation in EPFR-induced Th17 inflammation, A549 epithelial cells and mouse bone marrow-derived dendritic cells (BMDCs) were exposed to EPFRs and expression of Cyp1a1 and Cyp1b1, markers for AHR activation, was measured. A significant increase in Cyp1a1 and Cyp1b1 gene expression was observed in pulmonary epithelial cells and BMDCs in an oxidative stress and AHR dependent manner. Further, in vivo exposure of mice to EPFRs resulted in oxidative stress and increased Cyp1a1 and Cyp1b1 pulmonary gene expression. To further confirm the role of AHR activation in pulmonary Th17 immune responses, mice were exposed to EPFRs in the presence or absence of AHR antagonist. EPFR exposure resulted in a significant increase in pulmonary Th17 cells and neutrophilic inflammation, whereas a significant decrease in the percentage of Th17 cells and neutrophilic inflammation was observed in mice treated with AHR antagonist. CONCLUSION Exposure to EPFRs results in AHR activation and induction of Cyp1a1 and in vitro this is dependent on oxidative stress. Further, our in vivo studies demonstrated a role for AHR in EPFR-induced pulmonary Th17 responses including neutrophilic inflammation.
Collapse
Affiliation(s)
- Sridhar Jaligama
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
| | - Vivek S. Patel
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Room 2510, 1909 Freight Dock, Skip Bertman Drive, Baton Rouge, LA 70803 USA
| | - Pingli Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Asmaa Sallam
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
| | - Jeffrey Harding
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Matthew Kelley
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | | | - Tammy R. Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Room 2510, 1909 Freight Dock, Skip Bertman Drive, Baton Rouge, LA 70803 USA
| | - Stephania A. Cormier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Room 2510, 1909 Freight Dock, Skip Bertman Drive, Baton Rouge, LA 70803 USA
| |
Collapse
|
16
|
Wang P, Pan B, Li H, Huang Y, Dong X, Ai F, Liu L, Wu M, Xing B. The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area with Low-Rank Coal Burning, Xuanwei, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1054-1061. [PMID: 29316392 DOI: 10.1021/acs.est.7b05453] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The mining and burning of low-rank coal in Xuanwei, China have attracted a great deal of research attention because of the generated polyaromatic hydrocarbons (PAHs) and the high incidence of lung cancer in this region. Given the abundant transition metals in the allitic soil, we hypothesized that environmentally persistent free radicals (EPFRs) are formed in this region and the potential risk had not been addressed. Strong electron paramagnetic resonance (EPR) signals of 3.20 × 1017 - 3.10 × 1019 spins/g were detected in environmental samples, including chimney soot, coal, soil and total suspended particles (TSP). These EPR signals did not significantly change after 18-months storage and had g-values in the range of 2.0039-2.0046, suggesting typical organic free radicals. Similar strong EPR signals were observed in PAH (anthracene and pyrene as model compounds) degradation on simulated soil particles and lasted over one month even when the applied PAHs were 100% degraded. Based on g-value and bond width, we propose that EPR signals detected in TSP and soot originated from both coal combustion and PAH photodegradation. Further research is thus urgently required to investigate EPFR generation, exposure and risk in Xuanwei to better understand the cause of high lung cancer incidence.
Collapse
Affiliation(s)
- Peng Wang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Yu Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Xudong Dong
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Fang Ai
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Lingyan Liu
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Borisover M, Bukhanovsky N, Lado M. Long-Term Uptake of Phenol-Water Vapor Follows Similar Sigmoid Kinetics on Prehydrated Organic Matter- and Clay-Rich Soil Sorbents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10403-10412. [PMID: 28793190 DOI: 10.1021/acs.est.7b01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Typical experimental time frames allowed for equilibrating water-organic vapors with soil sorbents might lead to overlooking slow chemical reactions finally controlling a thermodynamically stable state. In this work, long-term gravimetric examination of kinetics covering about 4000 h was performed for phenol-water vapor interacting with four materials pre-equilibrated at three levels of air relative humidity (RHs 52, 73, and 92%). The four contrasting sorbents included an organic matter (OM)-rich peat soil, an OM-poor clay soil, a hydrophilic Aldrich humic acid salt, and water-insoluble leonardite. Monitoring phenol-water vapor interactions with the prehydrated sorbents, as compared with the sorbent samples in phenol-free atmosphere at the same RH, showed, for the first time, a sigmoid kinetics of phenol-induced mass uptake typical for second-order autocatalytic reactions. The apparent rate constants were similar for all the sorbents, RHs and phenol activities studied. A significant part of sorbed phenol resisted extraction, which was attributed to its abiotic oxidative coupling. Phenol uptake by peat and clay soils was also associated with a significant enhancement of water retention. The delayed development of the sigmoidal kinetics in phenol-water uptake demonstrates that long-run abiotic interactions of water-organic vapor with soil may be overlooked, based on short-term examination.
