1
|
Ashok D, Singh J, Howard HR, Cottam S, Waterhouse A, Bilek MMM. Interfacial engineering for biomolecule immobilisation in microfluidic devices. Biomaterials 2025; 316:123014. [PMID: 39708778 DOI: 10.1016/j.biomaterials.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Microfluidic devices are used for various applications in biology and medicine. From on-chip modelling of human organs for drug screening and fast and straightforward point-of-care (POC) detection of diseases to sensitive biochemical analysis, these devices can be custom-engineered using low-cost techniques. The microchannel interface is essential for these applications, as it is the interface of immobilised biomolecules that promote cell capture, attachment and proliferation, sense analytes and metabolites or provide enzymatic reaction readouts. However, common microfluidic materials do not facilitate the stable immobilisation of biomolecules required for relevant applications, making interfacial engineering necessary to attach biomolecules to the microfluidic surfaces. Interfacial engineering is performed through various immobilisation mechanisms and surface treatment techniques, which suitably modify the surface properties like chemistry and energy to obtain robust biomolecule immobilisation and long-term storage stability suitable for the final application. In this review, we provide an overview of the status of interfacial engineering in microfluidic devices, covering applications, the role of biomolecules, their immobilisation pathways and the influence of microfluidic materials. We then propose treatment techniques to optimise performance for various biological and medical applications and highlight future areas of development.
Collapse
Affiliation(s)
- Deepu Ashok
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Heart Research Institute, Newtown, NSW, 2042, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jasneil Singh
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Heart Research Institute, Newtown, NSW, 2042, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Henry Robert Howard
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sophie Cottam
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marcela M M Bilek
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Witek MA, Larkey NE, Bartakova A, Hupert ML, Mog S, Cronin JK, Vun J, August KJ, Soper SA. Microfluidic Affinity Selection of B-Lineage Cells from Peripheral Blood for Minimal Residual Disease Monitoring in Pediatric B-Type Acute Lymphoblastic Leukemia Patients. Int J Mol Sci 2024; 25:10619. [PMID: 39408948 PMCID: PMC11477226 DOI: 10.3390/ijms251910619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Assessment of minimal residual disease (MRD) is the most powerful predictor of outcome in B-type acute lymphoblastic leukemia (B-ALL). MRD, defined as the presence of leukemic cells in the blood or bone marrow, is used for the evaluation of therapy efficacy. We report on a microfluidic-based MRD (MF-MRD) assay that allows for frequent evaluation of blood for the presence of circulating leukemia cells (CLCs). The microfluidic chip affinity selects B-lineage cells, including CLCs using anti-CD19 antibodies poised on the wall of the microfluidic chip. Affinity-selected cells are released from the capture surface and can be subjected to immunophenotyping to enumerate the CLCs, perform fluorescence in situ hybridization (FISH), and/or molecular analysis of the CLCs' mRNA/gDNA. During longitudinal testing of 20 patients throughout induction and consolidation therapy, the MF-MRD performed 116 tests, while only 41 were completed with multiparameter flow cytometry (MFC-MRD) using a bone marrow aspirate, as standard-of-care. Overall, 57% MF-MRD tests were MRD(+) as defined by CLC numbers exceeding a threshold of 5 × 10-4%, which was determined to be the limit of quantitation. Above a threshold of 0.01%, MFC-MRD was positive in 34% of patients. The MF offered the advantage of the opportunity for efficiently processing small volumes of blood (2 mL), which is important in the care of pediatric patients, especially infants. The minimally invasive means of blood collection are of high value when treating patients whose MRD is typically tested using an invasive bone marrow biopsy. MF-MRD detection can be useful for stratification of patients into risk groups and monitoring of patient well-being after completion of treatment for early recognition of potential impending disease recurrence.
Collapse
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
| | - Nicholas E. Larkey
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alena Bartakova
- Biofluidica Inc., San Diego, CA 92121, USA; (A.B.); (M.L.H.)
| | | | - Shalee Mog
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
| | - Jami K. Cronin
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Judy Vun
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Keith J. August
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Biofluidica Inc., San Diego, CA 92121, USA; (A.B.); (M.L.H.)
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
3
|
Childers K, Freed IM, Hupert ML, Shaw B, Larsen N, Herring P, Norton JH, Shiri F, Vun J, August KJ, Witek MA, Soper SA. Novel thermoplastic microvalves based on an elastomeric cyclic olefin copolymer. LAB ON A CHIP 2024; 24:4422-4439. [PMID: 39171671 PMCID: PMC11339931 DOI: 10.1039/d4lc00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Microfluidic systems combine multiple processing steps and components to perform complex assays in an autonomous fashion. To enable the integration of several bio-analytical processing steps into a single system, valving is used as a component that directs fluids and controls introduction of sample and reagents. While elastomer polydimethylsiloxane has been the material of choice for valving, it does not scale well to accommodate disposable integrated systems where inexpensive and fast production is needed. As an alternative to polydimethylsiloxane, we introduce a membrane made of thermoplastic elastomeric cyclic olefin copolymer (eCOC), that displays unique attributes for the fabrication of reliable valving. The eCOC membrane can be extruded or injection molded to allow for high scale production of inexpensive valves. Normally hydrophobic, eCOC can be activated with UV/ozone to produce a stable hydrophilic monolayer. Valves are assembled following in situ UV/ozone activation of eCOC membrane and thermoplastic valve seat and bonded by lamination at room temperature. eCOC formed strong bonding with polycarbonate (PC) and polyethylene terephthalate glycol (PETG) able to hold high fluidic pressures of 75 kPa and 350 kPa, respectively. We characterized the eCOC valves with mechanical and pneumatic actuation and found the valves could be reproducibly actuated >50 times without failure. Finally, an integrated system with eCOC valves was employed to detect minimal residual disease (MRD) from a blood sample of a pediatric acute lymphoblastic leukemia (ALL) patient. The two module integrated system evaluated MRD by affinity-selecting CD19(+) cells and enumerating leukemia cells via immunophenotyping with ALL-specific markers.
Collapse
Affiliation(s)
- Katie Childers
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Ian M Freed
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | | | - Benjamin Shaw
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Noah Larsen
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Engineering Physics, The University of Kansas, Lawrence, KS 66045, USA
| | - Paul Herring
- Department of Plastics Engineering Technology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Jeanne H Norton
- Department of Plastics Engineering Technology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Farhad Shiri
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Judy Vun
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Keith J August
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Małgorzata A Witek
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Tignanelli CJ, Shah S, Vock D, Siegel L, Serrano C, Haut E, Switzer S, Martin CL, Rizvi R, Peta V, Jenkins PC, Lemke N, Thyvalikakath T, Osheroff JA, Torres D, Vawdrey D, Callcut RA, Butler M, Melton GB. A pragmatic, stepped-wedge, hybrid type II trial of interoperable clinical decision support to improve venous thromboembolism prophylaxis for patients with traumatic brain injury. Implement Sci 2024; 19:57. [PMID: 39103955 PMCID: PMC11299263 DOI: 10.1186/s13012-024-01386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/14/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Venous thromboembolism (VTE) is a preventable medical condition which has substantial impact on patient morbidity, mortality, and disability. Unfortunately, adherence to the published best practices for VTE prevention, based on patient centered outcomes research (PCOR), is highly variable across U.S. hospitals, which represents a gap between current evidence and clinical practice leading to adverse patient outcomes. This gap is especially large in the case of traumatic brain injury (TBI), where reluctance to initiate VTE prevention due to concerns for potentially increasing the rates of intracranial bleeding drives poor rates of VTE prophylaxis. This is despite research which has shown early initiation of VTE prophylaxis to be safe in TBI without increased risk of delayed neurosurgical intervention or death. Clinical decision support (CDS) is an indispensable solution to close this practice gap; however, design and implementation barriers hinder CDS adoption and successful scaling across health systems. Clinical practice guidelines (CPGs) informed by PCOR evidence can be deployed using CDS systems to improve the evidence to practice gap. In the Scaling AcceptabLE cDs (SCALED) study, we will implement a VTE prevention CPG within an interoperable CDS system and evaluate both CPG effectiveness (improved clinical outcomes) and CDS implementation. METHODS The SCALED trial is a hybrid type 2 randomized stepped wedge effectiveness-implementation trial to scale the CDS across 4 heterogeneous healthcare systems. Trial outcomes will be assessed using the RE2-AIM planning and evaluation framework. Efforts will be made to ensure implementation consistency. Nonetheless, it is expected that CDS adoption will vary across each site. To assess these differences, we will evaluate implementation processes across trial sites using the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework (a determinant framework) using mixed-methods. Finally, it is critical that PCOR CPGs are maintained as evidence evolves. To date, an accepted process for evidence maintenance does not exist. We will pilot a "Living Guideline" process model for the VTE prevention CDS system. DISCUSSION The stepped wedge hybrid type 2 trial will provide evidence regarding the effectiveness of CDS based on the Berne-Norwood criteria for VTE prevention in patients with TBI. Additionally, it will provide evidence regarding a successful strategy to scale interoperable CDS systems across U.S. healthcare systems, advancing both the fields of implementation science and health informatics. TRIAL REGISTRATION Clinicaltrials.gov - NCT05628207. Prospectively registered 11/28/2022, https://classic. CLINICALTRIALS gov/ct2/show/NCT05628207 .
