1
|
Ng WM, Chong WH, Abdullah AZ, Lim J. Exploring the Impact of Surface Functionalization on the Reaction, Magnetophoretic, and Collective Transport Behavior of Nanoscale Zerovalent Iron. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17270-17285. [PMID: 37976676 DOI: 10.1021/acs.langmuir.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This study provides a systematic analysis of the transport and magnetophoretic behavior of nanoscale zerovalent iron (nZVI) particles, both bare and surface functionalized by poly(ethylene glycol) (PEG) and carboxymethyl cellulose (CMC), after undergoing a chemical reaction. Here, a simple and well-investigated chemical reaction of methyl orange (MO) degradation by nZVI was used as a model reaction system, and the sand column transport and low-gradient magnetophoretic profiles of the nanoparticles were measured before and after the reaction. The results were compared over time and analyzed in the context of extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to understand the particle interactions involved. The colloidal stability of both bare and functionalized nZVI particles was enhanced after the reaction due to the consumption of metallic Fe content, resulting in a significant drop in their magnetic properties. As a result, they exhibited improved mobility across the sand column and a slower magnetophoretic collection rate compared to the unreacted particles. Here, the colloidal filtration theory (CFT) was employed to analyze the transport behavior of nZVI particles across the packed sand column. It has been observed that the surface properties of the reacted functionalized particles changed, possibly due to the entrapment of degraded products within the polymer adlayer. Moreover, quartz crystal microbalance with dissipation (QCM-D) measurements were performed to reveal the viscoelastic contribution of the adlayer formed by both bare and functionalized nZVI particles after the reaction on influencing their transport behavior across the sand column. Finally, we proposed the implementation of a high-gradient magnetic trap (HGMT) to reduce the transport distance of the colloidally stable CMC-nZVI, both before and after the reaction. This study sheds light on the behavioral changes of iron nanoparticles after the reaction and highlights environmental concerns regarding the presence of reacted nanoparticles.
Collapse
Affiliation(s)
- Wei Ming Ng
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
2
|
Mohamed A, Atta RR, Kotp AA, Abo El-Ela FI, Abd El-Raheem H, Farghali A, Alkhalifah DHM, Hozzein WN, Mahmoud R. Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd 2+ and Ni 2+) from aqueous solutions with Antimicrobial Investigation. Sci Rep 2023; 13:7227. [PMID: 37142660 PMCID: PMC10160056 DOI: 10.1038/s41598-023-31704-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
Clove and green Coffee (g-Coffee) extracts were used to synthesize green iron oxide nanoparticles, which were then used to sorb Cd2+ and Ni2+ ions out of an aqueous solution. Investigations with x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and desorption (BET), Zeta potential, and scanning electron microscopy were performed to know and understand more about the chemical structure and surface morphology of the produced iron oxide nanoparticles. The characterization revealed that the main component of iron nanoparticles was magnetite when the Clove extract was used as a reducing agent for Fe3+, but both magnetite and hematite were included when the g-Coffee extract was used. Sorption capacity for metal ions was studied as a function of sorbent dosage, metal ion concentration, and sorption period. The maximum Cd2+ adsorption capacity was 78 and 74 mg/g, while that of Ni2+ was 64.8 and 80 mg/g for iron nanoparticles prepared using Clove and g-Coffee, respectively. Different isotherm and kinetic adsorption models were used to fit experimental adsorption data. Adsorption of Cd2+ and Ni2+ on the iron oxide surface was found to be heterogeneous, and the mechanism of chemisorption is involved in the stage of determining the rate. The correlation coefficient R2 and error functions like RMSE, MES and MAE were used to evaluate the best fit models to the experimental adsorption data. The adsorption mechanism was explored using FTIR analysis. Antimicrobial study showed broad spectrum antibacterial activity of the tested nanomaterials against both Gram positive (S. aureus) (25923) and Gram negative (E. coli) (25913) bacteria with increased activity against Gram positive bacteria than Gram negative one and more activity for Green iron oxide nanoparticles prepared from Clove than g-Coffee one.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - R R Atta
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt.
