1
|
Zhang C, Li T, Zhao Q, Ma R, Hong Z, Huang X, Gao P, Liu J, Zhao J, Wang Z. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404709. [PMID: 39082395 DOI: 10.1002/smll.202404709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Indexed: 11/02/2024]
Abstract
Liquid biopsy technology provides invaluable support for the early diagnosis of tumors and surveillance of disease course by detecting tumor-related biomarkers in bodily fluids. Currently, liquid biopsy techniques are mainly divided into two categories: biomarker and label-free. Biomarker liquid biopsy techniques utilize specific antibodies or probes to identify and isolate target cells, exosomes, or molecules, and these techniques are widely used in clinical practice. However, they have certain limitations including dependence on tumor markers, alterations in cell biological properties, and high cost. In contrast, label-free liquid biopsy techniques directly utilize physical or chemical properties of cells, exosomes, or molecules for detection and isolation. These techniques have the advantage of not needing labeling, not impacting downstream analysis, and low detection cost. However, most are still in the research stage and not yet mature. This review first discusses recent advances in liquid biopsy techniques for early tumor diagnosis and disease surveillance. Several current techniques are described in detail. These techniques exploit differences in biomarkers, size, density, deformability, electrical properties, and chemical composition in tumor components to achieve highly sensitive tumor component identification and separation. Finally, the current research progress is summarized and the future research directions of the field are discussed.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Qian Zhao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Rui Ma
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Jingjing Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
2
|
Su TC, Vu-Dinh H, Lin SH, Do Quang L, Chu Duc T, Jen CP. The effect of magnetic bead size on the isolation efficiency of lung cancer cells in a serpentine microchannel with added cavities. Biomed Microdevices 2024; 26:7. [PMID: 38175269 DOI: 10.1007/s10544-023-00689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
An investigation was conducted to examine the effect of magnetic bead (MB) size on the effectiveness of isolating lung cancer cells using the immunomagnetic separation (IMS) method in a serpentine microchannel with added cavities (SMAC) structure. Carboxylated magnetic beads were specifically conjugated to target cells through a modification procedure using aptamer materials. Cells immobilized with different sizes (in micrometers) of MBs were captured and isolated in the proposed device for comparison and analysis. The study yields significance regarding the clarification of device working principles by using a computational model. Furthermore, an accurate evaluation of the MB size impact on capture efficiency was achieved, including the issue of MB-cell accumulation at the inlet-channel interface, despite it being overlooked in many previous studies. As a result, our findings demonstrated an increasing trend in binding efficiency as the MB size decreased, evidenced by coverages of 50.5%, 60.1%, and 73.4% for sizes of 1.36 μm, 3.00 μm, and 4.50 μm, respectively. Additionally, the overall capture efficiency (without considering the inlet accumulation) was also higher for smaller MBs. However, when accounting for the actual number of cells entering the channel (i.e., the effective capture), larger MBs showed higher capture efficiency. The highest effective capture achieved was 88.4% for the size of 4.50 μm. This research provides an extensive insight into the impact of MB size on the performance of IMS-based devices and holds promise for the efficient separation of circulating cancer cells (CTCs) in practical applications.
Collapse
Affiliation(s)
- Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan, R.O.C
| | - Hien Vu-Dinh
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, 62102, Taiwan, R.O.C
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan, R.O.C
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 402, Taiwan, R.O.C
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan, R.O.C
| | - Loc Do Quang
- Faculty of Physics, University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Trinh Chu Duc
- Faculty of Electronics and Telecommunication, University of Engineering and Technology, Vietnam National University, Hanoi, 100000, Vietnam
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, 62102, Taiwan, R.O.C..
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, R.O.C..
