1
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Bernhardt A, Jamil A, Morshed MT, Ponnath P, Gille V, Stephan N, Sauer H, Wartenberg M. Oxidative stress and regulation of adipogenic differentiation capacity by sirtuins in adipose stem cells derived from female patients of advancing age. Sci Rep 2024; 14:19885. [PMID: 39191852 DOI: 10.1038/s41598-024-70382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Patient age is critical for mesenchymal stem cell quality and differentiation capacity. We demonstrate that proliferation and adipogenic capacity of subcutaneous adipose stem cells (ASCs) from female patients declined with advanced age, associated with reduction in cell nucleus size, increase in nuclear lamina protein lamin B1/B2, and lamin A, upregulation of senescence marker p16INK4a and senescence-associated β-galactosidase activity. Adipogenic induction resulted in differentiation of adipocytes and upregulation of adipogenic genes CCAAT enhancer binding protein alpha, fatty acid binding protein 4, lipoprotein lipase, and peroxisome proliferator-activated receptor-γ, which was not affected by the Sirt-1 activator YK-3-237 or the Sirt-1 inhibitor EX-527. Protein expression of the stem cell markers Oct4 and Sox2 was not significantly downregulated with advanced patient age. Mitochondrial reactive oxygen species were increased in ASCs from old-aged patients, whereas protein expression of NADPH oxidases NOX1 and NOX4 was downregulated, and dual oxidase isoforms remained unchanged. Generation of nitric oxide and iNOS expression was downregulated. Protein expression of Sirt-1 and Sirt-3 decreased with patient age, whereas Sirt-2 and Sirt-5 remained unchanged. Induction of adipogenesis stimulated protein expression of Sirt-1 and Sirt-3, which was not affected upon pre-incubation with the Sirt-1-activator YK-3-237 or the Sirt-1-inhibitor EX-527. The Sirt-1 inhibitor Sirtinol downregulated adiponectin protein expression and the number of adipocytes, whereas YK-3-237 exerted stimulatory effects. In summary, our data demonstrate increased oxidative stress in ASCs of aging patients, and decline of adipogenic capacity due to Sirt-1- mediated adiponectin downregulation in elderly patients.
Collapse
Affiliation(s)
- Anne Bernhardt
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Alan Jamil
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Md Tanvir Morshed
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Pia Ponnath
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Veronika Gille
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Nadine Stephan
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wartenberg
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
3
|
Sakamoto N, Ito K, Ii S, Conway DE, Ueda Y, Nagatomi J. A homeostatic role of nucleus-actin filament coupling in the regulation of cellular traction forces in fibroblasts. Biomech Model Mechanobiol 2024; 23:1289-1298. [PMID: 38502433 DOI: 10.1007/s10237-024-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Cellular traction forces are contractile forces that depend on the material/substrate stiffness and play essential roles in sensing mechanical environments and regulating cell morphology and function. Traction forces are primarily generated by the actin cytoskeleton and transmitted to the substrate through focal adhesions. The cell nucleus is also believed to be involved in the regulation of this type of force; however, the role of the nucleus in cellular traction forces remains unclear. In this study, we explored the effects of nucleus-actin filament coupling on cellular traction forces in human dermal fibroblasts cultured on substrates with varying stiffness (5, 15, and 48 kPa). To investigate these effects, we transfected the cells with a dominant-negative Klarsicht/ANC-1/Syne homology (DN-KASH) protein that was designed to displace endogenous linker proteins and disrupt nucleus-actin cytoskeleton connections. The force that exists between the cytoskeleton and the nucleus (nuclear tension) was also evaluated with a fluorescence resonance energy transfer (FRET)-based tension sensor. We observed a biphasic change in cellular traction forces with a peak at 15 kPa, regardless of DN-KASH expression, that was inversely correlated with the nuclear tension. In addition, the relative magnitude and distribution of traction forces in nontreated wild-type cells were similar across different stiffness conditions, while DN-KASH-transfected cells exhibited a different distribution pattern that was impacted by the substrate stiffness. These results suggest that the nucleus-actin filament coupling play a homeostatic role by maintaining the relative magnitude of cellular traction forces in fibroblasts under different stiffness conditions.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| | - Keisuke Ito
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Satoshi Ii
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, 140W 19th Avenue, Columbus, OH, USA
| | - Yuki Ueda
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Jiro Nagatomi
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, 29634-0905, USA
| |
Collapse
|
4
|
Jaddivada S, Gundiah N. Physical biology of cell-substrate interactions under cyclic stretch. Biomech Model Mechanobiol 2024; 23:433-451. [PMID: 38010479 DOI: 10.1007/s10237-023-01783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023]
Abstract
Mechanosensitive focal adhesion (FA) complexes mediate dynamic interactions between cells and substrates and regulate cellular function. Integrins in FA complexes link substrate ligands to stress fibers (SFs) and aid load transfer and traction generation. We developed a one-dimensional, multi-scale, stochastic finite element model of a fibroblast on a substrate that includes calcium signaling, SF remodeling, and FA dynamics. We linked stochastic dynamics, describing the formation and clustering of integrins to substrate ligands via motor-clutches, to a continuum level SF contractility model at various locations along the cell length. We quantified changes in cellular responses with substrate stiffness, ligand density, and cyclic stretch. Results show that tractions and integrin recruitments varied along the cell length; tractions were maximum at lamellar regions and reduced to zero at the cell center. Optimal substrate stiffness, based on maximum tractions exerted by the cell, shifted toward stiffer substrates at high ligand densities. Mean tractions varied biphasically with substrate stiffness and peaked at the optimal substrate stiffness. Cytosolic calcium increased monotonically with substrate stiffness and accumulated near lamellipodial regions. Cyclic stretch increased the cytosolic calcium, integrin concentrations, and tractions at lamellipodial and intermediate regions on compliant substrates. The optimal substrate stiffness under stretch shifted toward compliant substrates for a given ligand density. Stretch also caused cell deadhesions beyond a critical substrate stiffness. FA's destabilized on stiff substrates under cyclic stretch. An increase in substrate stiffness and cyclic stretch resulted in higher fibroblast contractility. These results show that chemomechanical coupling is essential in mechanosensing responses underlying cell-substrate interactions.
Collapse
Affiliation(s)
- Siddhartha Jaddivada
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
Shlapakova LE, Botvin VV, Mukhortova YR, Zharkova II, Alipkina SI, Zeltzer A, Dudun AA, Makhina T, Bonartseva GA, Voinova VV, Wagner DV, Pariy I, Bonartsev AP, Surmenev RA, Surmeneva MA. Magnetoactive Composite Conduits Based on Poly(3-hydroxybutyrate) and Magnetite Nanoparticles for Repair of Peripheral Nerve Injury. ACS APPLIED BIO MATERIALS 2024; 7:1095-1114. [PMID: 38270084 DOI: 10.1021/acsabm.3c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Peripheral nerve injury poses a threat to the mobility and sensitivity of a nerve, thereby leading to permanent function loss due to the low regenerative capacity of mature neurons. To date, the most widely clinically applied approach to bridging nerve injuries is autologous nerve grafting, which faces challenges such as donor site morbidity, donor shortages, and the necessity of a second surgery. An effective therapeutic strategy is urgently needed worldwide to overcome the current limitations. Herein, a magnetic nerve guidance conduit (NGC) based on biocompatible biodegradable poly(3-hydroxybutyrate) (PHB) and 8 wt % of magnetite nanoparticles modified by citric acid (Fe3O4-CA) was fabricated by electrospinning. The crystalline structure of NGCs was studied by X-ray diffraction, which indicated an enlarged β-phase of PHB in the composite conduit compared to a pure PHB conduit. Tensile tests revealed greater ductility of PHB/Fe3O4-CA: the composite conduit has Young's modulus of 221 ± 52 MPa and an elongation at break of 28.6 ± 2.9%, comparable to clinical materials. Saturation magnetization (σs) of Fe3O4-CA and PHB/Fe3O4-CA is 61.88 ± 0.29 and 7.44 ± 0.07 emu/g, respectively. The water contact angle of the PHB/Fe3O4-CA conduit is lower as compared to pure PHB, while surface free energy (σ) is significantly higher, which was attributed to higher surface roughness and an amorphous phase as well as possible PHB/Fe3O4-CA interface interactions. In vitro, the conduits supported the proliferation of rat mesenchymal stem cells (rMSCs) and SH-SY5Y cells in a low-frequency magnetic field (0.67 Hz, 68 mT). In vivo, the conduits were used to bridge damaged sciatic nerves in rats; pure PHB and composite PHB/Fe3O4-CA conduits did not cause acute inflammation and performed a barrier function, which promotes nerve regeneration. Thus, these conduits are promising as implants for the regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Lada E Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Vladimir V Botvin
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Yulia R Mukhortova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Svetlana I Alipkina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Angelina Zeltzer
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Andrey A Dudun
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Tatiana Makhina
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Garina A Bonartseva
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Dmitry V Wagner
- National Research Tomsk State University, Tomsk 634050, Russia
| | - Igor Pariy
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
6
|
Gharaba S, Paz O, Feld L, Abashidze A, Weinrab M, Muchtar N, Baransi A, Shalem A, Sprecher U, Wolf L, Wolfenson H, Weil M. Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington's disease patients. Front Cell Dev Biol 2023; 11:1013721. [PMID: 36743412 PMCID: PMC9889876 DOI: 10.3389/fcell.2023.1013721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Primary fibroblasts from patient's skin biopsies are directly isolated without any alteration in the genome, retaining in culture conditions their endogenous cellular characteristics and biochemical properties. The aim of this study was to identify a distinctive cell phenotype for potential drug evaluation in fibroblasts from Huntington's Disease (HD) patients, using image-based high content analysis. We show that HD fibroblasts have a distinctive nuclear morphology associated with a nuclear actin cap deficiency. This in turn affects cell motility in a similar manner to fibroblasts from Hutchinson-Gilford progeria syndrome (HGPS) patients used as known actin cap deficient cells. Moreover, treatment of the HD cells with either Latrunculin B, used to disrupt actin cap formation, or the antioxidant agent Mitoquinone, used to improve mitochondrial activity, show expected opposite effects on actin cap associated morphological features and cell motility. Deep data analysis allows strong cluster classification within HD cells according to patients' disease severity score which is distinct from HGPS and matching controls supporting that actin cap is a biomarker in HD patients' cells correlated with HD severity status that could be modulated by pharmacological agents as tool for personalized drug evaluation.