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia.
| | - Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hany Abd El-Raheem
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Environmental Engineering Program, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, B.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
3
|
Zhang S, Yi K, Chen A, Shao J, Peng L, Luo S. Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:873-883. [PMID: 35834074 DOI: 10.1007/s10646-022-02565-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron particles (NZVI) are widely used in a variety of industries owing to their advantageous mechanical, physical, and chemical properties. These particles can be released into environmental media, including water, soil, and air, through several pathways. NZVI in the ecosystem can be taken up, excreted and distributed within organisms, which is harmful to plants, animals and humans. Plants play a significant role as producers in the ecological circle and can both positively and negatively affect the ecological behavior of NZVI. Therefore, understanding the relationship between plants and NZVI is likely to be of great value for the assessment of NZVI-associated risks and future research directions. In this review, we summarize the current knowledge on the uptake, distribution, and accumulation of NZVI in plants; the phytotoxicity triggered by NZVI exposure at the physiological, biochemical, and molecular levels; and the defense mechanism used by plants to defend against NZVI-induced insults. We further discuss the toxic effects of NZVI on soil animals and microorganisms as well as the risk posed by the presence of NZVI in the food chain.
Collapse
Affiliation(s)
- Shijing Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Kexin Yi
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
4
|
Angaru GKR, Choi YL, Lingamdinne LP, Koduru JR, Yang JK, Chang YY, Karri RR. Portable SA/CMC entrapped bimetallic magnetic fly ash zeolite spheres for heavy metals contaminated industrial effluents treatment via batch and column studies. Sci Rep 2022; 12:3430. [PMID: 35236886 PMCID: PMC8891350 DOI: 10.1038/s41598-022-07274-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/16/2022] [Indexed: 12/28/2022] Open
Abstract
Heavy metals are perceived as a significant environmental concern because of their toxic effect, bioaccumulation, and persistence. In this work, a novel sodium alginate (SA) and carboxymethylcellulose (CMC) entrapped with fly ash derived zeolite stabilized nano zero-valent iron and nickel (ZFN) (SA/CMC-ZFN), followed by crosslinking with CaCl2, is synthesized and applied for remediation of Cu(II) and Cr(VI) from industrial effluent. The characterization of the adsorbent and its surface mechanism for removing metals were investigated using advanced instrumental techniques, including XRD, FT-IR, SEM-EDX, BET, and XPS. The outcomes from the batch experiments indicated that monolayer adsorption on homogeneous surfaces (Langmuir isotherm model) was the rate-limiting step in both heavy metals sorption processes. The maximum adsorption capacity of as-prepared SA/CMC-ZFN was 63.29 and 10.15 mg/g for Cu(II) and Cr(VI), respectively. Owing to the fact that the wastewater released from industries are large and continuous, a continuous column is installed for simultaneous removal of heavy metal ions from real industrial wastewater. The outcomes revealed the potential of SA/CMC-ZFN as an efficient adsorbent. The experimental breakthrough curves fitted well with the theoretical values of Thomas and Yoon-Nelson models. Overall, the results indicated that SA/CMC-ZFN is a viable, efficient, and cost-effective water treatment both interms of batch and column processes.
Collapse
Affiliation(s)
| | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE 1410, Brunei Darussalam.
| |
Collapse
|
5
|
Angaru GKR, Choi YL, Lingamdinne LP, Choi JS, Kim DS, Koduru JR, Yang JK, Chang YY. Facile synthesis of economical feasible fly ash-based zeolite-supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents. CHEMOSPHERE 2021; 267:128889. [PMID: 33187656 DOI: 10.1016/j.chemosphere.2020.128889] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 05/04/2023]
Abstract
Heavy metals contamination of water is one of the environmental issue globally. Thus prepared fly ash-based zeolite (FZA)-supported nano zerovalent iron and nickel (nZVI/Ni@FZA) bimetallic composite from low-cost fly ash waste for the potential treatment of anion (Cr(VI) and cation Cu(II)) heavy metals from industrial effluents at pH 3 and 5, respectively in this study. The systematic interaction between FZA and nZVI/Ni and the adsorptive removal mechanism was studied. The mean surface area of the nZVI/Ni@FZA (154.11 m2/g) was much greater than that of the FZA (46.6 m2/g) and nZVI (4.76 m2/g) independently, as determined by BET-N2 measurements. The effect of influence factors on the removal of Cr(VI) and Cu(II) by nZVI/Ni@FZA, such as pH effect, initial concentration effect, time effect, temperature effect, coexisting metals, and ionic strength, and cumulative loading ability, were discussed. The maximum adsorption capacity of nZVI/Ni@FZA was 48.31 mg/g and 147.06 mg/g towards Cr(VI) and Cu(II), respectively. These were higher than those of nZVI@FZA and FZA. It demonstrated that Ni could play an important role in enhancing the reduction ability of nZVI. Furthermore, isothermal and kinetic results revealed that both heavy metal adsorption processes were rate limiting monolayer Langmuir adsorption on homogeneous surfaces. Thermodynamic results suggested that the adsorptive removal of metal ions was endothermic with spontaneity. The applicability of nZVI/Ni@FZA on real industrial wastewater treatment results demonstrate that the concentration of heavy metals were removed under the acceptable standard levels. Further the adsorption capacity of nZVI/Ni@FZA was higher than the nZVI@FZA and FZA. The overall results demonstrated that nZVI/Ni@FZA was a promising, efficient, and economically feasible sorbent for potential wastewater treatment. Moreover this is first report on the preparation nZVI/Ni@FZA bimetallic composite.