Collapse
Affiliation(s)
- Mikhail Borisover
- Agricultural Research Organization, Institute of Soil, Water and Environmental Sciences , The Volcani Center, Rishon LeZion, POB 15159, 7505101, Israel
| | - Nadezhda Bukhanovsky
- Agricultural Research Organization, Institute of Soil, Water and Environmental Sciences , The Volcani Center, Rishon LeZion, POB 15159, 7505101, Israel
| | - Marcos Lado
- Faculty of Sciences, University of A Coruna . A Zapateira s/n 15071 A Coruna, Spain
| |
Collapse
|
18
|
Chu G, Zhao J, Chen F, Dong X, Zhou D, Liang N, Wu M, Pan B, Steinberg CEW. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:372-379. [PMID: 28482317 DOI: 10.1016/j.envpol.2017.04.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/18/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Microwave irradiation (MW) is an effective technique in heating and pyrolysis. This study compared the properties of peanut shell-biochars produced using MW and muffle furnace (FN). At the same pyrolysis temperature, MW biochars preserved more biomass (as indicated by their higher yields and higher abundance of functional groups) and possessed larger surface areas due to the high abundance of micropores. MW biochars generally exhibited higher adsorption of carbamazepine (CBZ) and bisphenol A (BPA) than FN biochars. However, their surface area-normalized sorption was lower, suggesting that the inner pores may not be fully available to CBZ and BPA sorption. We observed significant free radical signals in both types of biochars. Although CBZ and BPA did not degrade in the biochar sorption systems, the potential role of stronger free radical signals in MW biochars for organic contaminant control may not be overlooked in studies with other chemicals.
Collapse
Affiliation(s)
- Gang Chu
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Jing Zhao
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Fangyuan Chen
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Xudong Dong
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Dandan Zhou
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Ni Liang
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Min Wu
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Bo Pan
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China.
| | - Christian E W Steinberg
- Faculty of Life Sciences, Institute of Biology, Freshwater & Stress Ecology, Humboldt-University at Berlin, Arboretum, Späthstr. 80/81, 12437 Berlin, Germany
| |
Collapse
|
19
|
Jia H, Zhao S, Nulaji G, Tao K, Wang F, Sharma VK, Wang C. Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6000-6008. [PMID: 28492316 DOI: 10.1021/acs.est.7b00599] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study presents the existence of environmentally persistent free radicals (EPFRs) in soils of past coking sites, mainly contaminated by polycyclic aromatic hydrocarbons (PAHs). Measurements of EPFRs were conducted by electron paramagnetic resonance (EPR) technique with numerous soil samples, which were collected from different distances (0-1000 m) and different depths (0-30 cm) of three contaminant sources. EPR signals with ∼3 × 1017 radicals/g of the soil samples were obtained, which are very similar to that generated in PAHs contaminated clays, that is, g = 2.0028-2.0036. Concentrations of PAHs and soil components were determined to understand their role in producing EPFRs. PAHs, clay, and iron predominately contributed to generating EPRFs. Meanwhile, organic matter negatively influenced the production of EPRFs. The effects of environmental factors (moisture and oxic/anoxic) were also studied to probe the persistency of EPFRs under various simulated conditions. The EPFRs are stable under relatively dry and oxic conditions. Under anoxic conditions without O2 and H2O, the spin densities decrease initially, followed by gradual increase before attaining constant values in two months period time. The present work implies that continuous formation of EPFRs induced by PAHs is largely responsible for the presence of relatively stable radicals in soils of coking sites.
Collapse
Affiliation(s)
- Hanzhong Jia
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Song Zhao
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Gulimire Nulaji
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Kelin Tao
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health, Texas A&M University , College Station, Texas 77843, United States
| | - Chuanyi Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| |
Collapse
|
20
|
Patterson MC, DiTusa MF, McFerrin CA, Kurtz R, Hall RW, Poliakoff ED, Sprunger PT. Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation. Chem Phys Lett 2017; 670:5-10. [PMID: 28824195 PMCID: PMC5560487 DOI: 10.1016/j.cplett.2016.12.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Environmentally persistent free radicals (EPFRs) have significant environmental and public health impacts. In this study, we demonstrate that EPFRs formed on ZnO nanoparticles provide two significant surprises. First, EPR spectroscopy shows that phenoxy radicals form readily on ZnO nanoparticles at room temperature, yielding EPR signals similar to those previously measured after 250°C exposures. Vibrational spectroscopy supports the conclusion that phenoxy-derived species chemisorb to ZnO nanoparticles under both exposure temperatures. Second, DFT calculations indicate that electrons are transferred from ZnO to the adsorbed organic (oxidizing the Zn), the opposite direction proposed by previous descriptions of EPFR formation on metal oxides.