Collapse
Affiliation(s)
- Saja Gharaba
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Omri Paz
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Lea Feld
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Anastasia Abashidze
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, Israel
| | - Maydan Weinrab
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Noam Muchtar
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Adam Baransi
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Shalem
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Uri Sprecher
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Lior Wolf
- The Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Miguel Weil
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
8
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
9
|
Mehrabi M, Morris TA, Cang Z, Nguyen CHH, Sha Y, Asad MN, Khachikyan N, Greene TL, Becker DM, Nie Q, Zaragoza MV, Grosberg A. A Study of Gene Expression, Structure, and Contractility of iPSC-Derived Cardiac Myocytes from a Family with Heart Disease due to LMNA Mutation. Ann Biomed Eng 2021; 49:3524-3539. [PMID: 34585335 PMCID: PMC8671287 DOI: 10.1007/s10439-021-02850-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Genetic mutations to the Lamin A/C gene (LMNA) can cause heart disease, but the mechanisms making cardiac tissues uniquely vulnerable to the mutations remain largely unknown. Further, patients with LMNA mutations have highly variable presentation of heart disease progression and type. In vitro patient-specific experiments could provide a powerful platform for studying this phenomenon, but the use of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) introduces heterogeneity in maturity and function thus complicating the interpretation of the results of any single experiment. We hypothesized that integrating single cell RNA sequencing (scRNA-seq) with analysis of the tissue architecture and contractile function would elucidate some of the probable mechanisms. To test this, we investigated five iPSC-CM lines, three controls and two patients with a (c.357-2A>G) mutation. The patient iPSC-CM tissues had significantly weaker stress generation potential than control iPSC-CM tissues demonstrating the viability of our in vitro approach. Through scRNA-seq, differentially expressed genes between control and patient lines were identified. Some of these genes, linked to quantitative structural and functional changes, were cardiac specific, explaining the targeted nature of the disease progression seen in patients. The results of this work demonstrate the utility of combining in vitro tools in exploring heart disease mechanics.
Collapse
Affiliation(s)
- Mehrsa Mehrabi
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Tessa A Morris
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Zixuan Cang
- Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Cecilia H H Nguyen
- Genetics & Genomics Division, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Yutong Sha
- Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Mira N Asad
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Nyree Khachikyan
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Taylor L Greene
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Danielle M Becker
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Michael V Zaragoza
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.,Genetics & Genomics Division, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA. .,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA. .,Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA. .,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA. .,The Henry Samueli School of Engineering, University of California, Irvine, 2418 Engineering Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
10
|
Gete YG, Koblan LW, Mao X, Trappio M, Mahadik B, Fisher JP, Liu DR, Cao K. Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS. Aging Cell 2021; 20:e13388. [PMID: 34086398 PMCID: PMC8282277 DOI: 10.1111/acel.13388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/12/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder with features of accelerated aging. The majority of HGPS cases are caused by a de novo point mutation in the LMNA gene (c.1824C>T; p.G608G) resulting in progerin, a toxic lamin A protein variant. Children with HGPS typically die from coronary artery diseases or strokes at an average age of 14.6 years. Endothelial dysfunction is a known driver of cardiovascular pathogenesis; however, it is currently unknown how progerin antagonizes normal angiogenic function in HGPS. Here, we use human iPSC‐derived endothelial cell (iPSC‐EC) models to study angiogenesis in HGPS. We cultured normal and HGPS iPSC‐ECs under both static and fluidic culture conditions. HGPS iPSC‐ECs show reduced endothelial nitric oxide synthase (eNOS) expression and activity compared with normal controls and concomitant decreases in intracellular nitric oxide (NO) level, which result in deficits in capillary‐like microvascular network formation. Furthermore, the expression of matrix metalloproteinase 9 (MMP‐9) was reduced in HGPS iPSC‐ECs, while the expression of tissue inhibitor metalloproteinases 1 and 2 (TIMP1 and TIMP2) was upregulated relative to healthy controls. Finally, we used an adenine base editor (ABE7.10max‐VRQR) to correct the pathogenic c.1824C>T allele in HGPS iPSC‐ECs. Remarkably, ABE7.10max‐VRQR correction of the HGPS mutation significantly reduced progerin expression to a basal level, rescued nuclear blebbing, increased intracellular NO level, normalized the misregulated TIMPs, and restored angiogenic competence in HGPS iPSC‐ECs. Together, these results provide molecular insights of endothelial dysfunction in HGPS and suggest that ABE could be a promising therapeutic approach for correcting HGPS‐related cardiovascular phenotypes.
Collapse
Affiliation(s)
- Yantenew G. Gete
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
| | - Luke W. Koblan
- Merkin Institute of Transformative Technologies in Healthcare Broad Institute of Harvard and MIT Cambridge MA USA
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA USA
- Howard Hughes Medical Institute Harvard University Cambridge MA USA
| | - Xiaojing Mao
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
| | - Mason Trappio
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering University of Maryland College Park MD USA
| | - John P. Fisher
- Fischell Department of Bioengineering University of Maryland College Park MD USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare Broad Institute of Harvard and MIT Cambridge MA USA
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA USA
- Howard Hughes Medical Institute Harvard University Cambridge MA USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
| |
Collapse
|
11
|
The flavonoid morin alleviates nuclear deformation in aged cells by disrupting progerin-lamin A/C binding. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Charar C, Metsuyanim-Cohen S, Gruenbaum Y, Bar DZ. Exploring the nuclear lamina in health and pathology using C. elegans. Curr Top Dev Biol 2021; 144:91-110. [PMID: 33992162 DOI: 10.1016/bs.ctdb.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The eukaryotic genome inside the nucleus is enveloped by two membranes, the Outer Nuclear Membrane (ONM) and the Inner Nuclear Membrane (INM). Tethered to the INM is the nuclear lamina, a fibrillar network composed of lamins-the nuclear intermediate filaments, and membrane associated proteins. The nuclear lamina interacts with several nuclear structures, including chromatin. As most nuclear functions, including regulation of gene expression, chromosome segregation and duplication as well as nuclear structure, are highly conserved in metazoans, the Caenorhabditis elegans nematode serves as a powerful model organism to study nuclear processes and architecture. This translucent organism can easily be observed under a microscope as a live embryo, larvae and even adult. Here we will review the data on nuclear lamina composition and functions gathered from studies using C. elegans model organisms: We will discuss genome spatial organization and its contribution to gene expression. We will review both the interaction between the cytoplasm and the nucleus and mechanotransduction mechanism. Finally, we will discuss disease causing mutation in nuclear lamins, including the use of this animal model in diseases research.