Collapse
Affiliation(s)
| | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Jong-Soo Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Dong-Su Kim
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
6
|
Plohl O, Simonič M, Kolar K, Gyergyek S, Fras Zemljič L. Magnetic nanostructures functionalized with a derived lysine coating applied to simultaneously remove heavy metal pollutants from environmental systems. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:55-71. [PMID: 33536841 PMCID: PMC7832508 DOI: 10.1080/14686996.2020.1865114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The pollution of environmental systems with heavy metals is becoming a serious problem worldwide. These contaminants are one of the main issues in sludge (which is considered waste) and can even have harmful effects if the sludge is not treated properly. Thus, the development of a novel functional magnetic nanoadsorbent based on a derived lysine is reported here, which can be efficiently applied for metal removal from sludge. Magnetic nanoparticles were coated with silica layer and further modified by covalent bonding of derived lysine. The morphology of the nanomaterial, its nano-size and the silica layer thickness were analyzed by transmission electron microscopy. The successful silanization of the lysine derivative to the silica-coated magnetic nanostructures was investigated by several physicochemical characterization techniques, while the magnetic properties were measured with a vibrating sample magnetometer. The synthesized nanostructures were used as adsorbents for simultaneous removal of most critical heavy metals (Cr, Zn, Cu) from real complex sludge suspensions. The main practical adsorption parameters, pH of the native stabilized sludge, adsorbent amount, time, and adsorbent regeneration were investigated. The results show promising adsorption properties among currently available adsorbents (the total equilibrium adsorption capacity was 24.5 mg/g) from the sludge with satisfactory nanoadsorbent reusability and its rapid removal. The stability of the nanoadsorbent in the sludge, an important but often neglected practical parameter for efficient removal, was verified. This work opens up new possibilities for the development of high-quality magnetic nanoadsorbents for metal pollutants applied in various complicated environmental fields and enables waste recovery.