| |
Collapse
|
3
|
Zhang X, Li B. Updates of liquid biopsy in oral cancer and multiomics analysis. Oral Dis 2023; 29:51-61. [PMID: 34716963 DOI: 10.1111/odi.14064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Liquid biopsy is a method sampled from body fluids, such as blood, saliva, urine, pleural effusion, cerebrospinal fluid, and so on. It is minimally invasive and reproducible and therefore can build a dynamic, real-time monitoring of oral squamous cell carcinoma patient's conditions and treatment responses. Circulating tumor cells, circulating tumor DNA and exosomes are three main detection objects of liquid biopsy, having different detection methods and features involving cost, sensitivity, specificity and output. Blood and saliva are the options of liquid biopsy in oral cancer. Then we reviewed the studies of liquid biopsy in oral cancer, integrating multiomics analysis of these results. The multiomics analysis of genomics, transcriptomics, proteomics, metabolomics, and DNA methylation have shown potential for the early screening, diagnosis, staging, prognosis, personalized medicine therapy, and monitoring of recurrence (minimal residual disease). Besides, we concluded some problems to be solved, such as the lack of the standard of the measurement methods and procedures of samples, the insufficient connection among different omics, and how to improve the sensitivity and specificity. And we also put up rough assumptions to these problems. However, the analysis of multiomics of liquid biopsy in oral cancer still shows great clinical value in the diagnosis and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xinning Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Binbin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| |
Collapse
|
4
|
Linh ND, Huyen NTT, Dang NH, Piro B, Thi Thu V. Electrochemical interface based on polydopamine and gold nanoparticles/reduced graphene oxide for impedimetric detection of lung cancer cells †. RSC Adv 2023; 13:10082-10089. [PMID: 37006357 PMCID: PMC10052696 DOI: 10.1039/d3ra00793f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The use of non-invasive approaches for monitoring therapy processes in cancer patients at late stages is truly needed. In this work, we aim to develop an electrochemical interface based on polydopamine combined with gold nanoparticles and reduced graphene oxide for impedimetric detection of lung cancer cells. Gold nanoparticles (around 75 nm) were dispersed onto reduced graphene oxide material pre-electrodeposited onto disposable fluorine doped tin oxide electrodes. The coordination between gold and carbonaceous material has somehow improved the mechanical stability of this electrochemical interface. Polydopamine was later introduced onto modified electrodes via self-polymerization of dopamine in an alkaline solution. The result has demonstrated the good adhesion and biocompatibility of polydopamine towards A-549 lung cancer cells. The presence of the two conductive materials (gold nanoparticles and reduced graphene oxide) has led to a six-times decrease in charge transfer resistance of polydopamine film. Finally, the as-prepared electrochemical interface was employed for impedimetric detection of A-549 cells. The detection limit was estimated to be only 2 cells per mL. These findings have proved the possibilities to use advanced electrochemical interfaces for point-of-care applications. Non-invasive approaches for monitoring therapy processes in cancer patients at late stages is truly needed.![]()
Collapse
Affiliation(s)
- Nguyen Dieu Linh
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)18 Hoang Quoc Viet, Cau GiayHanoiVietnam
| | - Nguyen Thi Trang Huyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)18 Hoang Quoc Viet, Cau GiayHanoiVietnam
| | - Nguyen Hai Dang
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)18 Hoang Quoc Viet, Cau GiayHanoiVietnam
| | - Benoit Piro
- Université Paris Cité, ITODYS, CNRSUMR 7086, 15 Rue J.-A. de BaïfParisF-75013 France
| | - Vu Thi Thu
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)18 Hoang Quoc Viet, Cau GiayHanoiVietnam
| |
Collapse
|
5
|
Kajani AA, Rafiee L, Samandari M, Mehrgardi MA, Zarrin B, Javanmard SH. Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device. RSC Adv 2022; 12:32834-32843. [PMID: 36425208 PMCID: PMC9667373 DOI: 10.1039/d2ra05930d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Facile and sensitive detection and isolation of circulating tumor cells (CTCs) was achieved using the aptamer-targeted magnetic nanoparticles (Apt-MNPs) in conjugation with a microfluidic device. Apt-MNPs were developed by the covalent attachment of anti-MUC1 aptamer to the silica-coated magnetic nanoparticles via the glutaraldehyde linkers. Apt-MNPs displayed high stability and functionality after 6 months of storage at 4 °C. The specific microfluidic device consisting of mixing, sorting and separation modules was fabricated through conventional photo- and soft-lithography by using polydimethylsiloxane. The capture efficiency of Apt-MNPs was first studied in vitro on MCF-7 and MDA-MB-231 cancer cell lines in the bulk and microfluidic platforms. The cell capture yields of more than 91% were obtained at the optimum condition after 60 minutes of exposure to 50 μg mL-1 Apt-MNPs with 10 to 106 cancer cells in different media. CTCs were also isolated efficiently from the blood samples of breast cancer patients and successfully propagated in vitro. The isolated CTCs were further characterized using immunofluorescence staining. The overall results indicated the high potential of the present method for the detection and capture of CTCs.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Mohamadmahdi Samandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