Collapse
Affiliation(s)
- Chayki Charar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sally Metsuyanim-Cohen
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Z Bar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Maxian O, Mogilner A, Strychalski W. Computational estimates of mechanical constraints on cell migration through the extracellular matrix. PLoS Comput Biol 2020; 16:e1008160. [PMID: 32853248 PMCID: PMC7480866 DOI: 10.1371/journal.pcbi.1008160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/09/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration through a three-dimensional (3D) extracellular matrix (ECM) underlies important physiological phenomena and is based on a variety of mechanical strategies depending on the cell type and the properties of the ECM. By using computer simulations of the cell’s mid-plane, we investigate two such migration mechanisms—‘push-pull’ (forming a finger-like protrusion, adhering to an ECM node, and pulling the cell body forward) and ‘rear-squeezing’ (pushing the cell body through the ECM by contracting the cell cortex and ECM at the cell rear). We present a computational model that accounts for both elastic deformation and forces of the ECM, an active cell cortex and nucleus, and for hydrodynamic forces and flow of the extracellular fluid, cytoplasm, and nucleoplasm. We find that relations between three mechanical parameters—the cortex’s contractile force, nuclear elasticity, and ECM rigidity—determine the effectiveness of cell migration through the dense ECM. The cell can migrate persistently even if its cortical contraction cannot deform a near-rigid ECM, but then the contraction of the cortex has to be able to sufficiently deform the nucleus. The cell can also migrate even if it fails to deform a stiff nucleus, but then it has to be able to sufficiently deform the ECM. Simulation results show that nuclear stiffness limits the cell migration more than the ECM rigidity. Simulations show the rear-squeezing mechanism of motility results in more robust migration with larger cell displacements than those with the push-pull mechanism over a range of parameter values. Additionally, results show that the rear-squeezing mechanism is aided by hydrodynamics through a pressure gradient. Computational simulations of two different mechanisms of 3D cell migration in an extracellular matrix are presented. One mechanism represents a mesenchymal mode, characterized by finger-like actin protrusions, while the second mode is more amoeboid in that rear contraction of the cortex propels the cell forward. In both mechanisms, the cell generates a thin actin protrusion on the cortex that attaches to an ECM node. The cell is then either pulled (mesenchymal) or pushed (amoeboid) forward. Results show both mechanisms result in successful migration over a range of simulated parameter values as long as the contractile tension of the cortex exceeds either the nuclear stiffness or ECM stiffness, but not necessarily both. However, the distance traveled by the amoeboid migration mode is more robust to changes in parameter values, and is larger than in simulations of the mesenchymal mode. Additionally, cells experience a favorable fluid pressure gradient when migrating in the amoeboid mode, and an adverse fluid pressure gradient in the mesenchymal mode.
Collapse
Affiliation(s)
- Ondrej Maxian
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
14
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
15
|
Tran RDH, Siemens M, Nguyen CHH, Ochs AR, Zaragoza MV, Grosberg A. The Effect of Cyclic Strain on Human Fibroblasts With Lamin A/C Mutations and Its Relation to Heart Disease. J Biomech Eng 2020; 142:061002. [PMID: 31233093 PMCID: PMC7104779 DOI: 10.1115/1.4044091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/12/2019] [Indexed: 12/26/2022]
Abstract
Although mutations in the Lamin A/C gene (LMNA) cause a variety of devastating diseases, the pathological mechanism is often unknown. Lamin A/C proteins play a crucial role in forming a meshwork under the nuclear membrane, providing the nucleus with mechanical integrity and interacting with other proteins for gene regulation. Most LMNA mutations result in heart diseases, including some types that primarily have heart disease as the main pathology. In this study, we used cells from patients with different LMNA mutations that primarily lead to heart disease. Indeed, it is a mystery why a mutation to the protein in every nucleus of the body manifests as a disease of primarily the heart in these patients. Here, we aimed to investigate if strains mimicking those within the myocardial environment are sufficient to cause differences in cells with and without the LMNA mutation. To test this, a stretcher device was used to induce cyclic strain upon cells, and viability/proliferation, cytoskeleton and extracellular matrix organization, and nuclear morphology were quantified. The properties of cells with Hutchinson-Gilford progeria syndrome (HGPS) were found to be significantly different from all other cell lines and were mostly in line with previous findings. However, the properties of cells from patients who primarily had heart diseases were not drastically different when compared to individuals without the LMNA mutation. Our results indicated that cyclic strain alone was insufficient to cause any significant differences that could explain the mechanisms that lead to heart diseases in these patients with LMNA mutations.
Collapse
Affiliation(s)
- Richard D. H. Tran
- Cardiovascular Modeling Laboratory, The Edwards Lifesciences Center for
Advanced Cardiovascular Technology, Department of Biomedical Engineering,
University of California, 2131 Engineering Hall Irvine, Irvine, CA
92697-2700 e-mail:
| | - Mark Siemens
- Cardiovascular Modeling Laboratory, The Edwards Lifesciences Center for
Advanced Cardiovascular Technology, Department of Biomedical Engineering,
University of California, 2131 Engineering Hall
Irvine, Irvine, CA 92697-2700
e-mail:
| | - Cecilia H. H. Nguyen
- Division of Genetics and Genomics, Department of Pediatrics, School of
Medicine, University of California, 2042 Hewitt Hall
Irvine, Irvine, CA 92697-3940
e-mail:
| | - Alexander R. Ochs
- Cardiovascular Modeling Laboratory, The Edwards Lifesciences Center for
Advanced Cardiovascular Technology, Department of Biomedical Engineering,
University of California, 2131 Engineering Hall
Irvine, Irvine, CA 92697-2700
e-mail:
| | - Michael V. Zaragoza
- Department of Pediatrics, Division of Genetics & Genomics, 2042
Hewitt Hall Irvine, Irvine, CA 92697-3940
- Department of Biological Chemistry, University of California, School of
Medicine, 2042 Hewitt Hall Irvine, Irvine, CA
92697-3940 e-mail:
| | - Anna Grosberg
- Cardiovascular Modeling Laboratory, The Edwards Lifesciences Center for
Advanced Cardiovascular Technology, Center for Complex Biological Systems,
Department of Biomedical Engineering, University of California,
2418 Engineering Hall Irvine, Irvine, CA
92697-2700
- Department of Chemical and Biomolecular Engineering, University of
California, 2418 Engineering Hall Irvine, Irvine, CA
92697-2700 e-mail:
| |
Collapse
|
16
|
Seong H, Higgins SG, Penders J, Armstrong JPK, Crowder SW, Moore AC, Sero JE, Becce M, Stevens MM. Size-Tunable Nanoneedle Arrays for Influencing Stem Cell Morphology, Gene Expression, and Nuclear Membrane Curvature. ACS NANO 2020; 14:5371-5381. [PMID: 32330008 PMCID: PMC7254837 DOI: 10.1021/acsnano.9b08689] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/24/2020] [Indexed: 05/16/2023]
Abstract
High-aspect-ratio nanostructures have emerged as versatile platforms for intracellular sensing and biomolecule delivery. Here, we present a microfabrication approach in which a combination of reactive ion etching protocols were used to produce high-aspect-ratio, nondegradable silicon nanoneedle arrays with tip diameters that could be finely tuned between 20 and 700 nm. We used these arrays to guide the long-term culture of human mesenchymal stem cells (hMSCs). Notably, we used changes in the nanoneedle tip diameter to control the morphology, nuclear size, and F-actin alignment of interfaced hMSCs and to regulate the expression of nuclear lamina genes, Yes-associated protein (YAP) target genes, and focal adhesion genes. These topography-driven changes were attributed to signaling by Rho-family GTPase pathways, differences in the effective stiffness of the nanoneedle arrays, and the degree of nuclear membrane impingement, with the latter clearly visualized using focused ion beam scanning electron microscopy (FIB-SEM). Our approach to design high-aspect-ratio nanostructures will be broadly applicable to design biomaterials and biomedical devices used for long-term cell stimulation and monitoring.