Collapse
Affiliation(s)
- Olivija Plohl
- Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, University of Maribor, Maribor, Slovenia
- CONTACT Olivija Plohl Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, University of Maribor, Smetanova 17, Maribor2000, Slovenia
| | - Marjana Simonič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Ken Kolar
- Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, University of Maribor, Maribor, Slovenia
| | - Sašo Gyergyek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, University of Maribor, Maribor, Slovenia
| |
Collapse
|
7
|
Gil-Díaz M, Álvarez MA, Alonso J, Lobo MC. Effectiveness of nanoscale zero-valent iron for the immobilization of Cu and/or Ni in water and soil samples. Sci Rep 2020; 10:15927. [PMID: 32985614 PMCID: PMC7522239 DOI: 10.1038/s41598-020-73144-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
In the last few years, the effectiveness of nanoscale zero-valent iron (nZVI) as a treatment for polluted waters and soils has been widely studied. However, little data are available on its efficacy for metal immobilization at low and moderate doses. In this study, the effectiveness of two doses of commercial nZVI (1 and 5%) to immobilize Cu and/or Ni in water and acidic soil samples was evaluated. The influence of the nanoremediation technology on iron availability, physico-chemical soil properties and soil phytotoxicity was also assessed. The results show that the effectiveness of nZVI to immobilize Cu and Ni in water and soil samples was determined by the dose of the nanomaterial and the presence of both metals. Nickel immobilization was significantly decreased by the presence of Cu but the opposite effect was not observed. nZVI showed better immobilization capacity in water than in soil samples. In water, the dose of 5% completely removed both metals, whereas at a lower dose (1%) the percentage of immobilized metal decreased, especially for Ni in Cu + Ni samples. In soil samples, 5% nZVI was more effective in immobilizing Ni than Cu, with a 54% and 21% reduction of leachability, respectively, in single contaminated samples. In Cu + Ni soil samples, nZVI treatment led to a significant decrease in Ni immobilization, similar to that observed in water samples. The application of nZVI induced a dose-dependent increase in available Fe—a relevant effect in the context of soil rehabilitation. Germination assays of Medicago sativa and Vicia sativa seeds revealed that treatment with nZVI did not induce phytotoxicity under the experimental conditions tested, and that the phytotoxicity induced by Ni decreased significantly after the treatment. Thus, the use of nZVI emerges as an interesting option for Cu and/or Ni immobilization in water samples. The effectiveness of nZVI to remove Cu from acidic soil samples was moderate, while for Ni it was strongly dependent on the presence of Cu. These observations therefore indicate that the results in water samples cannot be extrapolated to soil samples.
Collapse
Affiliation(s)
- M Gil-Díaz
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain.
| | - M A Álvarez
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - J Alonso
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - M C Lobo
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
8
|
Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A, Bilal M. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114728. [PMID: 32408081 DOI: 10.1016/j.envpol.2020.114728] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution by heavy metals (HMs) has raised considerable attention due to their toxic impacts on plants, animals and human beings. Thus, the environmental cleanup of these toxic (HMs) is extremely urgent both from the environmental and biological point of view. To remediate HMs-polluted environment, several nanoparticles (NPs) such as metals and its oxides, carbon materials, zeolites, and bimetallic NPs have been documented. Among these, Fe-based NPs have emerged as an effective choice for remediating environmental contamination, due to infinite size, high reactivity, and adsorption properties. This review summarizes the utilization of various Fe-based NPs such as nano zero-valent iron (NZVI), modified-NZVI, supported-NZVI, doped-NZVI, and Fe oxides and hydroxides in remediating the HMs-polluted environment. It presents a comprehensive elaboration on the possible reaction mechanisms between the Fe-based NPs and heavy metals, including adsorption, oxidation/reduction, and precipitation. Subsequently, the environmental factors (e.g., pH, organic matter, and redox) affecting the reactivity of the Fe-based NPs with heavy metals are also highlighted in the current study. Research shows that Fe-based NPs can be toxic to living organisms. In this context, this review points out the environmental hazards associated with the application of Fe-based NPs and proposes future recommendations for the utilization of these NPs.
Collapse
Affiliation(s)
- Abdul Latif
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China; Department of Agriculture, Soil and Water, Testing Laboratory for Research, DG Khan, Pakistan
| | - Di Sheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Aown Abbas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal
- Department of Agriculture, Soil and Water, Testing Laboratory for Research, DG Khan, Pakistan
| |
Collapse
|
9
|
Pasinszki T, Krebsz M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E917. [PMID: 32397461 PMCID: PMC7279245 DOI: 10.3390/nano10050917] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Present and past anthropogenic pollution of the hydrosphere and lithosphere is a growing concern around the world for sustainable development and human health. Current industrial activity, abandoned contaminated plants and mining sites, and even everyday life is a pollution source for our environment. There is therefore a crucial need to clean industrial and municipal effluents and remediate contaminated soil and groundwater. Nanosized zero-valent iron (nZVI) is an emerging material in these fields due to its high reactivity and expected low impact on the environment due to iron's high abundance in the earth crust. Currently, there is an intensive research to test the effectiveness of nZVI in contaminant removal processes from water and soil and to modify properties of this material in order to fulfill specific application requirements. The number of laboratory tests, field applications, and investigations for the environmental impact are strongly increasing. The aim of the present review is to provide an overview of the current knowledge about the catalytic activity, reactivity and efficiency of nZVI in removing toxic organic and inorganic materials from water, wastewater, and soil and groundwater, as well as its toxic effect for microorganisms and plants.