- Department of Biomedical Engineering, University of Connecticut Farmington CT 06030 USA
| | | | - Bahare Zarrin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| |
Collapse
|
6
|
Zhang S, Wang Y, Yang C, Zhu J, Ye X, Wang W. On-chip circulating tumor cells isolation based on membrane filtration and immuno-magnetic bead clump capture. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0009560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Yue Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Chaoqiang Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Chen X, Ding H, Zhang D, Zhao K, Gao J, Lin B, Huang C, Song Y, Zhao G, Ma Y, Wu L, Yang C. Reversible Immunoaffinity Interface Enables Dynamic Manipulation of Trapping Force for Accumulated Capture and Efficient Release of Circulating Rare Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102070. [PMID: 34473422 PMCID: PMC8529431 DOI: 10.1002/advs.202102070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Indexed: 05/04/2023]
Abstract
Controllable assembly and disassembly of recognition interface are vital for bioanalysis. Herein, a strategy of dynamic manipulation of trapping force by engineering a dynamic and reversible immunoaffinity microinterface (DynarFace) in a herringbone chip (DynarFace-Chip) for liquid biopsy is proposed. The DynarFace is assembled by magnetically attracting immunomagnetic beads (IMBs) on chip substrate, with merits of convenient operation and reversible assembly. The DynarFace allows accumulating attachment of IMBs on circulating rare cell (CRC) surfaces during hydrodynamically enhanced interface collision, where accumulatively enhanced magnetic trapping force improves capture efficiency toward CRCs with medium expression of biomarkers from blood samples by 134.81% compared with traditional non-dynamic interfaces. Moreover, magnet withdrawing-induced disappearance of trapping force affords DynarFace disassembly and CRC release with high efficiency (>98%) and high viability (≈98%), compatible with downstream in vitro culture and gene analysis of CRCs. This DynarFace strategy opens a new avenue to accumulated capture and reversible release of CRCs, holding great potential for liquid biopsy-based precision medicine.
Collapse
Affiliation(s)
- Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Hongming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary ResearchSchool of Physical Science and TechnologySoochow UniversitySuzhou215021China
| | - Dongdong Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Kaifeng Zhao
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jiafeng Gao
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Bingqian Lin
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Chen Huang
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Gang Zhao
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210046China
| | - Lingling Wu
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationThe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Institute of Molecular MedicineState Key Laboratory of Oncogenes and Related GenesRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| |
Collapse
|
8
|
Stevens M, Liu P, Niessink T, Mentink A, Abelmann L, Terstappen L. Optimal Halbach Configuration for Flow-through Immunomagnetic CTC Enrichment. Diagnostics (Basel) 2021; 11:1020. [PMID: 34199434 PMCID: PMC8229094 DOI: 10.3390/diagnostics11061020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Due to the low frequency of circulating tumor cells (CTC), the standard CellSearch method of enumeration and isolation using a single tube of blood is insufficient to measure treatment effects consistently, or to steer personalized therapy. Using diagnostic leukapheresis this sample size can be increased; however, this also calls for a suitable new method to process larger sample inputs. In order to achieve this, we have optimized the immunomagnetic enrichment process using a flow-through magnetophoretic system. An overview of the major forces involved in magnetophoretic separation is provided and the model used for optimizing the magnetic configuration in flow through immunomagnetic enrichment is presented. The optimal Halbach array element size was calculated and both optimal and non-optimal arrays were built and tested using anti-EpCAM ferrofluid in combination with cell lines of varying EpCAM antigen expression. Experimentally measured distributions of the magnetic moment of the cell lines used for comparison were combined with predicted recoveries and fit to the experimental data. Resulting predictions agree with measured data within measurement uncertainty. The presented method can be used not only to optimize magnetophoretic separation using a variety of flow configurations but could also be adapted to optimize other (static) magnetic separation techniques.
Collapse
Affiliation(s)
- Michiel Stevens
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
| | - Peng Liu
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands
| | - Tom Niessink
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
| | - Anouk Mentink
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
| | - Leon Abelmann
- KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany;
- MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Leon Terstappen
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlands; (P.L.); (T.N.); (A.M.); (L.T.)