Collapse
Affiliation(s)
| | - Mark F. DiTusa
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Cheri A. McFerrin
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - R.L. Kurtz
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Randall W. Hall
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - E. D. Poliakoff
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - P. T. Sprunger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
21
|
Jia H, Nulaji G, Gao H, Wang F, Zhu Y, Wang C. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6310-9. [PMID: 27224055 DOI: 10.1021/acs.est.6b00527] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.
Collapse
Affiliation(s)
- Hanzhong Jia
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| | - Gulimire Nulaji
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
- School of Geology and Mining Engineering, Xinjiang University , Urumqi 830046, China
| | - Hongwei Gao
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| | - Yunqing Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| | - Chuanyi Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|
22
|
Dugas TR, Lomnicki S, Cormier SA, Dellinger B, Reams M. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060573. [PMID: 27338429 PMCID: PMC4924030 DOI: 10.3390/ijerph13060573] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes, incomplete combustion can lead to the production of organic pollutants that can adsorb to the surface of PM. Recent studies have demonstrated that their interaction with metal centers can lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature, thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation and its environmental significance. Furthermore, we will address the lack of methodologies for specifically addressing its risk assessment and challenges associated with regulating this new, emerging contaminant.
Collapse
Affiliation(s)
- Tammy R Dugas
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| | - Slawomir Lomnicki
- Department of Environmental Sciences, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| | - Stephania A Cormier
- Department of Pediatrics, University of Tennessee Health Sciences Center and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA.
| | - Barry Dellinger
- Department of Chemistry, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| | - Margaret Reams
- Department of Environmental Sciences, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| |
Collapse
|
23
|
Nwosu UG, Khachatryan L, Youm SG, Roy A, Dela Cruz ALN, Nesterov EE, Dellinger B, Cook RL. Model System Study of Environmentally Persistent Free Radicals Formation in a Semiconducting Polymer Modified Copper Clay System at Ambient Temperature. RSC Adv 2016; 6:43453-43462. [PMID: 28670444 PMCID: PMC5489243 DOI: 10.1039/c6ra08051k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper systematically investigates how environmentally persistent free radicals (EPFRs) are formed in a phenol contaminated model soil. Poly-p-phenylene (PPP) modified and copper-loaded montmorillonite (MMT) clays were developed and used as models of soil organic matter and the clay mineral component, respectively, with phenol being employed as a precursor pollutant. The polymer modification of the clays was carried out via surface-confined Kumada catalyst-transfer chain-growth polymerization. The presence and location of the polymer were confirmed by a combination of thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray diffraction data. EPFRs were formed by the Cu(II)-clay (Cu(II)CaMMT) and poly-p-phenylene-Cu(II)clay (PPP-Cu(II)CaMMT) composite systems under environmentally relevant conditions. The g-factor and concentration of EPFRs formed by the Cu(II)CaMMT and PPP-Cu(II)CaMMT systems were found to be 2.0034 and 1.22 × 1017 spins/g and 2.0033 and 1.58 × 1017spins/g, respectively. These g-factors are consistent with the formation of phenoxyl radicals. Extended X-Ray absorption fine structure (EXAFS) analysis shows that there are distinct differences in the local stuctures of the phenoxyl radicals associated with only the Cu(II) redox centers and those formed in the presences of the PPP polymer. X-ray absorption near edge spectroscopy (XANES) results provided evidence for the reduction of Cu(II) to Cu(I) in the EPFR forming process. The 1/e lifetimes of the formed EPFRs revealed a decay time of ~20 h for the Cu(II)CaMMT system and a two-step decay pattern for the PPP-Cu(II)CaMMT system with decay times of ~13.5 h and ~55.6 h. Finally, the generation of reactive oxygen species (hydroxyl radical; •OH) by these clay systems was also investigated, with higher concentrations of •OH detected for the phenol-dosed Cu(II)CaMMT and PPP-Cu(II)CaMMT systems, compared to the non-EPFR containing undosed PPP-Cu(II)CaMMT system.
Collapse
Affiliation(s)
- Ugwumsinachi G Nwosu
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, United States
- Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, United States
| | - Lavrent Khachatryan
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, United States
- Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, United States
| | - Sang Gil Youm
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, United States
| | - Amitava Roy
- Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806, United States
| | - Albert Leo N Dela Cruz
- Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, United States
| | - Evgueni E Nesterov
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, United States
| | - Barry Dellinger
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, United States
- Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, United States
| | - Robert L Cook
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, United States
- Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
24
|
Nwosu UG, Roy A, dela Cruz ALN, Dellinger B, Cook R. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:42-50. [PMID: 26647158 PMCID: PMC4743249 DOI: 10.1039/c5em00554j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.
Collapse
Affiliation(s)
- Ugwumsinachi G Nwosu
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, USA. and Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, USA
| | - Amitava Roy
- Centre for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806, USA
| | - Albert Leo N dela Cruz
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, USA. and Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, USA
| | - Barry Dellinger
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, USA. and Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, USA
| | - Robert Cook
- Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803, USA. and Louisiana State University Superfund Research Center, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|