Collapse
Affiliation(s)
- Tibor Pasinszki
- Department of Chemistry, School of Pure Sciences, College of Engineering, Science and Technology, Fiji National University, Suva P.O. Box 7222, Fiji;
| | | |
Collapse
|
10
|
Abdel Maksoud M, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213096] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Nanoscale Zero Valent Iron Supported by Biomass-Activated Carbon for Highly Efficient Total Chromium Removal from Electroplating Wastewater. WATER 2019. [DOI: 10.3390/w12010089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The application potential of nanoscale zero valent iron (nZVI) in wastewater treatment is huge and has attracted a lot of attention. In this study, the composite material BC-nZVI was prepared by emulsion of nZVI and biomass-activated carbon (BC) under the mechanical agitation condition, and was characterized by SEM-EDX, XRD, XPS, and FTIR. The decontamination abilities of BC-nZVI were tested by the removal of total chromium (Cr) from electroplating wastewater. The results showed that the removal efficiencies of Cr in the electroplating wastewater by nZVI particles can be effectively improved when supported with BC, but cannot be improved in its storage capacity. The chemical adsorption process between the Cr and BC-nZVI is the main rate-limiting step in the removal of total Cr from wastewater, and multiple parameters such as dosage, pH, and initial concentration of Cr was found to affect the rate.
Collapse
|
12
|
Yang CH, Kung TA, Chen PJ. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1920-1932. [PMID: 31227347 DOI: 10.1016/j.envpol.2019.05.154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Nanoscale zerovalent iron (nZVI) is a redox-active nanomaterial commonly used in remediation of soil and groundwater pollution and wastewater treatment processes. A large quantity of nZVI (e.g., >100 mg/L) accidentally released from in situ sites to nearby oxygenized aquifers could be rapidly oxidized to iron oxides (e.g., Fe3O4 or Fe2O3) and ions (e.g., Fe2+), for acute hypoxia effects to aquatic life. However, we do not know the ecotoxicological fate of nZVI and its oxidation products at lower, environmentally concentrations in surface water receiving waterborne transportation or effluent discharge in terms of exposure to aquatic vertebrate species. This study assessed the causal effect on reproductive toxicity in medaka adults (Oryzias latipes) of carboxymethyl cellulose-stabilized nZVI (CMC-nZVI), Fe2+ and iron oxide nanoparticles (nFe3O4) with 21-day aqueous exposure at 5 and 20 mg/L (Fe-equivalent). Such concentrations did not significantly change the dissolved oxygen, oxidation-reduction potential or pH values in the 3 iron solutions during the fish exposure period. Neither CMC-nZVI nor Fe2+ treated adults showed altered daily egg production (fecundity) and oxidative stress responses in observed tissues, as compared to controls. However, the fecundity in nFe3O4 (20 mg/L)-treated pairs was significantly decreased, with increased incidence of abnormal immature oocytes in the ovary. As well, nFe3O4 treatment suppressed activities of the antioxidants superoxide dismutase and expression of glutathione peroxidase (gpx) in the brain and ovary. Although nFe3O4 or Fe2+ treatments inhibited mRNA expression of hepatic estrogen receptor (er-α) in females, plasma levels of sex hormones and (Na, K)-ATPase activity in gills of treated fish did not differ from controls for both sexes. Hence, oxidation products (e.g., nFe3O4) from nZVI at lower milligram-per-liter levels may be potent in inducing nanoparticle-specific reproductive toxicity in medaka fish by inducing oxidative stress in female gonads. MAIN FINDING: nZVI oxidation product nFe3O4 at lower mg/L induces nanoparticle-specific reproductive toxicity in medaka fish.