Collapse
Affiliation(s)
- Hyejeong Seong
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| | - Stuart G. Higgins
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| | - Jelle Penders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| | - James P. K. Armstrong
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| | - Spencer W. Crowder
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| | - Axel C. Moore
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| | - Julia E. Sero
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| | - Michele Becce
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
| |
Collapse
|
17
|
Rouillard J, García-Ruiz JM, Kah L, Gérard E, Barrier L, Nabhan S, Gong J, van Zuilen MA. Identifying microbial life in rocks: Insights from population morphometry. GEOBIOLOGY 2020; 18:282-305. [PMID: 31876987 DOI: 10.1111/gbi.12377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/13/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The identification of cellular life in the rock record is problematic, since microbial life forms, and particularly bacteria, lack sufficient morphologic complexity to be effectively distinguished from certain abiogenic features in rocks. Examples include organic pore-fillings, hydrocarbon-containing fluid inclusions, organic coatings on exfoliated crystals and biomimetic mineral aggregates (biomorphs). This has led to the interpretation and re-interpretation of individual microstructures in the rock record. The morphologic description of entire populations of microstructures, however, may provide support for distinguishing between preserved micro-organisms and abiogenic objects. Here, we present a statistical approach based on quantitative morphological description of populations of microstructures. Images of modern microbial populations were compared to images of two relevant types of abiogenic microstructures: interstitial spaces and silica-carbonate biomorphs. For the populations of these three systems, the size, circularity, and solidity of individual particles were calculated. Subsequently, the mean/SD, skewness, and kurtosis of the statistical distributions of these parameters were established. This allowed the qualitative and quantitative comparison of distributions in these three systems. In addition, the fractal dimension and lacunarity of the populations were determined. In total, 11 parameters, independent of absolute size or shape, were used to characterize each population of microstructures. Using discriminant analysis with parameter subsets, it was found that size and shape distributions are typically sufficient to discriminate populations of biologic and abiogenic microstructures. Analysis of ancient, yet unambiguously biologic, samples (1.0 Ga Angmaat Formation, Baffin Island, Canada) suggests that taphonomic effects can alter morphometric characteristics and complicate image analysis; therefore, a wider range of microfossil assemblages should be studied in the future before automated analyses can be developed. In general, however, it is clear from our results that there is great potential for morphometric descriptions of populations in the context of life recognition in rocks, either on Earth or on extraterrestrial bodies.
Collapse
Affiliation(s)
- Joti Rouillard
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investígacìones Cientificas-Universidad de Granada, Granada, Spain
| | - Linda Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Emmanuelle Gérard
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Laurie Barrier
- Equipe Tectonique et Mécanique de la Lithosphère, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Sami Nabhan
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Jian Gong
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Mark A van Zuilen
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| |
Collapse
|
18
|
Doolin MT, Moriarty RA, Stroka KM. Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Front Physiol 2020; 11:365. [PMID: 32390868 PMCID: PMC7193100 DOI: 10.3389/fphys.2020.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, United States
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
19
|
Abstract
Connective tissues within the synovial joints are characterized by their dense extracellular matrix and sparse cellularity. With injury or disease, however, tissues commonly experience an influx of cells owing to proliferation and migration of endogenous mesenchymal cell populations, as well as invasion of the tissue by other cell types, including immune cells. Although this process is critical for successful wound healing, aberrant immune-mediated cell infiltration can lead to pathological inflammation of the joint. Importantly, cells of mesenchymal or haematopoietic origin use distinct modes of migration and thus might respond differently to similar biological cues and microenvironments. Furthermore, cell migration in the physiological microenvironment of musculoskeletal tissues differs considerably from migration in vitro. This Review addresses the complexities of cell migration in fibrous connective tissues from three separate but interdependent perspectives: physiology (including the cellular and extracellular factors affecting 3D cell migration), pathophysiology (cell migration in the context of synovial joint autoimmune disease and injury) and tissue engineering (cell migration in engineered biomaterials). Improved understanding of the fundamental mechanisms governing interstitial cell migration might lead to interventions that stop invasion processes that culminate in deleterious outcomes and/or that expedite migration to direct endogenous cell-mediated repair and regeneration of joint tissues.
Collapse
|
20
|
Urciuoli E, Petrini S, D’Oria V, Leopizzi M, Della Rocca C, Peruzzi B. Nuclear Lamins and Emerin Are Differentially Expressed in Osteosarcoma Cells and Scale with Tumor Aggressiveness. Cancers (Basel) 2020; 12:cancers12020443. [PMID: 32069980 PMCID: PMC7073215 DOI: 10.3390/cancers12020443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
The nuclear lamina is essential for the maintenance of nuclear shape and mechanics. Mutations in lamin genes have been identified in a heterogeneous spectrum of human diseases known as “laminopathies” associated with nuclear envelope defects and deregulation of cellular functions. Interestingly, osteosarcoma is the only neoplasm described in the literature in association with laminopathies. This study aims characterized the expression of A-type and B-type lamins and emerin in osteosarcoma, revealing a higher percentage of dysmorphic nuclei in osteosarcoma cells in comparison to normal osteoblasts and all the hallmarks of laminopathic features. Both lamins and emerin were differentially expressed in osteosarcoma cell lines in comparison to normal osteoblasts and correlated with tumor aggressiveness. We analysed lamin A/C expression in a tissue-microarray including osteosarcoma samples with different prognosis, finding a positive correlation between lamin A/C expression and the overall survival of osteosarcoma patients. An inefficient MKL1 nuclear shuttling and actin depolymerization, as well as a reduced expression of pRb and a decreased YAP nuclear content were observed in A-type lamin deficient 143B cells. In conclusion, we described for the first time laminopathic nuclear phenotypes in osteosarcoma cells, providing evidence for an altered lamins and emerin expression and a deregulated nucleoskeleton architecture of this tumor.
Collapse
Affiliation(s)
- Enrica Urciuoli
- Multifactorial Disease and Complex Phenotype Area, Research Center, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (S.P.); (V.D.)
| | - Valentina D’Oria
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (S.P.); (V.D.)
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, 04100 Latina, Italy; (M.L.); (C.D.R.)
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, 04100 Latina, Italy; (M.L.); (C.D.R.)
| | - Barbara Peruzzi
- Multifactorial Disease and Complex Phenotype Area, Research Center, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
- Correspondence: ; Tel.: +39-06-6859-2938
| |
Collapse
|
21
|
Doolin MT, Stroka KM. Integration of Mesenchymal Stem Cells into a Novel Micropillar Confinement Assay. Tissue Eng Part C Methods 2019; 25:662-676. [PMID: 31347455 PMCID: PMC6998058 DOI: 10.1089/ten.tec.2019.0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023] Open
Abstract
Mechanical cues such as stiffness have been shown to influence cell gene expression, protein expression, and cell behaviors critical for tissue engineering. The mechanical cue of confinement is also a pervasive parameter affecting cells in vivo and in tissue-engineered constructs. Despite its prevalence, the mechanical cue of confinement lacks assays that provide precise control over the degree of confinement induced on cells, yield a large sample size, enable long-term culture, and enable easy visualization of cells over time. In this study, we developed a process to systematically confine cells using micropillar arrays. Using photolithography and polydimethylsiloxane (PDMS) molding, we created PDMS arrays of micropillars that were 5, 10, 20, or 50 μm in spacing and between 13 and 17 μm in height. The tops of micropillars were coated with Pluronic F127 to inhibit cell adhesion, and we observed that mesenchymal stem cells (MSCs) robustly infiltrated into the micropillar arrays. MSC and nucleus morphology were altered by narrowing the micropillar spacing, and cytoskeletal elements within MSCs appeared to become more diffuse with increasing confinement. Specifically, MSCs exhibited a ring of actin around their periphery and punctate focal adhesions. MSC migration speed was reduced by narrowing micropillar spacing, and distinct migration behaviors of MSCs emerged in the presence of micropillars. MSCs continued to proliferate within micropillar arrays after 3 weeks in culture, displaying our assay's capability for long-term studies. Our assay also has the capacity to provide adequate cell numbers for quantitative assays to investigate the effect of confinement on gene and protein expression. Through deeper understanding of cell mechanotransduction in the context of confinement, we can modify tissue-engineered constructs to be optimal for a given purpose. Impact Statement In this study, we developed a novel process to systematically confine cells using micropillar arrays. Our assay provides insight into cell behavior in response to mechanical confinement. Through deeper understanding of how cells sense and respond to confinement, we can fine tune tissue-engineered constructs to be optimal for a given purpose. By combining confinement with other physical cues, we can harness mechanical properties to encourage or inhibit cell migration, direct cells down a particular lineage, induce cell secretion of specific cytokines or extracellular vesicles, and ultimately direct cells to behave in a way conducive to tissue engineering.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- Biophysics Program, University of Maryland, College Park, Maryland