Collapse
Affiliation(s)
- Christopher J Tignanelli
- Department of Surgery, University of Minnesota, 420 Delaware St SE, MMC 195, Minneapolis, MN, 55455, USA.
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.
- Center for Learning Health Systems Science, University of Minnesota, Minneapolis, MN, USA.
- Center for Quality Outcomes, Discovery and Evaluation, University of Minnesota, Minneapolis, MN, USA.
| | - Surbhi Shah
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - David Vock
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA
| | - Lianne Siegel
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA
| | - Carlos Serrano
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA
| | - Elliott Haut
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Rubina Rizvi
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Center for Learning Health Systems Science, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Peta
- Department of Surgery, University of Minnesota, 420 Delaware St SE, MMC 195, Minneapolis, MN, 55455, USA
| | - Peter C Jenkins
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas Lemke
- Department of Surgery, University of Minnesota, 420 Delaware St SE, MMC 195, Minneapolis, MN, 55455, USA
| | - Thankam Thyvalikakath
- Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, IN, USA
- Indiana University School of Dentistry, Indianapolis, IN, USA
| | | | - Denise Torres
- Department of Surgery, Geisinger Health, Danville, PA, USA
| | - David Vawdrey
- Department of Biomedical Informatics, Geisinger Health, Danville, PA, USA
| | - Rachael A Callcut
- Department of Surgery, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mary Butler
- Center for Learning Health Systems Science, University of Minnesota, Minneapolis, MN, USA
- School of Publish Health, University of Minnesota, Minneapolis, MN, USA
| | - Genevieve B Melton
- Department of Surgery, University of Minnesota, 420 Delaware St SE, MMC 195, Minneapolis, MN, 55455, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Center for Learning Health Systems Science, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Rathnayaka C, Chandrosoma IA, Choi J, Childers K, Chibuike M, Akabirov K, Shiri F, Hall AR, Lee M, McKinney C, Verber M, Park S, Soper SA. Detection and identification of single ribonucleotide monophosphates using a dual in-plane nanopore sensor made in a thermoplastic via replication. LAB ON A CHIP 2024; 24:2721-2735. [PMID: 38656267 PMCID: PMC11091956 DOI: 10.1039/d3lc01062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
We report the generation of ∼8 nm dual in-plane pores fabricated in a thermoplastic via nanoimprint lithography (NIL). These pores were connected in series with nanochannels, one of which served as a flight tube to allow the identification of single molecules based on their molecular-dependent apparent mobilities (i.e., dual in-plane nanopore sensor). Two different thermoplastics were investigated including poly(methyl methacrylate), PMMA, and cyclic olefin polymer, COP, as the substrate for the sensor both of which were sealed using a low glass transition cover plate (cyclic olefin co-polymer, COC) that could be thermally fusion bonded to the PMMA or COP substrate at a temperature minimizing nanostructure deformation. Unique to these dual in-plane nanopore sensors was two pores flanking each side of the nanometer flight tube (50 × 50 nm, width × depth) that was 10 μm in length. The utility of this dual in-plane nanopore sensor was evaluated to not only detect, but also identify single ribonucleotide monophosphates (rNMPs) by using the travel time (time-of-flight, ToF), the resistive pulse event amplitude, and the dwell time. In spite of the relatively large size of these in-plane pores (∼8 nm effective diameter), we could detect via resistive pulse sensing (RPS) single rNMP molecules at a mass load of 3.9 fg, which was ascribed to the unique structural features of the nanofluidic network and the use of a thermoplastic with low relative dielectric constants, which resulted in a low RMS noise level in the open pore current. Our data indicated that the identification accuracy of individual rNMPs was high, which was ascribed to an improved chromatographic contribution to the nano-electrophoresis apparent mobility. With the ToF data only, the identification accuracy was 98.3%. However, when incorporating the resistive pulse sensing event amplitude and dwell time in conjunction with the ToF and analyzed via principal component analysis (PCA), the identification accuracy reached 100%. These findings pave the way for the realization of a novel chip-based single-molecule RNA sequencing technology.
Collapse
Affiliation(s)
- Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Indu A Chandrosoma
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Katie Childers
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Maximillian Chibuike
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Khurshed Akabirov
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Adam R Hall
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston Salem, NC 27101, USA
- Atrium Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| | - Maxwell Lee
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston Salem, NC 27101, USA
| | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Verber
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Simon L, Lapinte V, Morille M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J Extracell Vesicles 2023; 12:e12386. [PMID: 38050832 PMCID: PMC10696644 DOI: 10.1002/jev2.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring nanoparticles released from all eucaryotic and procaryotic cells. While their role was formerly largely underestimated, EVs are now clearly established as key mediators of intercellular communication. Therefore, these vesicles constitute an attractive topic of study for both basic and applied research with great potential, for example, as a new class of biomarkers, as cell-free therapeutics or as drug delivery systems. However, the complexity and biological origin of EVs sometimes complicate their identification and therapeutic use. Thus, this rapidly expanding research field requires new methods and tools for the production, enrichment, detection, and therapeutic application of EVs. In this review, we have sought to explain how polymer materials actively contributed to overcome some of the limitations associated to EVs. Indeed, thanks to their infinite diversity of composition and properties, polymers can act through a variety of strategies and at different stages of EVs development. Overall, we would like to emphasize the importance of multidisciplinary research involving polymers to address persistent limitations in the field of EVs.
Collapse
Affiliation(s)
| | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
7
|
Surappa S, Multani P, Parlatan U, Sinawang PD, Kaifi J, Akin D, Demirci U. Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. LAB ON A CHIP 2023; 23:2942-2958. [PMID: 37314731 PMCID: PMC10834032 DOI: 10.1039/d2lc01076c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.
Collapse
Affiliation(s)
- Sushruta Surappa
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Priyanka Multani
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Ugur Parlatan
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jussuf Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
8
|
Hu M, Brown V, Jackson JM, Wijerathne H, Pathak H, Koestler DC, Nissen E, Hupert ML, Muller R, Godwin AK, Witek MA, Soper SA. Assessing Breast Cancer Molecular Subtypes Using Extracellular Vesicles' mRNA. Anal Chem 2023; 95:7665-7675. [PMID: 37071799 PMCID: PMC10243595 DOI: 10.1021/acs.analchem.3c00624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Extracellular vesicles (EVs) carry RNA cargo that is believed to be associated with the cell-of-origin and thus have the potential to serve as a minimally invasive liquid biopsy marker for supplying molecular information to guide treatment decisions (i.e., precision medicine). We report the affinity isolation of EV subpopulations with monoclonal antibodies attached to the surface of a microfluidic chip that is made from a plastic to allow for high-scale production. The EV microfluidic affinity purification (EV-MAP) chip was used for the isolation of EVs sourced from two-orthogonal cell types and was demonstrated for its utility in a proof-of-concept application to provide molecular subtyping information for breast cancer patients. The orthogonal selection process better recapitulated the epithelial tumor microenvironment by isolating two subpopulations of EVs: EVEpCAM (epithelial cell adhesion molecule, epithelial origin) and EVFAPα (fibroblast activation protein α, mesenchymal origin). The EV-MAP provided recovery >80% with a specificity of 99 ± 1% based on exosomal mRNA (exo-mRNA) and real time-droplet digital polymerase chain reaction results. When selected from the plasma of healthy donors and breast cancer patients, EVs did not differ in size or total RNA mass for both markers. On average, 0.5 mL of plasma from breast cancer patients yielded ∼2.25 ng of total RNA for both EVEpCAM and EVFAPα, while in the case of cancer-free individuals, it yielded 0.8 and 1.25 ng of total RNA from EVEpCAM and EVFAPα, respectively. To assess the potential of these two EV subpopulations to provide molecular information for prognostication, we performed the PAM50 test (Prosigna) on exo-mRNA harvested from each EV subpopulation. Results suggested that EVEpCAM and EVFAPα exo-mRNA profiling using subsets of the PAM50 genes and a novel algorithm (i.e., exo-PAM50) generated 100% concordance with the tumor tissue.
Collapse
Affiliation(s)
- Mengjia Hu
- Department of Cancer Biology, The University of Kansas Medical Center, Cancer Center, Kansas City, Kansas 66160, United States
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Virginia Brown
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Joshua M Jackson
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Harshani Wijerathne
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Devin C Koestler
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Department of Biostatistics & Data Science, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Emily Nissen
- Department of Biostatistics & Data Science, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | | | - Rolf Muller
- BioFluidica, Inc., San Diego, California 92121, United States
| | - Andrew K Godwin
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Malgorzata A Witek
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Steven A Soper
- Department of Cancer Biology, The University of Kansas Medical Center, Cancer Center, Kansas City, Kansas 66160, United States
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- BioFluidica, Inc., San Diego, California 92121, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Masouminia M, Dalnoki-Veress K, de Lannoy CF, Zhao B. Wettability Alteration of a Thiolene-Based Polymer (NOA81): Surface Characterization and Fabrication Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2529-2536. [PMID: 36763353 DOI: 10.1021/acs.langmuir.2c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wettability plays a significant role in controlling multiphase flow in porous media for many industrial applications, including geologic carbon dioxide sequestration, enhanced oil recovery, and fuel cells. Microfluidics is a powerful tool to study the complexities of interfacial phenomena involved in multiphase flow in well-controlled geometries. Recently, the thiolene-based polymer called NOA81 emerged as an ideal material in the fabrication of microfluidic devices, since it combines the versatility of conventional soft photolithography with a wide range of achievable wettability conditions. Specifically, the wettability of NOA81 can be continuously tuned through exposure to UV-ozone. Despite its growing popularity, the exact physical and chemical mechanisms behind the wettability alteration have not been fully characterized. Here, we apply different characterization techniques, including contact angle measurements, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) to investigate the impact of UV-ozone on the chemical and physical properties of NOA81 surfaces. We find that UV-ozone exposure increases the oxygen-containing polar functional groups, which enhances the surface energy and hydrophilicity of NOA81. Additionally, our AFM measurements show that spin-coated NOA81 surfaces have a roughness less than a nanometer, which is further reduced after UV-ozone exposure. Lastly, we extend NOA81 use cases by creating (i) 2D surface with controlled wettability gradient and (ii) a 3D column packed with monodisperse NOA81 beads of controlled size and wettability.