Collapse
Affiliation(s)
- Ching-Hsin Yang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Te-An Kung
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
13
|
Hamid S, Abudanash D, Han S, Kim JR, Lee W. Strategies to enhance the stability of nanoscale zero-valent iron (NZVI) in continuous BrO 3- reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:714-725. [PMID: 30399548 DOI: 10.1016/j.jenvman.2018.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
The reduction of bromate to bromide was successfully achieved by bimetallic catalysts with NZVI support in continuous-flow reactors. The stability of NZVI-supported bimetallic catalysts was enhanced by decelerating the iron corrosion and sequential rapid passivation of the iron-Cu-Pd ensembles under optimized reaction conditions. Thus >99% bromate removal can be continuously achieved for 11 h. The lifetime of the bimetallic catalyst was further enhanced and tested under different hydraulic retention time, catalyst loading, and initial bromate concentrations. At the optimized operation conditions, the catalyst showed a complete bromate reduction by 24 h and then the reactivity slowly decreased to 20% over the next 100 h. X-ray diffraction and X-ray photoelectron spectroscopy showed that the reactive NZVI support was oxidized to Fe(II) and Fe(III) along with Cu(0) oxidation to CuO, while the oxidation state of Pd did not change. Therefore, bromate reduction occurred on the surface of reactive NZVI support and Cu(0) particle, while Pd played a role as a hydrogenation catalyst that prolonged the lifetime of the bimetallic catalyst.
Collapse
Affiliation(s)
- Shanawar Hamid
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan; Department of Structures and Environmental Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Damira Abudanash
- School of Mining and Geosciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan
| | - Seunghee Han
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Jong R Kim
- Department of Civil and Environmental Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan
| | - Woojin Lee
- Department of Civil and Environmental Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan.
| |
Collapse
|
14
|
Fajardo C, García-Cantalejo J, Botías P, Costa G, Nande M, Martin M. New insights into the impact of nZVI on soil microbial biodiversity and functionality. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 54:157-167. [PMID: 30588856 DOI: 10.1080/10934529.2018.1535159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is a strong reducing agent used for in situ remediation of soil. The impacts of nZVI (5-10% w/w) on the soil microbial biodiversity and functionality of two soils (Lufa 2.2 and 2.4) were assessed. Illumina MiSeq technology was used to evaluate the structure of soil microbiomes after 21 days of exposure. Proteobacteria, Verrucomicrobia, Firmicutes and Actinobacteria were the most abundant phyla in both soils. However, the dynamics of bacterial community composition following nZVI addition differed. nZVI exposure induced pronounced shifts in the microbial composition of soil 2.4, but not in soil 2.2; an increase in Verrucomicrobia abundance was the unique common taxonomic pattern observed in both soils. The PICRUSt approach was applied to predict the functional composition of each metagenome. Environmental information processing function (membrane transport) was decreased in both nZVI-spiked soils, although soil 2.4 samples were enriched in functions involved in cellular processes and metabolism. The effects of nZVI on autochthonous bacterial communities clearly varied with the soil type assessed; changes at the phylogenetic level appeared to be more abundant than those observed at the functional level, and thus, the overall effort of the soil ecosystem might involve the maintenance of functionality following nZVI exposure.
Collapse
Affiliation(s)
- Carmen Fajardo
- a Facultad de Farmacia , Universidad de Alcalá , Alcalá de Henares , Madrid , Spain
| | - Jesús García-Cantalejo
- b Genomics Facility , Universidad Complutense, Parque Científico (UCM-PCM) , Madrid , Spain
| | - Pedro Botías
- b Genomics Facility , Universidad Complutense, Parque Científico (UCM-PCM) , Madrid , Spain
| | - Gonzalo Costa
- c Facultad de Veterinaria , Universidad Complutense , Madrid , Spain
| | - Mar Nande
- c Facultad de Veterinaria , Universidad Complutense , Madrid , Spain
| | - Margarita Martin
- c Facultad de Veterinaria , Universidad Complutense , Madrid , Spain
| |
Collapse
|
15
|
Qian D, Su Y, Huang Y, Chu H, Zhou X, Zhang Y. Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:698-706. [PMID: 29154095 DOI: 10.1016/j.jhazmat.2017.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/10/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Nanoscale zerovalent iron (nZVI) shows great promise in valuable metal recovery from wastewater due to its high removal capacity. However, nZVI-based processes mainly focus on the sequestration step, ignoring the desorption step, which is crucial for recovery. In this study, a novel method for simultaneous Mo(VI) recovery and hazardous metal ions immobilization by nZVI was developed and the reaction mechanism was further investigated. Results shown that removal capacity of nZVI was significantly influenced by surface charge and the number of active adsorption sites. X-ray photoelectron spectroscopy analysis demonstrated that Mo(VI) reduction occurred in the inner Fe(0) core. K-edge X-ray Absorption Near Edge Structure analysis further confirmed that 5.4% and 18.0% of Mo(VI) are reduced to Mo(IV) at pH 6 and 9, respectively, suggesting that high pH favors for Mo(VI) reduction and H+ is responsible for the hollow-out structure at pH 6. Through adjusting the pH of wastewater from 3 to 12, over 80% of adsorbed Mo(VI) could be recovered while other metal ions remained immobilized and limited influence with common ions/anions. Overall, the proposed mechanism was significant to the research of metal reduction and competition for proton of nZVI, and the developed method had great prospects in valuable anions recovery.