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| |
Collapse
|
22
|
Liu R, Liu Q, Pan Z, Liu X, Ding J. Cell Type and Nuclear Size Dependence of the Nuclear Deformation of Cells on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7469-7477. [PMID: 30226387 DOI: 10.1021/acs.langmuir.8b02510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While various cellular responses to materials have been published, little concerns the deformation of cell nuclei. Herein we fabricated a polymeric micropillar array of appropriate dimensions to trigger the significant self-deformation of cell nuclei and examined six cell types, which could be classified into cancerous cells (Hela and HepG2) versus healthy cells (HCvEpC, MC3T3-E1, NIH3T3, and hMSC) or epithelial-like cells (Hela, HepG2, and HCvEpC) versus fibroblast-like cells (MC3T3-E1, NIH3T3, and hMSC). While all of the cell types exhibited severe nuclear deformation on the poly(lactide- co-glycolide) (PLGA) micropillar array, the difference between the epithelial-like and fibroblast-like cells was much more significant than that between the cancerous and healthy cells. We also examined the statistics of nuclear shape indexes of cells with an inevitable dispersity of nuclear sizes. It was found that larger nuclei favored more significant deformation on the micropillar array for each cell type. In the same region of nuclear size, the parts of the epithelial-like cells exhibited more significant nuclear deformation than those of the fibroblast-like cells. Hence, this article reports the nuclear size dependence of the self-deformation of cell nuclei on micropillar arrays for the first time and meanwhile strengthens the cell-type dependence.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zhen Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
23
|
Liu R, Yao X, Liu X, Ding J. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:284-299. [PMID: 30513205 DOI: 10.1021/acs.langmuir.8b03452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular responses on a topographic surface are fundamental topics about interfaces and biology. Herein, a poly(lactide- co-glycolide) (PLGA) micropillar array was prepared and found to trigger significant self-deformation of cell nuclei. The time-dependent cell viability and thus cell proliferation was investigated. Despite significant nuclear deformation, all of the examined cell types (Hela, HepG2, MC3T3-E1, and NIH3T3) could survive and proliferate on the micropillar array yet exhibited different proliferation abilities. Compared to the corresponding groups on the smooth surface, the cell proliferation abilities on the micropillar array were decreased for Hela and MC3T3-E1 cells and did not change significantly for HepG2 and NIH3T3 cells. We also found that whether the proliferation ability changed was related to whether the nuclear sizes decreased in the micropillar array, and thus the size deformation of cell nuclei should, besides shape deformation, be taken into consideration in studies of cells on topological surfaces.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
24
|
Afewerki T, Ahmed S, Warren D. Emerging regulators of vascular smooth muscle cell migration. J Muscle Res Cell Motil 2019; 40:185-196. [PMID: 31254136 PMCID: PMC6726670 DOI: 10.1007/s10974-019-09531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall and normally adopt a quiescent, contractile phenotype. VSMC migration is tightly controlled, however, disease associated changes in the soluble and insoluble environment promote VSMC migration. Classically, studies investigating VSMC migration have described the influence of soluble factors. Emerging data has highlighted the importance of insoluble factors, including extracellular matrix stiffness and porosity. In this review, we will recap on the important signalling pathways that regulate VSMC migration and reflect on the potential importance of emerging regulators of VSMC function.
Collapse
Affiliation(s)
- TecLino Afewerki
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Sultan Ahmed
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
25
|
Abstract
Mechanical constraints are recognized as a key regulator of biological processes, from molecules to organisms, throughout embryonic development, tissue regeneration and in situations of physiological regulation and pathological disturbances. The study of the influence of these physical constraints on the living, in particular on the cells and the organisms of the animal kingdom, has been the object for a decade of important work carried out at the interface between biology, physics and mechanics, constituting a new discipline: mechanobiology. Here we briefly describe the remarkable advances in understanding how cells and tissues both generate and perceive mechanical stresses, and how these constrains dictate cell shape, migration, cell differentiation and finally adaptation of tissues to their environment during morphogenesis, injury and repair.
Collapse
Affiliation(s)
- René Marc Mège
- Institut Jacques Monod, université Paris Diderot, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, université Paris Diderot, Paris, France - Mechanobiology institute, National university of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Papalazarou V, Salmeron-Sanchez M, Machesky LM. Tissue engineering the cancer microenvironment-challenges and opportunities. Biophys Rev 2018; 10:1695-1711. [PMID: 30406572 PMCID: PMC6297082 DOI: 10.1007/s12551-018-0466-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanosensing is increasingly recognised as important for tumour progression. Tumours become stiff and the forces that normally balance in the healthy organism break down and become imbalanced, leading to increases in migration, invasion and metastatic dissemination. Here, we review recent advances in our understanding of how extracellular matrix properties, such as stiffness, viscoelasticity and architecture control cell behaviour. In addition, we discuss how the tumour microenvironment can be modelled in vitro, capturing these mechanical aspects, to better understand and develop therapies against tumour spread. We argue that by gaining a better understanding of the microenvironment and the mechanical forces that govern tumour dynamics, we can make advances in combatting cancer dormancy, recurrence and metastasis.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
27
|
van Loosdregt IAEW, Kamps MAF, Oomens CWJ, Loerakker S, Broers JLV, Bouten CVC. Lmna knockout mouse embryonic fibroblasts are less contractile than their wild-type counterparts. Integr Biol (Camb) 2018; 9:709-721. [PMID: 28702670 DOI: 10.1039/c7ib00069c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In order to maintain tissue homeostasis and functionality, adherent cells need to sense and respond to environmental mechanical stimuli. An important ability that adherent cells need in order to properly sense and respond to mechanical stimuli is the ability to exert contractile stress onto the environment via actin stress fibers. The actin stress fibers form a structural chain between the cells' environment via focal adhesions and the nucleus via the nuclear lamina. In case one of the links in this chain is missing or aberrant, contractile stress generation will be affected. This is especially the case in laminopathic cells, which have a missing or mutated form of the LMNA gene encoding for part of the nuclear lamina. Using the thin film method combined with sample specific finite element modeling, we quantitatively showed a fivefold lower contractile stress generation of Lmna knockout mouse embryonic fibroblasts (MEFs) as compared to wild-type MEFs. Via fluorescence microscopy it was demonstrated that the lower contractile stress generation was associated with an impaired actin stress fiber organization with thinner actin fibers and smaller focal adhesions. Similar experiments with wild-type MEFs with chemically disrupted actin stress fibers verified these findings. These data illustrate the importance of an organized actin stress fiber network for contractile stress generation and demonstrate the devastating effect of an impaired stress fiber organization in laminopathic fibroblasts. Next to this, the thin film method is expected to be a promising tool in unraveling contractility differences between fibroblasts with different types of laminopathic mutations.
Collapse
Affiliation(s)
- I A E W van Loosdregt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Cho S, Abbas A, Irianto J, Ivanovska IL, Xia Y, Tewari M, Discher DE. Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A,C in iPS-derived mesenchymal stem cells. Nucleus 2018; 9:230-245. [PMID: 29619860 PMCID: PMC5973135 DOI: 10.1080/19491034.2018.1460185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interphase phosphorylation of lamin-A,C depends dynamically on a cell's microenvironment, including the stiffness of extracellular matrix. However, phosphorylation dynamics is poorly understood for diseased forms such as progerin, a permanently farnesylated mutant of LMNA that accelerates aging of stiff and mechanically stressed tissues. Here, fine-excision alignment mass spectrometry (FEA-MS) is developed to quantify progerin and its phosphorylation levels in patient iPS cells differentiated to mesenchymal stem cells (MSCs). The stoichiometry of total A-type lamins (including progerin) versus B-type lamins measured for Progeria iPS-MSCs prove similar to that of normal MSCs, with total A-type lamins more abundant than B-type lamins. However, progerin behaves more like farnesylated B-type lamins in mechanically-induced segregation from nuclear blebs. Phosphorylation of progerin at multiple sites in iPS-MSCs cultured on rigid plastic is also lower than that of normal lamin-A and C. Reduction of nuclear tension upon i) cell rounding/detachment from plastic, ii) culture on soft gels, and iii) inhibition of actomyosin stress increases phosphorylation and degradation of lamin-C > lamin-A > progerin. Such mechano-sensitivity diminishes, however, with passage as progerin and DNA damage accumulate. Lastly, transcription-regulating retinoids exert equal effects on both diseased and normal A-type lamins, suggesting a differential mechano-responsiveness might best explain the stiff tissue defects in Progeria.