Collapse
Affiliation(s)
- Mahtab Masouminia
- Department of Civil Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kari Dalnoki-Veress
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | | | - Benzhong Zhao
- Department of Civil Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
10
|
Shakeri A, Khan S, Jarad NA, Didar TF. The Fabrication and Bonding of Thermoplastic Microfluidics: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186478. [PMID: 36143790 PMCID: PMC9503322 DOI: 10.3390/ma15186478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 05/27/2023]
Abstract
Various fields within biomedical engineering have been afforded rapid scientific advancement through the incorporation of microfluidics. As literature surrounding biological systems become more comprehensive and many microfluidic platforms show potential for commercialization, the development of representative fluidic systems has become more intricate. This has brought increased scrutiny of the material properties of microfluidic substrates. Thermoplastics have been highlighted as a promising material, given their material adaptability and commercial compatibility. This review provides a comprehensive discussion surrounding recent developments pertaining to thermoplastic microfluidic device fabrication. Existing and emerging approaches related to both microchannel fabrication and device assembly are highlighted, with consideration toward how specific approaches induce physical and/or chemical properties that are optimally suited for relevant real-world applications.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F. Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
11
|
Wu M, Huang Y, Zhou Y, Zhao H, Lan Y, Yu Z, Jia C, Cong H, Zhao J. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. SMALL METHODS 2022; 6:e2200226. [PMID: 35595707 DOI: 10.1002/smtd.202200226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) enumeration has been widely used as a surrogate predictive marker for early diagnoses, the evaluation of chemotherapy efficacy, and cancer prognosis. Microfluidic technologies for CTCs enrichment and detection have been developed and commercialized as automation platforms. Currently, in addition to CTCs, some new types of circulating cancer-related cells (e.g., CCSCs, CTECs, CAMLs, and heterotypic CTC clusters) in circulation are also reported to be correlated to cancer diagnosis, metastasis, or prognosis. And they widely differ from the conventional CTCs in positive markers, cellular morphology, or size, which presents a new technological challenge to microfluidic devices that use affinity-based capture methods or size-based filtration methods for CTCs detection. This review focuses on the biological and physical properties as well as clinical significance of the novel circulating cancer-related cells, and discusses the challenges of their discovery to microfluidic chip for enrichment. Finally, the current challenges of CTCs detection in clinical application and future opportunities are also discussed.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Shakeri A, Jarad NA, Khan S, F Didar T. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review. Anal Chim Acta 2022; 1209:339283. [PMID: 35569863 DOI: 10.1016/j.aca.2021.339283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
As a result of their favorable physical and chemical characteristics, thermoplastics have garnered significant interest in the area of microfluidics. The moldable nature of these inexpensive polymers enables easy fabrication, while their durability and chemical stability allow for resistance to high shear stress conditions and functionalization, respectively. This review provides a comprehensive examination several commonly used thermoplastic polymers in the microfluidics space including poly(methyl methacrylate) (PMMA), cyclic olefin polymer (COP) and copolymer (COC), polycarbonates (PC), poly(ethylene terephthalate) (PET), polystyrene (PS), poly(ethylene glycol) (PEG), polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polyester. We describe various biofunctionalization strategies applied within thermoplastic microfluidic platforms and their resultant applications. Lastly, emerging technologies with a focus on applying recently developed microfluidic and biofunctionalization strategies into thermoplastic systems are discussed.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
13
|
Li C, He W, Wang N, Xi Z, Deng R, Liu X, Kang R, Xie L, Liu X. Application of Microfluidics in Detection of Circulating Tumor Cells. Front Bioeng Biotechnol 2022; 10:907232. [PMID: 35646880 PMCID: PMC9133555 DOI: 10.3389/fbioe.2022.907232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Tumor metastasis is one of the main causes of cancer incidence and death worldwide. In the process of tumor metastasis, the isolation and analysis of circulating tumor cells (CTCs) plays a crucial role in the early diagnosis and prognosis of cancer patients. Due to the rarity and inherent heterogeneity of CTCs, there is an urgent need for reliable CTCs separation and detection methods in order to obtain valuable information on tumor metastasis and progression from CTCs. Microfluidic technology is increasingly used in various studies of CTCs separation, identification and characterization because of its unique advantages, such as low cost, simple operation, less reagent consumption, miniaturization of the system, rapid detection and accurate control. This paper reviews the research progress of microfluidic technology in CTCs separation and detection in recent years, as well as the potential clinical application of CTCs, looks forward to the application prospect of microfluidic technology in the treatment of tumor metastasis, and briefly discusses the development prospect of microfluidic biosensor.
Collapse
Affiliation(s)
- Can Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei He
- Department of Clinical Medical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Athapattu US, Rathnayaka C, Vaidyanathan S, Gamage SST, Choi J, Riahipour R, Manoharan A, Hall AR, Park S, Soper SA. Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules. ACS Sens 2021; 6:3133-3143. [PMID: 34406743 PMCID: PMC8482307 DOI: 10.1021/acssensors.1c01359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a simple method for tailoring the size of in-plane nanopores fabricated in thermoplastics for single-molecule sensing. The in-plane pores were fabricated via nanoimprint lithography (NIL) from resin stamps, which were generated from Si masters. We could reduce the size of the in-plane nanopores from 30 to ∼10 nm during the thermal fusion bonding (TFB) step, which places a cover plate over the imprinted polymer substrate under a controlled pressure and temperature to form the relevant nanofluidic devices. Increased pressures during TFB caused the cross-sectional area of the in-plane pore to be reduced. The in-plane nanopores prepared with different TFB pressures were utilized to detect single-λ-DNA molecules via resistive pulse sensing, which showed a higher current amplitude in devices bonded at higher pressures. Using this method, we also show the ability to tune the pore size to detect single-stranded (ss) RNA molecules and single ribonucleotide adenosine monophosphate (rAMP). However, due to the small size of the pores required for detection of the ssRNA and rAMPs, the surface charge arising from carboxylate groups generated during O2 plasma oxidation of the surfaces of the nanopores to make them wettable had to be reduced to allow translocation of coions. This was accomplished using EDC/NHS coupling chemistry and ethanolamine. This simple modification chemistry increased the event frequency from ∼1 s-1 to >136 s-1 for an ssRNA concentration of 100 nM.
Collapse
Affiliation(s)
- Uditha S Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Swarnagowri Vaidyanathan
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Sachindra S T Gamage
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ramin Riahipour
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Anishkumar Manoharan
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Adam R Hall
- Wake Forest School of Medicine, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences and Comprehensive Cancer Center, Winston-Salem, North Carolina 27101, United States
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
- KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
15
|
Campos CDM, Childers K, Gamage SST, Wijerathne H, Zhao Z, Soper SA. Analytical Technologies for Liquid Biopsy of Subcellular Materials. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:207-229. [PMID: 33974805 PMCID: PMC8601690 DOI: 10.1146/annurev-anchem-091520-093931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid biopsy markers, which can be secured from a simple blood draw or other biological samples, are used to manage a variety of diseases and even monitor for bacterial or viral infections. Although there are several different types of liquid biopsy markers, the subcellular ones, including cell-free DNA, microRNA, extracellular vesicles, and viral particles, are evolving in terms of their utility. A challenge with liquid biopsy markers is that they must be enriched from the biological sample prior to analysis because they are a vast minority in a mixed population, and potential interferences may be present in the sample matrix that can inhibit profiling the molecular cargo from the subcellular marker. In this article, we discuss existing and developing analytical enrichment platforms used to isolate subcellular liquid biopsy markers, and discuss their figures of merit such as recovery, throughput, and purity.