Collapse
Affiliation(s)
- Dongxu Qian
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yiming Su
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Yuxiong Huang
- Bren School of Environmental Science and Management, University of California, Santa Barbara, United States
| | - Huaqiang Chu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| |
Collapse
|
16
|
Ma L, Wei Q, Chen Y, Song Q, Sun C, Wang Z, Wu G. Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171051. [PMID: 29515830 PMCID: PMC5830719 DOI: 10.1098/rsos.171051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/16/2018] [Indexed: 06/02/2023]
Abstract
Batch experiments were conducted to test the effects of various solution properties, such as pH, temperature, initial concentration and anoxic and aerobic atmosphere, on Cd removal by nanoscale zerovalent iron (nZVI) supported on industrial coal fly ash. Cd (II) could be removed by adsorption on fly ash-nZVI in a very short time (5 min) with high removal rates (greater than 99.9%) over a wide range of concentration (5-100 mg l-1). Cd (II) was physically adsorbed on the surface of fly ash-nZVI. The preparation of fly ash-nZVI can incorporate the use of waste media, making the overall adsorbent more removal efficient and low cost.
Collapse
Affiliation(s)
- Lixia Ma
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, People's Republic of China
- College of Urban and Environmental Sciences, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Qi Wei
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, People's Republic of China
- College of Urban and Environmental Sciences, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yueqin Chen
- College of Urban and Environmental Sciences, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Qiuyang Song
- College of Urban and Environmental Sciences, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Conghui Sun
- College of Urban and Environmental Sciences, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Guanghong Wu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
17
|
Min X, Li Y, Ke Y, Shi M, Chai L, Xue K. Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. WATER SCIENCE AND TECHNOLOGY 2017; 76:192-200. [PMID: 28708624 DOI: 10.2166/wst.2017.204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Arsenic is one of the major pollutants and a worldwide concern because of its toxicity and chronic effects on human health. An adsorbent of Fe-FeS2 mixture for effective arsenic removal was successfully prepared by mechanical ball milling. The products before and after arsenic adsorption were characterized with scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent shows high arsenic removal efficiency when molar ratio of iron to pyrite is 5:5. The experimental data of As(III) adsorption are fitted well with the Langmuir isotherm model with a maximal adsorption capacity of 101.123 mg/g. And As(V) data were described perfectly by the Freundlich model with a maximal adsorption capacity of 58.341 L/mg. As(III) is partial oxidized to As(V) during the adsorption process. High arsenic uptake capability and cost-effectiveness of waste make it potentially attractive for arsenic removal.
Collapse
Affiliation(s)
- Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yangwenjun Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yong Ke
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Meiqing Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ke Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
18
|
Sun Y, Lei C, Khan E, Chen SS, Tsang DCW, Ok YS, Lin D, Feng Y, Li XD. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. CHEMOSPHERE 2017; 176:315-323. [PMID: 28273539 DOI: 10.1016/j.chemosphere.2017.02.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L-1. The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (ksa) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn2+ to ZnCl3- and ZnCl42-; from CrO42- to CaCrO4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cheng Lei
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Eakalak Khan
- Department of Civil Engineering, North Dakota State University, Dept 2470, P.O. Box 6050, Fargo, ND, 58108, USA
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- School of Natural Resources and Environmental Science & Korea Biochar Research Center, Kangwon National University, Chuncheon, 24341, South Korea
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment. Sci Rep 2016; 6:24358. [PMID: 27095387 PMCID: PMC4837343 DOI: 10.1038/srep24358] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
Abstract
Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.