Collapse
Affiliation(s)
- Sangkyun Cho
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Amal Abbas
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerome Irianto
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Irena L. Ivanovska
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuntao Xia
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Manu Tewari
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E. Discher
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA,CONTACT Dennis E. Discher , University of Pennsylvania, 129 Towne Bldg, Philadelphia, PA 19104
| |
Collapse
|
29
|
Anselme K, Wakhloo NT, Rougerie P, Pieuchot L. Role of the Nucleus as a Sensor of Cell Environment Topography. Adv Healthc Mater 2018; 7:e1701154. [PMID: 29283219 DOI: 10.1002/adhm.201701154] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Indexed: 12/25/2022]
Abstract
The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed.
Collapse
Affiliation(s)
- Karine Anselme
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Nayana Tusamda Wakhloo
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Pablo Rougerie
- Institute of Biomedical SciencesFederal University of Rio de Janeiro Rio de Janeiro RJ 21941‐902 Brazil
| | - Laurent Pieuchot
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| |
Collapse
|
30
|
Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues. Sci Rep 2018; 8:3295. [PMID: 29459687 PMCID: PMC5818574 DOI: 10.1038/s41598-018-21212-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022] Open
Abstract
Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.
Collapse
|
31
|
Qi YX, Han Y, Jiang ZL. Mechanobiology and Vascular Remodeling: From Membrane to Nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:69-82. [PMID: 30315540 DOI: 10.1007/978-3-319-96445-4_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to hemodynamic forces in vivo, including flow shear stress and cyclic stretch caused by the blood flow. Numerous researches revealed that during various cardiovascular diseases such as atherosclerosis, hypertension, and vein graft, abnormal (pathological) mechanical forces play crucial roles in the dysfunction of ECs and VSMCs, which is the fundamental process during both vascular homeostasis and remodeling. Hemodynamic forces trigger several membrane molecules and structures, such as integrin, ion channel, primary cilia, etc., and induce the cascade reaction processes through complicated cellular signaling networks. Recent researches suggest that nuclear envelope proteins act as the functional homology of molecules on the membrane, are important mechanosensitive molecules which modulate chromatin location and gene transcription, and subsequently regulate cellular functions. However, the studies on the roles of nucleus in the mechanotransduction process are still at the beginning. Here, based on the recent researches, we focused on the nuclear envelope proteins and discussed the roles of pathological hemodynamic forces in vascular remodeling. It may provide new insight into understanding the molecular mechanism of vascular physiological homeostasis and pathophysiological remodeling and may help to develop hemodynamic-based strategies for the prevention and management of vascular diseases.
Collapse
Affiliation(s)
- Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Abstract
Abstract
Vascular remodeling is a common pathological process in cardiovascular diseases and includes changes in cell proliferation, apoptosis and differentiation as well as vascular homeostasis. Mechanical stresses, such as shear stress and cyclic stretch, play an important role in vascular remodeling. Vascular cells can sense the mechanical factors through cell membrane proteins, cytoskeletons and nuclear envelope proteins to initiate mechanotransduction, which involves intercellular signaling, gene expression, and protein expression to result in functional regulations. Non-coding RNAs, including microRNAs and long non-coding RNAs, are involved in the regulation of vascular remodeling processes. Mechanotransduction triggers a cascade reaction process through a complicated signaling network in cells. High-throughput technologies in combination with functional studies targeting some key hubs and bridging nodes of the network can enable the prioritization of potential targets for subsequent investigations of clinical translation. Vascular mechanobiology, as a new frontier field of biomechanics, searches for principles of stress-growth in vasculature to elucidate how mechanical factors induce biological effects that lead to vascular remodeling, with the goal of understanding the mechanical basis of the pathological mechanism of cardiovascular diseases at the cellular and molecular levels. Vascular mechanobiology will play a unique role in solving the key scientific problems of human physiology and disease, as well as generating important theoretical and clinical results.
Collapse
Affiliation(s)
- Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
33
|
Core JQ, Mehrabi M, Robinson ZR, Ochs AR, McCarthy LA, Zaragoza MV, Grosberg A. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations. PLoS One 2017; 12:e0188256. [PMID: 29149195 PMCID: PMC5693421 DOI: 10.1371/journal.pone.0188256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/05/2017] [Indexed: 01/24/2023] Open
Abstract
Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method’s utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.
Collapse
Affiliation(s)
- Jason Q. Core
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Mehrsa Mehrabi
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Zachery R. Robinson
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Alexander R. Ochs
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Linda A. McCarthy
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Michael V. Zaragoza
- Pediatrics–Genetics & Genomics Division–School of Medicine, University of California, Irvine, CA, United States of America
- Biological Chemistry–School of Medicine, University of California, Irvine, CA, United States of America
| | - Anna Grosberg
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
- Chemical Engineering and Materials Science, University of California, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Atchison L, Zhang H, Cao K, Truskey GA. A Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome Using Human iPSC-derived Smooth Muscle Cells. Sci Rep 2017; 7:8168. [PMID: 28811655 PMCID: PMC5557922 DOI: 10.1038/s41598-017-08632-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023] Open
Abstract
Hutchison-Gilford Progeria Syndrome (HGPS) is a rare, accelerated aging disorder caused by nuclear accumulation of progerin, an altered form of the Lamin A gene. The primary cause of death is cardiovascular disease at about 14 years. Loss and dysfunction of smooth muscle cells (SMCs) in the vasculature may cause defects associated with HGPS. Due to limitations of 2D cell culture and mouse models, there is a need to develop improved models to discover novel therapeutics. To address this need, we produced a functional three-dimensional model of HGPS that replicates an arteriole-scale tissue engineered blood vessel (TEBV) using induced pluripotent stem cell (iPSC)-derived SMCs from an HGPS patient. To isolate the effect of the HGPS iSMCs, the endothelial layer consisted of human cord blood-derived endothelial progenitor cells (hCB-EPCs) from a separate, healthy donor. TEBVs fabricated from HGPS iSMCs and hCB-EPCs show reduced vasoactivity, increased medial wall thickness, increased calcification and apoptosis relative to TEBVs fabricated from normal iSMCs or primary MSCs. Additionally, treatment of HGPS TEBVs with the proposed therapeutic Everolimus, increases HGPS TEBV vasoactivity and increases iSMC differentiation in the TEBVs. These results show the ability of this iPSC-derived TEBV to reproduce key features of HGPS and respond to drugs.
Collapse
Affiliation(s)
- Leigh Atchison
- Department of Biomedical Engineering at Duke University, Durham, NC, 27708, United States
| | - Haoyue Zhang
- Department of Cell Biology and Molecular Genetics at University of Maryland, College Park, MD, 20742, United States
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics at University of Maryland, College Park, MD, 20742, United States
| | - George A Truskey
- Department of Biomedical Engineering at Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
35
|
Abstract
Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
36
|
Porter LJ, Holt MR, Soong D, Shanahan CM, Warren DT. Prelamin A Accumulation Attenuates Rac1 Activity and Increases the Intrinsic Migrational Persistence of Aged Vascular Smooth Muscle Cells. Cells 2016; 5:E41. [PMID: 27854297 PMCID: PMC5187525 DOI: 10.3390/cells5040041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) motility is essential during both physiological and pathological vessel remodeling. Although ageing has emerged as a major risk factor in the development of cardiovascular disease, our understanding of the impact of ageing on VSMC motility remains limited. Prelamin A accumulation is known to drive VSMC ageing and we show that presenescent VSMCs, that have accumulated prelamin A, display increased focal adhesion dynamics, augmented migrational velocity/persistence and attenuated Rac1 activity. Importantly, prelamin A accumulation in proliferative VSMCs, induced by depletion of the prelamin A processing enzyme FACE1, recapitulated the focal adhesion, migrational persistence and Rac1 phenotypes observed in presenescent VSMCs. Moreover, lamin A/C-depleted VSMCs also display reduced Rac1 activity, suggesting that prelamin A influences Rac1 activity by interfering with lamin A/C function at the nuclear envelope. Taken together, these data demonstrate that lamin A/C maintains Rac1 activity in VSMCs and prelamin A disrupts lamin A/C function to reduce Rac1 activity and induce migrational persistence during VSMC ageing.