Collapse
Affiliation(s)
- Camila D M Campos
- Life Science Department, Imec, 3001 Leuven, Belgium
- Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katie Childers
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
| | - Sachindra S T Gamage
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Harshani Wijerathne
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Zheng Zhao
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
| | - Steven A Soper
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
16
|
Athapattu US, Amarasekara CA, Immel JR, Bloom S, Barany F, Nagel AC, Soper SA. Solid-phase XRN1 reactions for RNA cleavage: application in single-molecule sequencing. Nucleic Acids Res 2021; 49:e41. [PMID: 33511416 PMCID: PMC8053086 DOI: 10.1093/nar/gkab001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Modifications in RNA are numerous (∼170) and in higher numbers compared to DNA (∼5) making the ability to sequence an RNA molecule to identify these modifications highly tenuous using next generation sequencing (NGS). The ability to immobilize an exoribonuclease enzyme, such as XRN1, to a solid support while maintaining its activity and capability to cleave both the canonical and modified ribonucleotides from an intact RNA molecule can be a viable approach for single-molecule RNA sequencing. In this study, we report an enzymatic reactor consisting of covalently attached XRN1 to a solid support as the groundwork for a novel RNA exosequencing technique. The covalent attachment of XRN1 to a plastic solid support was achieved using EDC/NHS coupling chemistry. Studies showed that the solid-phase digestion efficiency of model RNAs was 87.6 ± 2.8%, while the XRN1 solution-phase digestion for the same model was 78.3 ± 4.4%. The ability of immobilized XRN1 to digest methylated RNA containing m6A and m5C ribonucleotides was also demonstrated. The processivity and clipping rate of immobilized XRN1 secured using single-molecule fluorescence measurements of a single RNA transcript demonstrated a clipping rate of 26 ± 5 nt s-1 and a processivity of >10.5 kb at 25°C.
Collapse
Affiliation(s)
| | | | - Jacob R Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | - Steven A Soper
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Sunflower Genomics, Inc., Lawrence, KS 66047, USA
- Department of Mechanical Engineering and Bioengineering, University of Kansas, Lawrence, KS 66045, USA
- Department of Cancer Biology and KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
Hu X, Zang X, Lv Y. Detection of circulating tumor cells: Advances and critical concerns. Oncol Lett 2021; 21:422. [PMID: 33850563 PMCID: PMC8025150 DOI: 10.3892/ol.2021.12683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the main cause of cancer-related death and the major challenge in cancer treatment. Cancer cells in circulation are termed circulating tumor cells (CTCs). Primary tumor metastasis is likely due to CTCs released into the bloodstream. These CTCs extravasate and form fatal metastases in different organs. Analyses of CTCs are clarifying the biological understanding of metastatic cancers. These data are also helpful to monitor disease progression and to inform the development of personalized cancer treatment-based liquid biopsy. However, CTCs are a rare cell population with 1-10 CTCs per ml and are difficult to isolate from blood. Numerous approaches to detect CTCs have been developed based on the physical and biological properties of the cells. The present review summarizes the progress made in detecting CTCs.
Collapse
Affiliation(s)
- Xiuxiu Hu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, Jiangsu 22300, P.R. China
| | - Xiaojuan Zang
- Department of Ultrasonography, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Yanguan Lv
- Clinical Medical Laboratory, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
18
|
Amarasekara CA, Rathnayaka C, Athapattu US, Zhang L, Choi J, Park S, Nagel AC, Soper SA. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels. J Chromatogr A 2021; 1638:461892. [PMID: 33477027 PMCID: PMC8107831 DOI: 10.1016/j.chroma.2021.461892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
With advances in the design and fabrication of nanofluidic devices during the last decade, there have been a few reports on nucleic acid analysis using nanoscale electrophoresis. The attractive nature of nanofluidics is the unique phenomena associated with this length scale that are not observed using microchip electrophoresis. Many of these effects are surface-related and include electrostatics, surface roughness, van der Waals interactions, hydrogen bonding, and the electric double layer. The majority of reports related to nanoscale electrophoresis have utilized glass-based devices, which are not suitable for broad dissemination into the separation community because of the sophisticated, time consuming, and high-cost fabrication methods required to produce the relevant devices. In this study, we report the use of thermoplastic nanochannels (110 nm x 110 nm, depth x width) for the free solution electrokinetic analysis of ribonucleotide monophosphates (rNMPs). Thermoplastic devices with micro- and nanofluidic networks were fabricated using nanoimprint lithography (NIL) with the structures enclosed via thermal fusion bonding of a cover plate to the fluidic substrate. Unique to this report is that we fabricated devices in cyclic olefin copolymer (COC) that was thermally fusion bonded to a COC cover plate. Results using COC/COC devices were compared to poly(methyl methacrylate), PMMA, devices with a COC cover plate. Our results indicated that at pH = 7.9, the electrophoresis in free solution resulted in an average resolution of the rNMPs >4 (COC/COC device range = 1.94 - 8.88; PMMA/COC device range = 1.4 - 7.8) with some of the rNMPs showing field-dependent electrophoretic mobilities. Baseline separation of the rNMPs was not possible using PMMA- or COC-based microchip electrophoresis. We also found that COC/COC devices could be assembled and UV/O3 activated after device assembly with the dose of the UV/O3 affecting the magnitude of the electroosmotic flow, EOF. In addition, the bond strength between the substrate and cover plate of unmodified COC/COC devices was higher compared to PMMA/COC devices. The large differences in the electrophoretic mobilities of the rNMPs afforded by nanoscale electrophoresis will enable a new single-molecule sequencing platform we envision, which uses molecular-dependent electrophoretic mobilities to identify the constituent rNMPs generated from an intact RNA molecule using a processive exonuclease. With optimized nanoscale electrophoresis, the rNMPs could be identified via mobility matching at an accuracy >99% in both COC/COC and PMMA/COC devices.
Collapse
Affiliation(s)
- Charuni A Amarasekara
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine
| | - Uditha S Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine
| | - Lulu Zhang
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine
| | - Junseo Choi
- Center of Biomodular Multiscale Systems for Precision Medicine; Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803
| | - Sunggook Park
- Center of Biomodular Multiscale Systems for Precision Medicine; Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803
| | | | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine; Sunflower Genomics, Inc. Lawrence, KS 66047; Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045; Bioengineering Program, The University of Kansas, Lawrence, KS 66045; KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160.
| |
Collapse
|
19
|
Maciel Braga LA, Mota FB. Early cancer diagnosis using lab-on-a-chip devices : A bibliometric and network analysis. COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT 2021. [DOI: 10.1080/09737766.2021.1949949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luiza Amara Maciel Braga
- Faculty of Economics, Fluminense Federal University, Prof. Marcos Waldemar de Freitas Reis Street, 24210-200, Brazil,
| | - Fabio Batista Mota
- Center for Strategic Studies, Oswaldo Cruz Foundation, Brasil Avenue 4036, 21040-361, Brazil
| |
Collapse
|
20
|
Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. LAB ON A CHIP 2020; 20:3854-3875. [PMID: 33107879 DOI: 10.1039/d0lc00577k] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Affinity enrichment of extracellular vesicles from plasma reveals mRNA changes associated with acute ischemic stroke. Commun Biol 2020; 3:613. [PMID: 33106557 PMCID: PMC7589468 DOI: 10.1038/s42003-020-01336-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Currently there is no in vitro diagnostic test for acute ischemic stroke (AIS), yet rapid diagnosis is crucial for effective thrombolytic treatment. We previously demonstrated the utility of CD8(+) T-cells’ mRNA expression for AIS detection; however extracellular vesicles (EVs) were not evaluated as a source of mRNA for AIS testing. We now report a microfluidic device for the rapid and efficient affinity-enrichment of CD8(+) EVs and subsequent EV’s mRNA analysis using droplet digital PCR (ddPCR). The microfluidic device contains a dense array of micropillars modified with anti-CD8α monoclonal antibodies that enriched 158 ± 10 nm sized EVs at 4.3 ± 2.1 × 109 particles/100 µL of plasma. Analysis of mRNA from CD8(+) EVs and their parental T-cells revealed correlation in the expression for AIS-specific genes in both cell lines and healthy donors. In a blinded study, 80% test positivity for AIS patients and controls was revealed with a total analysis time of 3.7 h. Wijerathne et al develop an approach to quantify mRNA amounts in extracellular vesicles (EVs) from plasma using a microfluidics device to enrich EVs. They show this method allows for the correlation of specific mRNAs with acute ischemic stroke pointing towards potential clinical use.
Collapse
|
22
|
Qi Y, Wang Y, Chen C, Zhao C, Ma Y, Yang W. Facile Surface Functionalization of Cyclic Olefin Copolymer Film with Anhydride Groups for Protein Microarray Fabrication. ACS APPLIED BIO MATERIALS 2020; 3:3203-3209. [PMID: 35025362 DOI: 10.1021/acsabm.0c00200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immobilization of protein at high efficiency is a challenge for fabricating polymer-based protein chips. Here, a simple but effective approach was developed to fabricate a cyclic olefin copolymer (COC)-based protein microarray with a high immobilization density. In this strategy, poly(maleic anhydride-co-vinyl acetate) (poly(MAH-co-VAc)) brushes were facilely attached on the COC surface via UV-induced graft copolymerization. The introduction of poly(MAH-co-VAc) brushes resulted in an obvious increase in the surface roughness of COC. The functionalized COC showed little reduction in transparency compared with pristine COC, indicating that the photografting treatment did not alter its optical property. The graft density of the anhydride groups on the modified COC could be tuned from 0.46 to 3.2 μmol/cm2. The immobilization efficiency of immunoglobulin G (IgG) on functionalized COC reached 88% due to the high reactivity between anhydride groups and amine groups of IgGs. An immunoassay experiment demonstrated that the microarray showed high sensitivity to the target analyte.
Collapse
|
23
|
Pahattuge TN, Jackson JM, Digamber R, Wijerathne H, Brown V, Witek MA, Perera C, Givens RS, Peterson BR, Soper SA. Visible photorelease of liquid biopsy markers following microfluidic affinity-enrichment. Chem Commun (Camb) 2020; 56:4098-4101. [PMID: 32163053 PMCID: PMC7469076 DOI: 10.1039/c9cc09598e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We detail a heterobifunctional, 7-aminocoumarin photocleavable (PC) linker with unique properties to covalently attach Abs to surfaces and subsequently release them with visible light (400-450 nm). The PC linker allowed rapid (2 min) and efficient (>90%) release of CTCs and EVs without damaging their molecular cargo.