Collapse
|
20
|
Huang YX, Guo J, Zhang C, Hu Z. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion. WATER RESEARCH 2016; 88:475-480. [PMID: 26521217 DOI: 10.1016/j.watres.2015.10.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/04/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
Nano zero valent iron (NZVI) has shown inhibition on methanogenesis in anaerobic digestion due to its reductive decomposition of cell membrane. The inhibition was accompanied by the accumulation of hydrogen gas due to rapid NZVI dissolution. It is not clear whether and how rapid hydrogen release from NZVI dissolution directly affects anaerobic digestion. In this study, the hydrogen release kinetics from NZVI (average size = 55 ± 11 nm) dissolution in deionized water under anaerobic conditions was first evaluated. The first-order NZVI dissolution rate constant was 2.62 ± 0.26 h(-1) with its half-life of 0.26 ± 0.03 h. Two sets of anaerobic digestion experiments (i.e., in the presence of glucose or without any substrate but at different anaerobic sludge concentrations) were performed to study the impact of H2 release from rapid NZVI dissolution, in which H2 was generated in a separate water bottle containing NZVI (i.e., ex situ H2 or externally supplied from NZVI dissolution) before hydrogen gas was introduced to anaerobic digestion. The results showed that the H2 partial pressure in the headspace of the digestion bottle reached as high as 0.27 atm due to rapid NZVI dissolution, resulting in temporary inhibition of methane production. Nevertheless, the 5-d cumulative methane volume in the group with ex situ H2 production due to NZVI dissolution was actually higher than that of control, suggesting NZVI inhibition on methanogenesis is solely due to the reductive decomposition of cell membrane after direct contact with NZVI.
Collapse
Affiliation(s)
- Yu-Xi Huang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Jialiang Guo
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Chunyang Zhang
- School of Life Science, Shandong University of Technology, Shandong Province, China
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
21
|
|
22
|
Su Y, Adeleye AS, Keller AA, Huang Y, Dai C, Zhou X, Zhang Y. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. WATER RESEARCH 2015; 74:47-57. [PMID: 25706223 DOI: 10.1016/j.watres.2015.02.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
Sulfide-modified nanoscale zerovalent iron (S-nZVI) is attracting a lot of attention due to its ease of production and high reactivity with organic pollutants. However, its structure is still poorly understood and its potential application in heavy metal remediation has not been explored. Herein, the structure of S-nZVI and its cadmium (Cd) removal performance under different aqueous conditions were carefully investigated. Transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) analysis suggested that sulfur was incorporated into the zerovalent iron core. Scanning electron microscopy (SEM) with EDS analysis demonstrated that sulfur was also homogeneously distributed within the nanoparticles. When the concentration of Na2S2O4 was increased during synthesis, a flake-like structure (FeSx) increased significantly. S-nZVI had an optimal Cd removal capacity of 85 mg/g, which was >100% higher than for pristine nZVI. Even at pH 5, over 95% removal efficiency was observed, indicating sulfide compounds played a crucial role in metal ion removal and particle chemical stability. Oxygen impaired the structure of S-nZVI but enhanced Cd removal capacity to about 120 mg/g. Particle aging had no negative effect on removal capacity of S-nZVI, and Cd-containing mixtures remained stable in a two months experiment. S-nZVI can efficiently sequester dissolved metal ions from different contaminated water matrices.
Collapse
Affiliation(s)
- Yiming Su
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Bren School of Environmental Science & Management, University of California, Santa Barbara, 3420, Bren Hall, CA 93106, USA; University of California Center for Environmental Implications of Nanotechnology, Santa Barbara, CA, USA
| | - Adeyemi S Adeleye
- Bren School of Environmental Science & Management, University of California, Santa Barbara, 3420, Bren Hall, CA 93106, USA; University of California Center for Environmental Implications of Nanotechnology, Santa Barbara, CA, USA
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, 3420, Bren Hall, CA 93106, USA; University of California Center for Environmental Implications of Nanotechnology, Santa Barbara, CA, USA.
| | - Yuxiong Huang
- Bren School of Environmental Science & Management, University of California, Santa Barbara, 3420, Bren Hall, CA 93106, USA
| | - Chaomeng Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, Tongji University, Shanghai 200092, China.
| |
Collapse
|