Collapse
Affiliation(s)
- Lauren J Porter
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
| | - Mark R Holt
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London SE1 1UL, UK.
| | - Daniel Soong
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
| | - Derek T Warren
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
37
|
Arsenovic PT, Ramachandran I, Bathula K, Zhu R, Narang JD, Noll NA, Lemmon CA, Gundersen GG, Conway DE. Nesprin-2G, a Component of the Nuclear LINC Complex, Is Subject to Myosin-Dependent Tension. Biophys J 2016; 110:34-43. [PMID: 26745407 DOI: 10.1016/j.bpj.2015.11.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023] Open
Abstract
The nucleus of a cell has long been considered to be subject to mechanical force. Despite the observation that mechanical forces affect nuclear geometry and movement, how forces are applied onto the nucleus is not well understood. The nuclear LINC (linker of nucleoskeleton and cytoskeleton) complex has been hypothesized to be the critical structure that mediates the transfer of mechanical forces from the cytoskeleton onto the nucleus. Previously used techniques for studying nuclear forces have been unable to resolve forces across individual proteins, making it difficult to clearly establish if the LINC complex experiences mechanical load. To directly measure forces across the LINC complex, we generated a fluorescence resonance energy transfer-based tension biosensor for nesprin-2G, a key structural protein in the LINC complex, which physically links this complex to the actin cytoskeleton. Using this sensor we show that nesprin-2G is subject to mechanical tension in adherent fibroblasts, with highest levels of force on the apical and equatorial planes of the nucleus. We also show that the forces across nesprin-2G are dependent on actomyosin contractility and cell elongation. Additionally, nesprin-2G tension is reduced in fibroblasts from Hutchinson-Gilford progeria syndrome patients. This report provides the first, to our knowledge, direct evidence that nesprin-2G, and by extension the LINC complex, is subject to mechanical force. We also present evidence that nesprin-2G localization to the nuclear membrane is altered under high-force conditions. Because forces across the LINC complex are altered by a variety of different conditions, mechanical forces across the LINC complex, as well as the nucleus in general, may represent an important mechanism for mediating mechanotransduction.
Collapse
Affiliation(s)
- Paul T Arsenovic
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Iswarya Ramachandran
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kranthidhar Bathula
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Jiten D Narang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Natalie A Noll
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
38
|
McGregor AL, Hsia CR, Lammerding J. Squish and squeeze-the nucleus as a physical barrier during migration in confined environments. Curr Opin Cell Biol 2016; 40:32-40. [PMID: 26895141 PMCID: PMC4887392 DOI: 10.1016/j.ceb.2016.01.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/23/2016] [Indexed: 01/22/2023]
Abstract
From embryonic development to cancer metastasis, cell migration plays a central role in health and disease. It is increasingly becoming apparent that cells migrating in three-dimensional (3-D) environments exhibit some striking differences compared with their well-established 2-D counterparts. One key finding is the significant role the nucleus plays during 3-D migration: when cells move in confined spaces, the cell body and nucleus must deform to squeeze through available spaces, and the deformability of the large and relatively rigid nucleus can become rate-limiting. In this review, we highlight recent findings regarding the role of nuclear mechanics in 3-D migration, including factors that govern nuclear deformability, and emerging mechanisms by which cells apply cytoskeletal forces to the nucleus to facilitate nuclear translocation. Intriguingly, the 'physical barrier' imposed by the nucleus also impacts cytoplasmic dynamics that affect cell migration and signaling, and changes in nuclear structure resulting from the mechanical forces acting on the nucleus during 3-D migration could further alter cellular function. These findings have broad relevance to the migration of both normal and cancerous cells inside living tissues, and motivate further research into the molecular details by which cells move their nuclei, as well as the consequences of the mechanical stress on the nucleus.
Collapse
Affiliation(s)
- Alexandra Lynn McGregor
- Nancy C. and Peter E. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chieh-Ren Hsia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Nancy C. and Peter E. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Abstract
Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.
Collapse
Affiliation(s)
- Richik N Mukherjee
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Pan Chen
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Daniel L Levy
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| |
Collapse
|
40
|
Vautrot V, Aigueperse C, Oillo-Blanloeil F, Hupont S, Stevenin J, Branlant C, Behm-Ansmant I. Enhanced SRSF5 Protein Expression Reinforces Lamin A mRNA Production in HeLa Cells and Fibroblasts of Progeria Patients. Hum Mutat 2016; 37:280-91. [PMID: 26670336 DOI: 10.1002/humu.22945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023]
Abstract
The Hutchinson Gilford Progeria Syndrome (HGPS) is a rare genetic disease leading to accelerated aging. Three mutations of the LMNA gene leading to HGPS were identified. The more frequent ones, c.1824C>T and c.1822G>A, enhance the use of the intron 11 progerin 5'splice site (5'SS) instead of the LMNA 5'SS, leading to the production of the truncated dominant negative progerin. The less frequent c.1868C>G mutation creates a novel 5'SS (LAΔ35 5'SS), inducing the production of another truncated LMNA protein (LAΔ35). Our data show that the progerin 5'SS is used at low yield in the absence of HGPS mutation, whereas utilization of the LAΔ35 5'SS is dependent upon the presence of the c.1868C>G mutation. In the perspective to correct HGPS splicing defects, we investigated whether SR proteins can modify the relative yields of utilization of intron 11 5'SSs. By in cellulo and in vitro assays, we identified SRSF5 as a direct key regulator increasing the utilization of the LMNA 5'SS in the presence of the HGPS mutations. Enhanced SRSF5 expression in dermal fibroblasts of HGPS patients as well as PDGF-BB stimulation of these cells decreased the utilization of the progerin 5'SS, and improves nuclear morphology, opening new therapeutic perspectives for premature aging.
Collapse
Affiliation(s)
- Valentin Vautrot
- IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), UMR 7365 CNRS-UL, Biopôle de l'Université de Lorraine, Vandoeuvre-lès-Nancy, 54505, France
| | - Christelle Aigueperse
- IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), UMR 7365 CNRS-UL, Biopôle de l'Université de Lorraine, Vandoeuvre-lès-Nancy, 54505, France
| | - Florence Oillo-Blanloeil
- IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), UMR 7365 CNRS-UL, Biopôle de l'Université de Lorraine, Vandoeuvre-lès-Nancy, 54505, France
| | - Sébastien Hupont
- FR3209 CNRS, Biopôle de l'Université de Lorraine, Vandoeuvre-lès-Nancy, 54505, France
| | - James Stevenin
- IGBMC Department of Functional Genomics and Cancer, CNRS UMR 7104, INSERM U 964, University of Strasbourg, Illkirch Cedex, 67404, France
| | - Christiane Branlant
- IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), UMR 7365 CNRS-UL, Biopôle de l'Université de Lorraine, Vandoeuvre-lès-Nancy, 54505, France
| | - Isabelle Behm-Ansmant
- IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), UMR 7365 CNRS-UL, Biopôle de l'Université de Lorraine, Vandoeuvre-lès-Nancy, 54505, France
| |
Collapse
|
41
|
Cormier N, Yeo A, Fiorentino E, Paxson J. Optimization of the Wound Scratch Assay to Detect Changes in Murine Mesenchymal Stromal Cell Migration After Damage by Soluble Cigarette Smoke Extract. J Vis Exp 2015:e53414. [PMID: 26709527 DOI: 10.3791/53414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell migration is vital to many physiological and pathological processes including tissue development, repair, and regeneration, cancer metastasis, and inflammatory responses. Given the current interest in the role of mesenchymal stromal cells in mediating tissue repair, we are interested in quantifying the migratory capacity of these cells, and understanding how migratory capacity may be altered after damage. Optimization of a rigorously quantitative migration assay that is both easy to customize and cost-effective to perform is key to answering questions concerning alterations in cell migration in response to various stimuli. Current methods for quantifying cell migration, including scratch assays, trans-well migration assays (Boyden chambers), micropillar arrays, and cell exclusion zone assays, possess a range of limitations in reproducibility, customizability, quantification, and cost-effectiveness. Despite its prominent use, the scratch assay is confounded by issues with reproducibility related to damage of the cell microenvironment, impediments to cell migration, influence of neighboring senescent cells, and cell proliferation, as well as lack of rigorous quantification. The optimized scratch assay described here demonstrates robust outcomes, quantifiable and image-based analysis capabilities, cost-effectiveness, and adaptability to other applications.
Collapse
Affiliation(s)
| | | | | | - Julia Paxson
- Department of Biology, College of the Holy Cross;
| |
Collapse
|
42
|
Spagnol ST, Lin WC, Booth EA, Ladoux B, Lazarus HM, Dahl KN. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration. Ann Biomed Eng 2015; 44:2123-31. [PMID: 26581348 DOI: 10.1007/s10439-015-1508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023]
Abstract
The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.