Collapse
Affiliation(s)
- Thilanga N Pahattuge
- Center of BioModular Multi-Scale Systems, Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao Z, Wijerathne H, Godwin AK, Soper SA. Isolation and analysis methods of extracellular vesicles (EVs). EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2020; 2:80-103. [PMID: 34414401 PMCID: PMC8372011 DOI: 10.20517/evcna.2021.07] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have been recognized as an evolving biomarker within the liquid biopsy family. While carrying both host cell proteins and different types of RNAs, EVs are also present in sufficient quantities in biological samples to be tested using many molecular analysis platforms to interrogate their content. However, because EVs in biological samples are comprised of both disease and non-disease related EVs, enrichment is often required to remove potential interferences from the downstream molecular assay. Most benchtop isolation/enrichment methods require > milliliter levels of sample and can cause varying degrees of damage to the EVs. In addition, some of the common EV benchtop isolation methods do not sort the diseased from the non-diseased related EVs. Simultaneously, the detection of the overall concentration and size distribution of the EVs is highly dependent on techniques such as electron microscopy and Nanoparticle Tracking Analysis, which can include unexpected variations and biases as well as complexity in the analysis. This review discusses the importance of EVs as a biomarker secured from a liquid biopsy and covers some of the traditional and non-traditional, including microfluidics and resistive pulse sensing, technologies for EV isolation and detection, respectively.
Collapse
Affiliation(s)
- Zheng Zhao
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA
| | - Harshani Wijerathne
- Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Andrew K. Godwin
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Steven A. Soper
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Ulsan National Institute of Science & Technology, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|
25
|
M. Weerakoon-Ratnayake K, Vaidyanathan S, Larkey N, Dathathreya K, Hu M, Jose J, Mog S, August K, K. Godwin A, L. Hupert M, A. Witek M, A. Soper S. Microfluidic Device for On-Chip Immunophenotyping and Cytogenetic Analysis of Rare Biological Cells. Cells 2020; 9:E519. [PMID: 32102446 PMCID: PMC7072755 DOI: 10.3390/cells9020519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 01/09/2023] Open
Abstract
The role of circulating plasma cells (CPCs) and circulating leukemic cells (CLCs) as biomarkers for several blood cancers, such as multiple myeloma and leukemia, respectively, have recently been reported. These markers can be attractive due to the minimally invasive nature of their acquisition through a blood draw (i.e., liquid biopsy), negating the need for painful bone marrow biopsies. CPCs or CLCs can be used for cellular/molecular analyses as well, such as immunophenotyping or fluorescence in situ hybridization (FISH). FISH, which is typically carried out on slides involving complex workflows, becomes problematic when operating on CLCs or CPCs due to their relatively modest numbers. Here, we present a microfluidic device for characterizing CPCs and CLCs using immunofluorescence or FISH that have been enriched from peripheral blood using a different microfluidic device. The microfluidic possessed an array of cross-channels (2-4 µm in depth and width) that interconnected a series of input and output fluidic channels. Placing a cover plate over the device formed microtraps, the size of which was defined by the width and depth of the cross-channels. This microfluidic chip allowed for automation of immunofluorescence and FISH, requiring the use of small volumes of reagents, such as antibodies and probes, as compared to slide-based immunophenotyping and FISH. In addition, the device could secure FISH results in <4 h compared to 2-3 days for conventional FISH.
Collapse
Affiliation(s)
- Kumuditha M. Weerakoon-Ratnayake
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (K.M.W.-R.); (K.D.); (S.M.)
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
| | - Swarnagowri Vaidyanathan
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
- Bioengineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Nicholas Larkey
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Kavya Dathathreya
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (K.M.W.-R.); (K.D.); (S.M.)
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
| | - Mengjia Hu
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Jilsha Jose
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
| | - Shalee Mog
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (K.M.W.-R.); (K.D.); (S.M.)
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
| | - Keith August
- Children’s Mercy Hospital, Kansas City, MO 64108, USA;
| | - Andrew K. Godwin
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Mateusz L. Hupert
- Biofluidica Inc., BioFluidica Research Laboratory, Lawrence, KS 66047, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (K.M.W.-R.); (K.D.); (S.M.)
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (K.M.W.-R.); (K.D.); (S.M.)
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (S.V.); (N.L.); (M.H.); (J.J.)
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Biofluidica Inc., BioFluidica Research Laboratory, Lawrence, KS 66047, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
26
|
Chiadò A, Palmara G, Chiappone A, Tanzanu C, Pirri CF, Roppolo I, Frascella F. A modular 3D printed lab-on-a-chip for early cancer detection. LAB ON A CHIP 2020; 20:665-674. [PMID: 31939966 DOI: 10.1039/c9lc01108k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A functional polymeric 3D device is produced in a single step printing process using a stereolithography based 3D printer. The photocurable formulation is designed for introducing a controlled amount of carboxyl groups (-COOH), in order to perform a covalent immobilization of bioreceptors on the device. The effectiveness of the application is demonstrated by performing an immunoassay for the detection of protein biomarkers involved in angiogenesis, whose role is crucial in the onset of cancer and in the progressive metastatic behavior of tumors. The detection of angiogenesis biomarkers is necessary for an early diagnosis of the pathology, allowing the employment of a less invasive therapy for the patient. In particular, vascular endothelial growth factor and angiopoietin-2 biomarkers are detected with a limit of detection of 11 ng mL-1 and 0.8 ng mL-1, respectively. This study shows how 3D microfabrication techniques, material characterization, and device development could be combined to obtain an engineered polymeric chip with intrinsic tuned functionalities.
Collapse
Affiliation(s)
- Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Gianluca Palmara
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Annalisa Chiappone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Claudia Tanzanu
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy. and Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, Torino 10129, Italy
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Francesca Frascella
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
27
|
Qi Y, Wang Y, Zhao C, Ma Y, Yang W. Highly Transparent Cyclic Olefin Copolymer Film with a Nanotextured Surface Prepared by One-Step Photografting for High-Density DNA Immobilization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28690-28698. [PMID: 31322850 DOI: 10.1021/acsami.9b09662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compared with conventional glass slides and two-dimensional (2D) planar microarrays, polymer-based support materials and three-dimensional (3D) surface structures have attracted increasing attention in the field of biochips because of their good processability in microfabrication and low cost in mass production, as well as their improved sensitivity and specificity for the detection of biomolecules. In the present study, UV-induced emulsion graft polymerization was carried out on a cyclic olefin copolymer (COC) surface to generate 3D nanotextures composed of loosely stacked nanoparticles with a diameter of approximately 50 nm. The introduction of a hierarchical nanostructure on a COC surface only resulted in a 5% decrease in its transparency at a wavelength of 550 nm but significantly increased the surface area, which markedly improved immobilization density and efficiency of an oligonucleotide probe compared with the functional group and polymer brush-modified substrates. The highest immobilization efficiency of the probes reached 93%, and a limit of detection of 75 pM could be obtained. The hybridization experiment demonstrated that the 3D gene chip exhibited excellent sensitivity for target DNA detection and single-nucleotide polymorphism discrimination. This one-step approach to the construction of nanotextured surfaces on the COC has promising applications in the fields of biochips and immunoassays.
Collapse
|
28
|
Xie W, Yin T, Chen YL, Zhu DM, Zan MH, Chen B, Ji LW, Chen L, Guo SS, Huang HM, Zhao XZ, Wang Y, Wu Y, Liu W. Capture and "self-release" of circulating tumor cells using metal-organic framework materials. NANOSCALE 2019; 11:8293-8303. [PMID: 30977474 DOI: 10.1039/c8nr09071h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capturing circulating tumor cells (CTCs) from peripheral blood for subsequent analyses has shown potential in precision medicine for cancer patients. Broad as the prospect is, there are still some challenges that hamper its clinical applications. One of the challenges is to maintain the viability of the captured cells during the capturing and releasing processes. Herein, we have described a composite material that could encapsulate a magnetic Fe3O4 core in a MIL-100 shell (MMs), which could respond to pH changes and modify the anti-EpCAM antibody (anti-EpCAM-MMs) on the surface of MIL-100. After the anti-EpCAM-MMs captured the cells, there was no need for additional conditions but with the acidic environment during the cell culture process, MIL-100 could realize automatic degradation, leading to cell self-release. This self-release model could not only improve the cell viability, but could also reduce the steps of the release process and save human and material resources simultaneously. In addition, we combined clinical patients' case diagnosis with the DNA sequencing and next generation of RNA sequencing technologies in the hope of precision medicine for patients in the future.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hu W, Soper SA, Jackson JM. Time-Delayed Integration-Spectral Flow Cytometer (TDI-SFC) for Low-Abundance-Cell Immunophenotyping. Anal Chem 2019; 91:4656-4664. [PMID: 30817129 PMCID: PMC6554645 DOI: 10.1021/acs.analchem.9b00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe a unique flow cytometer (TDI-SFC) for the immunophenotyping of low-abundance cells, particularly when cell counts are sample-limited and operationally difficult for analysis by fluorescence microscopy (>100 cells) or multiparameter flow cytometry (MFC, <10 000 cells). TDI-SFC combines the high spectral resolution of spectral flow cytometry (SFC) with a CCD operated in time-delayed integration (TDI) for improved duty cycle and sensitivity. Cells were focused with a 1D-sheathing microfluidic device, and fluorescence emission generated from a 488 nm laser was collected by epi-illumination and dispersed along one axis of a CCD by a spectrograph. Along the other axis, the CCD's shift rate was clocked at a rate that closely matched the cells' velocity through the field of view. This TDI-SFC format allowed the CCD shutter to remain open during signal acquisition, providing a duty cycle ∼100% and assurance that ∼95% cells were interrogated. We used fluorescent beads to optimize synchronization of TDI clocking with the sheathed-cell velocity and to improve sensitivity via the excitation intensity, epi-illumination numerical aperture, and integration time. TDI achieved integrated signals of 106 counts at a signal-to-noise ratio (SNR) of 610 for beads corresponding to a load of 4 × 105 antibodies. We also evaluated multiplexing capabilities by spectral deconvolution and undertook a proof-of-concept application to immunophenotype low-abundance cells; the demonstration consisted of immunophenotyping a model cell line, in this case SUP-B15 cells representing B-cell acute lymphoblastic leukemia (B-ALL). The B-ALL cell line was stained against a leukemic marker (terminal deoxynucleotidyl transferase, TdT), and we successfully used spectral unmixing to discriminate TdT(+) cells from TdT(-) cells even at low cell counts (∼100 cells). The TDI-SFC could potentially be used in any application requiring the immunophenotyping of low-abundance cells, such as in monitoring measurable residual disease in acute leukemias following affinity enrichment of circulating leukemia cells from peripheral blood.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-Scale Systems for Precision Medicine (CBM), University of Kansas, Lawrence, Kansas 66045, United States
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-Scale Systems for Precision Medicine (CBM), University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - J. Matt Jackson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-Scale Systems for Precision Medicine (CBM), University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
30
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
31
|
Campos CDM, Gamage SST, Jackson JM, Witek MA, Park DS, Murphy MC, Godwin AK, Soper SA. Microfluidic-based solid phase extraction of cell free DNA. LAB ON A CHIP 2018; 18:3459-3470. [PMID: 30339164 PMCID: PMC6391159 DOI: 10.1039/c8lc00716k] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell-free DNA (cfDNA) is a liquid biopsy marker that can carry signatures (i.e., mutations) associated with certain pathological conditions. Therefore, the extraction of cfDNA from a variety of clinical samples can be an effective and minimally invasive source of markers for disease detection and subsequent management. In the oncological diseases, circulating tumor DNA (ctDNA), a cfDNA sub-class, can carry clinically actionable mutations and coupled with next generation sequencing or other mutation detection methods provide a venue for effective in vitro diagnostics. However, cfDNA mutational analyses require high quality inputs. This necessitates extraction platforms that provide high recovery over the entire ctDNA size range (50 → 150 bp) with minimal interferences (i.e., co-extraction of genomic DNA), and high reproducibility with a simple workflow. Herein, we present a novel microfluidic solid-phase extraction device (μSPE) consisting of a plastic chip that is activated with UV/O3 to generate surface-confined carboxylic acid functionalities for the μSPE of cfDNA. The μSPE uses an immobilization buffer (IB) consisting of polyethylene glycol and salts that induce cfDNA condensation onto the activated plastic microfluidic surface. The μSPE consists of an array of micropillars to increase extraction bed load (scalable to loads >700 ng of cfDNA) and can be produced at low-cost using replication-based techniques. The entire μSPE can be fabricated in a single molding step negating the need for adding additional extraction supports to the device simplifying production and keeping device and assay cost low. The μSPE allowed for recoveries >90% of model cfDNA fragments across a range of sizes (100-700 bp) and even the ability to extract efficiently short cfDNA fragments (50 bp, >70%). In addition, the composition of the IB allowed for reducing the interference of co-extracted genomic DNA. We demonstrated the clinical utility of the μSPE by quantifying the levels of cfDNA in healthy donors and patients with non-small-cell lung and colorectal cancers. μSPE extracted cfDNA from plasma samples was also subjected to a ligase detection reaction (LDR) for determining the presence of mutations in the KRAS gene for colorectal and non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Camila D. M. Campos
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
| | - Sachindra S. T. Gamage
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
| | - Joshua M. Jackson
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
| | - Malgorzata A. Witek
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel S. Park
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Michael C. Murphy
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Andrew K. Godwin
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047, USA
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
32
|
Tang W, Jiang D, Li Z, Zhu L, Shi J, Yang J, Xiang N. Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis 2018; 40:930-954. [DOI: 10.1002/elps.201800361] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering; Nanjing Forestry University; P. R. China
| | - Zongan Li
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Liya Zhu
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jianping Shi
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jiquan Yang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Nan Xiang
- School of Mechanical Engineering; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; P. R. China
| |
Collapse
|
33
|
Ren X, Foster BM, Ghassemi P, Strobl JS, Kerr BA, Agah M. Entrapment of Prostate Cancer Circulating Tumor Cells with a Sequential Size-Based Microfluidic Chip. Anal Chem 2018; 90:7526-7534. [PMID: 29790741 PMCID: PMC6830444 DOI: 10.1021/acs.analchem.8b01134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are broadly accepted as an indicator for early cancer diagnosis and disease severity. However, there is currently no reliable method available to capture and enumerate all CTCs as most systems require either an initial CTC isolation or antibody-based capture for CTC enumeration. Many size-based CTC detection and isolation microfluidic platforms have been presented in the past few years. Here we describe a new size-based, multiple-row cancer cell entrapment device that captured LNCaP-C4-2 prostate cancer cells with >95% efficiency when in spiked mouse whole blood at ∼50 cells/mL. The capture ratio and capture limit on each row was optimized and it was determined that trapping chambers with five or six rows of micro constriction channels were needed to attain a capture ratio >95%. The device was operated under a constant pressure mode at the inlet for blood samples which created a uniform pressure differential across all the microchannels in this array. When the cancer cells deformed in the constriction channel, the blood flow temporarily slowed down. Once inside the trapping chamber, the cancer cells recovered their original shape after the deformation created by their passage through the constriction channel. The CTCs reached the cavity region of the trapping chamber, such that the blood flow in the constriction channel resumed. On the basis of this principle, the CTCs will be captured by this high-throughput entrapment chip (CTC-HTECH), thus confirming the potential for our CTC-HTECH to be used for early stage CTC enrichment and entrapment for clinical diagnosis using liquid biopsies.
Collapse
Affiliation(s)
- Xiang Ren
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brittni M. Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Parham Ghassemi
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jeannine S. Strobl
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bethany A. Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Masoud Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
34
|
Kamande JW, Lindell MAM, Witek MA, Voorhees PM, Soper SA. Isolation of circulating plasma cells from blood of patients diagnosed with clonal plasma cell disorders using cell selection microfluidics. Integr Biol (Camb) 2018; 10:82-91. [PMID: 29372735 PMCID: PMC5877822 DOI: 10.1039/c7ib00183e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blood samples from patients with plasma cell disorders were analysed for the presence of circulating plasma cells (CPCs) using a microfluidic device modified with monoclonal anti-CD138 antibodies. CPCs were immuno-phenotyped using a CD38/CD56/CD45 panel and identified in 78% of patients with monoclonal gammopathy of undetermined significance (MGUS), all patients with smouldering and symptomatic multiple myeloma (MM), and none in the controls. The burden of CPCs was higher in patients with symptomatic MM compared with MGUS and smouldering MM (p < 0.05). FISH analysis revealed the presence of chromosome 13 deletions in CPCs that correlated with bone marrow results. Point mutations in KRAS were identified, including different mutations from sub-clones derived from the same patient. The microfluidic assay represents a highly sensitive method for enumerating CPCs and allows for the cytogenetic and molecular characterization of CPCs.
Collapse
Affiliation(s)
- Joyce W Kamande
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
35
|
Lee TY, Han K, Barrett DO, Park S, Soper SA, Murphy MC. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules. SENSORS AND ACTUATORS. B, CHEMICAL 2018. [PMID: 29531428 PMCID: PMC5844477 DOI: 10.1016/j.snb.2017.07.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A method for the design, construction, and assembly of modular, polymer-based, microfluidic devices using simple micro-assembly technology was demonstrated to build an integrated fluidic system consisting of vertically stacked modules for carrying out multi-step molecular assays. As an example of the utility of the modular system, point mutation detection using the ligase detection reaction (LDR) following amplification by the polymerase chain reaction (PCR) was carried out. Fluid interconnects and standoffs ensured that temperatures in the vertically stacked reactors were within ± 0.2 C° at the center of the temperature zones and ± 1.1 C° overall. The vertical spacing between modules was confirmed using finite element models (ANSYS, Inc., Canonsburg, PA) to simulate the steady-state temperature distribution for the assembly. Passive alignment structures, including a hemispherical pin-in-hole, a hemispherical pin-in-slot, and a plate-plate lap joint, were developed using screw theory to enable accurate exactly constrained assembly of the microfluidic reactors, cover sheets, and fluid interconnects to facilitate the modular approach. The mean mismatch between the centers of adjacent through holes was 64 ± 7.7 μm, significantly reducing the dead volume necessary to accommodate manufacturing variation. The microfluidic components were easily assembled by hand and the assembly of several different configurations of microfluidic modules for executing the assay was evaluated. Temperatures were measured in the desired range in each reactor. The biochemical performance was comparable to that obtained with benchtop instruments, but took less than 45 min to execute, half the time.