Collapse
Affiliation(s)
- Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Wei-Chun Lin
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elizabeth A Booth
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, Paris, France
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hillard M Lazarus
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
An Y, Ma C, Tian C, Zhao L, Pang L, Tu Q, Xu J, Wang J. On-chip assay of the effect of topographical microenvironment on cell growth and cell-cell interactions during wound healing. BIOMICROFLUIDICS 2015; 9:064112. [PMID: 26649132 PMCID: PMC4670448 DOI: 10.1063/1.4936927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
Wound healing is an essential physiological process for tissue homeostasis, involving multiple types of cells, extracellular matrices, and growth factor/chemokine interactions. Many in vitro studies have investigated the interactions between cues mentioned above; however, most of them only focused on a single factor. In the present study, we design a wound healing device to recapitulate in vivo complex microenvironments and heterogeneous cell situations to investigate how three types of physiologically related cells interact with their microenvironments around and with each other during a wound healing process. Briefly, a microfluidic device with a micropillar substrate, where diameter and interspacing can be tuned to mimic the topographical features of the 3D extracellular matrix, was designed to perform positional cell loading on the micropillar substrate, co-culture of three types of physiologically related cells, keratinocytes, dermal fibroblasts, and human umbilical vein endothelial cells, as well as an investigation of their interactions during wound healing. The result showed that cell attachment, morphology, cytoskeleton distribution, and nucleus shape were strongly affected by the micropillars, and these cells showed collaborative response to heal the wound. Taken together, these findings highlight the dynamic relationship between cells and their microenvironments. Also, this reproducible device may facilitate the in vitro investigation of numerous physiological and pathological processes such as cancer metastasis, angiogenesis, and tissue engineering.
Collapse
Affiliation(s)
| | - Chao Ma
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Chang Tian
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Lei Zhao
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Long Pang
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Qin Tu
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Juan Xu
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Jinyi Wang
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
44
|
Brassard JA, Fekete N, Garnier A, Hoesli CA. Hutchinson-Gilford progeria syndrome as a model for vascular aging. Biogerontology 2015; 17:129-45. [PMID: 26330290 DOI: 10.1007/s10522-015-9602-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/24/2015] [Indexed: 01/03/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder caused by a de novo genetic mutation that leads to the accumulation of a splicing isoform of lamin A termed progerin. Progerin expression alters the organization of the nuclear lamina and chromatin. The life expectancy of HGPS patients is severely reduced due to critical cardiovascular defects. Progerin also accumulates in an age-dependent manner in the vascular cells of adults that do not carry genetic mutations associated with HGPS. The molecular mechanisms that lead to vascular dysfunction in HGPS may therefore also play a role in vascular aging. The vascular phenotypic and molecular changes observed in HGPS are strikingly similar to those seen with age, including increased senescence, altered mechanotransduction and stem cell exhaustion. This article discusses the similarities and differences between age-dependent and HGPS-related vascular aging to highlight the relevance of HGPS as a model for vascular aging. Induced pluripotent stem cells derived from HGPS patients are suggested as an attractive model to study vascular aging in order to develop novel approaches to treat cardiovascular disease.
Collapse
Affiliation(s)
- Jonathan A Brassard
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University Street, Montréal, QC, H3A 0C5, Canada.,Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Natalie Fekete
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University Street, Montréal, QC, H3A 0C5, Canada
| | - Alain Garnier
- Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University Street, Montréal, QC, H3A 0C5, Canada.
| |
Collapse
|
45
|
Booth EA, Spagnol ST, Alcoser TA, Dahl KN. Nuclear stiffening and chromatin softening with progerin expression leads to an attenuated nuclear response to force. SOFT MATTER 2015; 11:6412-6418. [PMID: 26171741 DOI: 10.1039/c5sm00521c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Progerin is a mutant form of the nucleoskeletal protein lamin A, and its expression results in the rare premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). Patients with HGPS demonstrate several characteristic signs of aging including cardiovascular and skeletal dysfunction. Cells from HGPS patients show several nuclear abnormalities including aberrant morphology, nuclear stiffening and loss of epigenetic modifications including heterochromatin territories. However, it is unclear why these changes disproportionately impact mechanically-responsive tissues. Using micropipette aspiration, we show that nuclei in progerin-expressing cells are stiffer than control cells. Conversely, our particle tracking reveals the nuclear interior becomes more compliant in cells from HGPS patients or with progerin expression, as consistent with decreased chromatin condensation as shown previously. Additionally, we find the nuclear interior is less responsive to external mechanical force from shear or compression likely resulting from damped force propagation due to nucleoskeletal stiffening. Collectively our findings suggest that force is similarly transduced into the nuclear interior in normal cells. In HGPS cells a combination of a stiffened nucleoskeleton and softened nuclear interior leads to mechanical irregularities and dysfunction of mechanoresponsive tissues in HGPS patients.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Department of Chemical Engineering, Carnegie Mellon University, USA.
| | | | | | | |
Collapse
|
46
|
Hanson L, Zhao W, Lou HY, Lin ZC, Lee SW, Chowdary P, Cui Y, Cui B. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. NATURE NANOTECHNOLOGY 2015; 10:554-62. [PMID: 25984833 PMCID: PMC5108456 DOI: 10.1038/nnano.2015.88] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/09/2015] [Indexed: 04/14/2023]
Abstract
The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells.
Collapse
Affiliation(s)
- Lindsey Hanson
- Department of Chemistry, 333 Campus Drive, Stanford, California 94305, USA
| | - Wenting Zhao
- Department of Materials Science and Engineering, 496 Lomita Mall, Stanford, California 94305, USA
| | - Hsin-Ya Lou
- Department of Chemistry, 333 Campus Drive, Stanford, California 94305, USA
| | - Ziliang Carter Lin
- Department of Applied Physics, 348 Via Pueblo, Stanford University, Stanford, California 94305, USA
| | - Seok Woo Lee
- Department of Materials Science and Engineering, 496 Lomita Mall, Stanford, California 94305, USA
| | - Praveen Chowdary
- Department of Chemistry, 333 Campus Drive, Stanford, California 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, 496 Lomita Mall, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- ;
| | - Bianxiao Cui
- Department of Chemistry, 333 Campus Drive, Stanford, California 94305, USA
- ;
| |
Collapse
|
47
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|
48
|
Lobo J, See EYS, Biggs M, Pandit A. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J Tissue Eng Regen Med 2015; 10:539-53. [DOI: 10.1002/term.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Joana Lobo
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Eugene Yong-Shun See
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| |
Collapse
|
49
|
Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 2015; 84:131-64. [PMID: 25747401 DOI: 10.1146/annurev-biochem-060614-034115] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson-Gilford progeria and atypical Werner syndromes.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | | |
Collapse
|
50
|
Mauck RL, Burdick JA. From repair to regeneration: biomaterials to reprogram the meniscus wound microenvironment. Ann Biomed Eng 2015; 43:529-42. [PMID: 25650096 DOI: 10.1007/s10439-015-1249-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
Abstract
When the field of tissue engineering first arose, scaffolds were conceived of as inert three-dimensional structures whose primary function was to support cellularity and tissue growth. Since then, advances in scaffold and biomaterial design have evolved to not only guide tissue formation, but also to interact dynamically with and manipulate the wound environment. At present, these efforts are being directed towards strategies that directly address limitations in endogenous wound repair, with the goal of reprogramming the local wound environment (and the cells within that locality) from a state that culminates in an inferior tissue repair into a state in which functional regeneration is achieved. This review will address this approach with a focus on recent advances in scaffold design towards the resolution of tears of the knee meniscus as a case example. The inherent limitations to endogenous repair will be discussed, as will specific examples of how biomaterials are being designed to overcome these limitations. Examples will include design of fibrous scaffolds that promote colonization by modulating local extracellular matrix density and delivering recruitment factors. Furthermore, we will discuss scaffolds that are themselves modulated by the wound environment to alter porosity and modulate therapeutic release through precise coordination of scaffold degradation. Finally, we will close with emerging concepts in local control of cell mechanics to improve interstitial cell migration and so advance repair. Overall, these examples will illustrate how emergent features within a biomaterial can be tuned to manipulate and harness the local tissue microenvironment in order to promote robust regeneration.
Collapse
Affiliation(s)
- Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA,
| | | |
Collapse
|