Collapse
Affiliation(s)
- Tae Yoon Lee
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Bio-Modular Multi-Scale Systems for Precision Medicine
- Department of Technology Education and Department of Biomedical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Dwhyte O. Barrett
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Bio-Modular Multi-Scale Systems for Precision Medicine
| | - Sunggook Park
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Bio-Modular Multi-Scale Systems for Precision Medicine
| | - Steven A. Soper
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Bio-Modular Multi-Scale Systems for Precision Medicine
- Department of Mechanical Engineering and Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Michael C. Murphy
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Bio-Modular Multi-Scale Systems for Precision Medicine
- Correspondence: Dr. Michael C. Murphy; , Tel: 1-225-578-5921, Fax: 1-225-578-5924
| |
Collapse
|
36
|
Specific capture, recovery and culture of cancer cells using oriented antibody-modified polystyrene chips coated with agarose film. Colloids Surf B Biointerfaces 2017; 162:306-315. [PMID: 29220830 DOI: 10.1016/j.colsurfb.2017.11.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 01/10/2023]
Abstract
Agarose gel can be used for three dimensional (3D) cell culture because it prevents cell attachment. The dried agarose film coated on a culture plate also protected cell attachment and allowed 3D growth of cancer cells. We developed an efficient method for agarose film coating on an oxygen-plasma treated micropost polystyrene chip prepared by an injection molding process. The agarose film was modified to maleimide or Ni-NTA groups for covalent or cleavable attachment of photoactivatable Fc-specific antibody binding proteins (PFcBPs) via their N-terminal cysteine residues or 6xHis tag, respectively. The antibodies photocrosslinked onto the PFcBP-modified chips specifically captured the target cells without nonspecific binding, and the captured cells grew 3D modes on the chips. The captured cells on the cleavable antibody-modified chips were easily recovered by treatment of commercial trypsin-EDTA solution. Under fluidic conditions using an antibody-modified micropost chip, the cells were mainly captured on the micropost walls of the chip rather than on the bottom of it. The presented method will also be applicable for immobilization of oriented antibodies on various microfluidic chips with different structures.
Collapse
|
37
|
Caballero D, Kaushik S, Correlo V, Oliveira J, Reis R, Kundu S. Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials 2017; 149:98-115. [DOI: 10.1016/j.biomaterials.2017.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/09/2023]
|
38
|
Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. BIOMICROFLUIDICS 2017; 11:051502. [PMID: 29152025 PMCID: PMC5654984 DOI: 10.1063/1.4998604] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.
Collapse
Affiliation(s)
- Elif Gencturk
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
39
|
Witek MA, Aufforth RD, Wang H, Kamande JW, Jackson JM, Pullagurla SR, Hupert ML, Usary J, Wysham WZ, Hilliard D, Montgomery S, Bae-Jump V, Carey LA, Gehrig PA, Milowsky MI, Perou CM, Soper JT, Whang YE, Yeh JJ, Martin G, Soper SA. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. NPJ Precis Oncol 2017; 1. [PMID: 29657983 PMCID: PMC5871807 DOI: 10.1038/s41698-017-0028-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.
Collapse
Affiliation(s)
- Małgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA.,Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel D Aufforth
- Department of Surgery, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Wang
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joyce W Kamande
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua M Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Mateusz L Hupert
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA.,BioFluidica, Inc., c/o Carolina Kick-Start, 321 Bondurant Hall, Chapel Hill NC27599, USA
| | - Jerry Usary
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Weiya Z Wysham
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Dawud Hilliard
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Animal Histopathology Core, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie Montgomery
- Animal Histopathology Core, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Medicine, Division of Hematology and Oncology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paola A Gehrig
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - John T Soper
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jen Jen Yeh
- Department of Surgery, The University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pharmacology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Steven A Soper
- BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA.,Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047, USA.,Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
40
|
Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017; 46:4245-4280. [PMID: 28632258 PMCID: PMC5576189 DOI: 10.1039/c7cs00016b] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.
Collapse
|
41
|
Stassi S, Fantino E, Calmo R, Chiappone A, Gillono M, Scaiola D, Pirri CF, Ricciardi C, Chiadò A, Roppolo I. Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19193-19201. [PMID: 28530385 DOI: 10.1021/acsami.7b04030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.
Collapse
Affiliation(s)
- Stefano Stassi
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Erika Fantino
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Roberta Calmo
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Annalisa Chiappone
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy
| | - Matteo Gillono
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy
| | - Davide Scaiola
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy
| | - Carlo Ricciardi
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Ignazio Roppolo
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy
| |
Collapse
|
42
|
Carvalho RR, Pujari SP, Vrouwe EX, Zuilhof H. Mild and Selective C-H Activation of COC Microfluidic Channels Allowing Covalent Multifunctional Coatings. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16644-16650. [PMID: 28481097 PMCID: PMC5437660 DOI: 10.1021/acsami.7b02022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/01/2017] [Indexed: 05/21/2023]
Abstract
Plastics, such as cyclic olefin copolymer (COC), are becoming an increasingly popular material for microfluidics. COC is used, in part, because of its (bio)-chemical resistance. However, its inertness and hydrophobicity can be a major downside for many bioapplications. In this paper, we show the first example of a surface-bound selective C-H activation of COC into alcohol C-OH moieties under mild aqueous conditions at room temperature. The nucleophilic COC-OH surface allows for subsequent covalent attachments, such as of a H-terminated silane. The resulting hybrid material (COC-Si-H) was then modified via a photolithographic hydrosilylation in the presence of ω-functionalized 1-alkenes to form a new highly stable, solvent-resistant hybrid surface.
Collapse
Affiliation(s)
- Rui Rijo Carvalho
- Laboratory of Organic
Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Micronit Microtechnologies B.V., Colosseum 15, 7521 PV Enschede, The Netherlands
| | - Sidharam P. Pujari
- Laboratory of Organic
Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Elwin X. Vrouwe
- Micronit Microtechnologies B.V., Colosseum 15, 7521 PV Enschede, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic
Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of
Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, P.R. China
- Department of Chemical
and Materials Engineering, King Abdulaziz
University, Jeddah 23218, Saudi Arabia
- E-mail:
| |
Collapse
|
43
|
Chen T, Dong B, Chen K, Zhao F, Cheng X, Ma C, Lee S, Zhang P, Kang SH, Ha JW, Xu W, Fang N. Optical Super-Resolution Imaging of Surface Reactions. Chem Rev 2017; 117:7510-7537. [DOI: 10.1021/acs.chemrev.6b00673] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Chen
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Bin Dong
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kuangcai Chen
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Fei Zhao
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaodong Cheng
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Changbei Ma
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Seungah Lee
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Peng Zhang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seong Ho Kang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ji Won Ha
- Department
of Chemistry, University of Ulsan, 93 Dahak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| | - Weilin Xu
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Ning Fang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
44
|
Hong S, Park KS, Weissleder R, Castro CM, Lee H. Facile silicification of plastic surface for bioassays. Chem Commun (Camb) 2017; 53:2134-2137. [PMID: 28134385 PMCID: PMC5327824 DOI: 10.1039/c6cc09359k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We herein report a biomimetic technique to modify plastic substrates for bioassays. The method first places a polydopamine adhesion layer to plastic surface, and then grows conformal silica coating. As proof of principle, we coated plastic microbeads to construct a disposable filter for point-of-care nucleic acid extraction.
Collapse
Affiliation(s)
- Seonki Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ki Soo Park
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA and Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
45
|
Weerakoon-Ratnayake KM, O'Neil CE, Uba FI, Soper SA. Thermoplastic nanofluidic devices for biomedical applications. LAB ON A CHIP 2017; 17:362-381. [PMID: 28009883 PMCID: PMC5285477 DOI: 10.1039/c6lc01173j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microfluidics is now moving into a developmental stage where basic discoveries are being transitioned into the commercial sector so that these discoveries can affect, for example, healthcare. Thus, high production rate microfabrication technologies, such as thermal embossing and/or injection molding, are being used to produce low-cost consumables appropriate for commercial applications. Based on recent reports, it is clear that nanofluidics offers some attractive process capabilities that may provide unique venues for biomolecular analyses that cannot be realized at the microscale. Thus, it would be attractive to consider early in the developmental cycle of nanofluidics production pipelines that can generate devices possessing sub-150 nm dimensions in a high production mode and at low-cost to accommodate the commercialization of this exciting technology. Recently, functional sub-150 nm thermoplastic nanofluidic devices have been reported that can provide high process yield rates, which can enable commercial translation of nanofluidics. This review presents an overview of recent advancements in the fabrication, assembly, surface modification and the characterization of thermoplastic nanofluidic devices. Also, several examples in which nanoscale phenomena have been exploited for the analysis of biomolecules are highlighted. Lastly, some general conclusions and future outlooks are presented.
Collapse
Affiliation(s)
- Kumuditha M Weerakoon-Ratnayake
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA and NIH Biotechnology Resource Center of Biomodular Multiscale Systems for Precision Medicine, USA
| | - Colleen E O'Neil
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and NIH Biotechnology Resource Center of Biomodular Multiscale Systems for Precision Medicine, USA
| | - Franklin I Uba
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Steven A Soper
- Department of Chemistry and Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66047, USA. and Kansas University Medical Center NIH Cancer Center, Kansas City, KS 66106, USA and NIH Biotechnology Resource Center of Biomodular Multiscale Systems for Precision Medicine, USA and Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
46
|
Enrichment and Detection of Circulating Tumor Cells and Other Rare Cell Populations by Microfluidic Filtration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:119-131. [PMID: 28560671 DOI: 10.1007/978-3-319-55947-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current standard methods for isolating circulating tumor cells (CTCs) from blood involve EPCAM-based immunomagnetic approaches. A major disadvantage of these strategies is that CTCs with low EPCAM expression will be missed. Isolation by size using filter membranes circumvents the reliance on this cell surface marker, and can facilitate the capture not only of EPCAM-negative CTCs but other rare cells as well. These cells that are trapped on the filter membrane can be characterized by immunocytochemistry (ICC) , enumerated and profiled to elucidate their clinical significance. In this chapter, we discuss advances in filtration systems to capture rare cells as well as downstream ICC methods to detect and identify these cells. We highlight our recent clinical study demonstrating the feasibility of using a novel method consisting of automated microfluidic filtration and sequential ICC for detection and enumeration of CTCs, as well as circulating mesenchymal cells (CMCs), circulating endothelial cells (CECs), and putative circulating stem cells (CSCs). We hypothesize that simultaneous analysis of circulating rare cells in blood of cancer patients may lead to a better understanding of disease progression and development of resistance to therapy.
Collapse
|
47
|
O'Neil CE, Taylor S, Ratnayake K, Pullagurla S, Singh V, Soper SA. Characterization of activated cyclic olefin copolymer: effects of ethylene/norbornene content on the physiochemical properties. Analyst 2016; 141:6521-6532. [PMID: 27827488 PMCID: PMC5354357 DOI: 10.1039/c6an01448h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ethylene/norbornene content within cyclic olefin copolymer (COC) is well known to affect the chemical and physical properties of the copolymer, such as the glass transition temperature (Tg) and transparency. However, no work has been reported evaluating the effects of the ethylene/norbornene content on the surface properties of COC following UV/O3 or O2 plasma activation. Activation with either O2 plasma or UV/O3 is often used to assist in thermal assembly of fluidic devices, increasing the wettability of the surfaces, or generating functional scaffolds for the attachment of biological elements. Thus, we investigated differences in the physiochemical surface properties of various ethylene/norbornene compositions of COC following activation using analytical techniques such as water contact angle (WCA), ATR-FTIR, XPS, TOF-SIMS, UV-VIS, AFM and a colorimetric assay utilizing Toluidine Blue O (TBO). Results showed that increased norbornene content led to the generation of more oxygen containing functionalities such as alcohols, ketones, aldehydes and carboxyl groups when activated with either UV/O3 or O2 plasma. Specifically, COC with ∼60% norbornene content showed a significantly higher -COOH functional group density when compared to COC with a 50% norbornene content and COC with a 35% norbornene content following UV/O3 or O2 plasma activation. Furthermore, COC with large norbornene contents showed a smaller average RMS roughness (0.65 nm) when compared to COC containing low norbornene contents (0.95 nm) following activation making this substrate especially suited for nanofluidic applications, which require smooth surfaces to minimize effects arising from dielectrophoretic trapping or non-specific adsorption. Although all COC substrates showed >90% transparency at wavelengths >475 nm, COC possessing high norbornene contents showed significantly less transparency at wavelengths below 475 nm following activation, making optical detection in this region difficult. Our data showed distinct physiochemical differences in activated COC that was dependent upon the ethylene/norbornene content of the thermoplastic and thus, careful selection of the particular COC grade must be considered for micro- and nanofluidics.
Collapse
Affiliation(s)
- Colleen E O'Neil
- Department of Chemistry, the University of North Carolina at Chapel Hill, NC, USA
| | - Scott Taylor
- Department of Chemistry, the University of North Carolina at Chapel Hill, NC, USA
| | | | - Swathi Pullagurla
- Department of Chemistry, the University of Kansas, Lawrence, KS, USA. and Center for Biomodular Multiscale Systems for Precision Medicine, USA
| | - Varshni Singh
- Department of Biomedical Engineering, UNC, Chapel Hill, NC, USA
| | - Steven A Soper
- Department of Chemistry, the University of Kansas, Lawrence, KS, USA. and Center for Biomodular Multiscale Systems for Precision Medicine, USA and Department of Mechanical Engineering, the University of Kansas, Lawrence, KS, USA and Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
48
|
Nair SV, Witek MA, Jackson JM, Lindell MAM, Hunsucker SA, Sapp T, Perry CE, Hupert ML, Bae-Jump V, Gehrig PA, Wysham WZ, Armistead PM, Voorhees P, Soper SA. Enzymatic cleavage of uracil-containing single-stranded DNA linkers for the efficient release of affinity-selected circulating tumor cells. Chem Commun (Camb) 2016; 51:3266-9. [PMID: 25616078 DOI: 10.1039/c4cc09765c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report a novel strategy to enzymatically release affinity-selected cells, such as circulating tumor cells (CTCs), from surfaces with high efficiency (∼90%) while maintaining cell viability (>85%). The strategy utilizes single-stranded DNAs that link a capture antibody to the surfaces of a CTC selection device. The DNA linkers contain a uracil residue that can be cleaved.
Collapse
Affiliation(s)
- Soumya V Nair
- Department of Biomedical Engineering, UNC-Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
ONeil CE, Jackson JM, Shim SH, Soper SA. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy. Anal Chem 2016; 88:3686-96. [PMID: 26927303 DOI: 10.1021/acs.analchem.5b04472] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.
Collapse
Affiliation(s)
| | | | - Sang-Hee Shim
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, South Korea
| | - Steven A Soper
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, South Korea
| |
Collapse
|
50
|
Jackson JM, Taylor JB, Witek MA, Hunsucker SA, Waugh JP, Fedoriw Y, Shea TC, Soper SA, Armistead PM. Microfluidics for the detection of minimal residual disease in acute myeloid leukemia patients using circulating leukemic cells selected from blood. Analyst 2016; 141:640-51. [PMID: 26523411 PMCID: PMC4701594 DOI: 10.1039/c5an01836f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a highly sensitive microfluidic assay to detect minimal residual disease (MRD) in patients with acute myeloid leukemia (AML) that samples peripheral blood to search for circulating leukemic cells (CLCs). Antibodies immobilized within three separate microfluidic devices affinity-selected CLC subpopulations directly from peripheral blood without requiring pre-processing. The microfluidic devices targeted CD33, CD34, and CD117 cell surface antigens commonly expressed by AML leukemic cells so that each subpopulation's CLC numbers could be tracked to determine the onset of relapse. Staining against aberrant markers (e.g. CD7, CD56) identified low levels (11-2684 mL(-1)) of CLCs. The commonly used platforms for the detection of MRD for AML patients are multi-parameter flow cytometry (MFC), typically from highly invasive bone marrow biopsies, or PCR from blood samples, which is limited to <50% of AML patients. In contrast, the microfluidic assay is a highly sensitive blood test that permits frequent sampling for >90% of all AML patients using the markers selected for this study (selection markers CD33, CD34, CD117 and aberrant markers such as CD7 and CD56). We present data from AML patients after stem cell transplant (SCT) therapy using our assay. We observed high agreement of the microfluidic assay with therapeutic treatment and overall outcome. We could detect MRD at an earlier stage compared to both MFC and PCR directly from peripheral blood, obviating the need for a painful bone marrow biopsy. Using the microfluidic assay, we detected MRD 28 days following one patient's SCT and the onset of relapse at day 57, while PCR from a bone marrow biopsy did not detect MRD until day 85 for the same patient. Earlier detection of MRD in AML post-SCT enabled by peripheral blood sampling using the microfluidic assay we report herein can influence curative clinical decisions for AML patients.
Collapse
MESH Headings
- Animals
- Hematopoietic Stem Cell Transplantation
- Humans
- Lab-On-A-Chip Devices
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/surgery
- Neoplasm, Residual/blood
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/pathology
- Neoplastic Cells, Circulating/pathology
- Recurrence
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Joshua M Jackson
- Department of Chemistry, UNC-Chapel Hill, USA. and Center for Biomodular Multi-scale Systems for Precision Medicine, UNC-Chapel Hill, USA
| | - James B Taylor
- Department of Chemistry, UNC-Chapel Hill, USA. and Center for Biomodular Multi-scale Systems for Precision Medicine, UNC-Chapel Hill, USA
| | - Małgorzata A Witek
- Center for Biomodular Multi-scale Systems for Precision Medicine, UNC-Chapel Hill, USA and Department of Biomedical Engineering, UNC-Chapel Hill, USA
| | - Sally A Hunsucker
- University of North Carolina Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, USA.
| | | | - Yuri Fedoriw
- University of North Carolina Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, USA. and Department of Medicine, UNC-Chapel Hill, USA
| | | | - Steven A Soper
- Department of Chemistry, UNC-Chapel Hill, USA. and Center for Biomodular Multi-scale Systems for Precision Medicine, UNC-Chapel Hill, USA
| | - Paul M Armistead
- University of North Carolina Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, USA. and Department of Medicine, UNC-Chapel Hill, USA
| |
Collapse
|