| |
Collapse
|
9
|
Li X, Zhou Y, Wickramaratne B, Yang Y, Pappas D. A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells. Biomed Microdevices 2021; 23:28. [PMID: 33909118 DOI: 10.1007/s10544-021-00566-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic, flow cytometry, and immunomagnetic methods for cancer cell isolation have heavily relied on the Epithelial Cellular Adhesion Molecule (EpCAM) for affinity separation. While EpCAM has been used extensively for circulating tumor cell isolation, it cannot be used to isolate non-epithelial cells. The human transferrin receptor (CD71) can also be used for cancer cell isolation and has the advantage that as an affinity target it can separate virtually any cancer cell type, regardless of disease origin. However, direct comparison of the capture ability of EpCAM and CD71 has not been reported previously. In this work, cell capture with both EpCAM and CD71 were studied using a novel higher-throughput herringbone cell separation microfluidic device. Five separation chip models were designed and the one with the highest capture efficiency (average 90 ± 10%) was chosen to compare antigen targets for cell capture. Multiple cancer cell lines including CCRF-CEM, PC-3 and MDA-MB-231 were tested for cell capture performance using both ligands (anti-CD71 and anti-EpCAM) in the optimized chip design. PC-3 and MDA-MB-231 cells were spiked into blood at concentrations ranging from 0.5%-10%. PC-3 cells were separated by anti-CD71 and anti-EpCAM with 32-37% and 31-50% capture purity respectively, while MDA-MB-231 were separated with 35-53% and 33-56% capture purity using anti-CD71 and anti-EpCAM for all concentrations. The enrichment factor for the lowest concentrations of cells in blood ranged from 66-74X. The resulting enrichment of cancer cells shows that anti-CD71 was found to be statistically similar to anti-EpCAM for epithelial cancer cells, while anti-CD71 can be further used for non-epithelial cells, where anti-EpCAM cannot be used.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yun Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bhagya Wickramaratne
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yijia Yang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
10
|
Shen MJ, Olsthoorn RC, Zeng Y, Bakkum T, Kros A, Boyle AL. Magnetic-Activated Cell Sorting Using Coiled-Coil Peptides: An Alternative Strategy for Isolating Cells with High Efficiency and Specificity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11621-11630. [PMID: 33656313 PMCID: PMC7975280 DOI: 10.1021/acsami.0c22185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Magnetic-activated cell sorting (MACS) is an affinity-based technique used to separate cells according to the presence of specific markers. Current MACS systems generally require an antigen to be expressed at the cell surface; these antigen-presenting cells subsequently interact with antibody-labeled magnetic particles, facilitating separation. Here, we present an alternative MACS method based on coiled-coil peptide interactions. We demonstrate that HeLa, CHO, and NIH3T3 cells can either incorporate a lipid-modified coiled-coil-forming peptide into their membrane, or that the cells can be transfected with a plasmid containing a gene encoding a coiled-coil-forming peptide. Iron oxide particles are functionalized with the complementary peptide and, upon incubation with the cells, labeled cells are facilely separated from nonlabeled populations. In addition, the resulting cells and particles can be treated with trypsin to facilitate detachment of the cells from the particles. Therefore, our new MACS method promotes efficient cell sorting of different cell lines, without the need for antigen presentation, and enables simple detachment of the magnetic particles from cells after the sorting process. Such a system can be applied to rapidly developing, sensitive research areas, such as the separation of genetically modified cells from their unmodified counterparts.
Collapse
Affiliation(s)
- Meng-Jie Shen
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - René C.L. Olsthoorn
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Ye Zeng
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Thomas Bakkum
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Aimee L. Boyle
- Department
of Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
11
|
Mekkaoui S, Descamps L, Audry MC, Deman AL, Le Roy D. Nanonewton Magnetophoretic Microtrap Array for Microsystems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14546-14553. [PMID: 33237778 DOI: 10.1021/acs.langmuir.0c02254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here we report on the development of a lab-on-chip that integrates a dense array of micrometer-sized magnetic traps, with each individual trap generating a magnetic force as high as a few nN on standard superparamagnetic beads. The composite materials embedding traps are prepared from the microstructural engineering of a mixture between iron microparticles and polydimethylsiloxane. This approach breaks with standard microfabrication technologies: it is inexpensive, relatively easy to implement, and offers the ability to modulate the magnetic properties of the composites on a customized basis. The magnetic forces acting on the superparamagnetic beads have been measured following two approaches: first, on-chip through the hydrodynamic determination of the holding magnetic force, simultaneously on a large population of traps; and second, ex situ, by atomic force microscopy equipped with a colloidal probe, on individual traps. The experimental results have been compared with calculations from finite element modeling. Despite the geometrical simplification of the modeled system, both experiments and calculations give consistent values of force, ranging from 0.5 to 5 nN. These findings show that in operando determination of forces is a robust method that gives a high throughput overview of the forces acting in the device. It further demonstrates that the use of such functional composite materials can be a relevant alternative to standard microfabrication technologies, as it leads to competitive magnetophoretic performances.
Collapse
Affiliation(s)
- Samir Mekkaoui
- Université Lyon, Université Claude Bernard Lyon1, Institut des Nanotechnologies de Lyon INL, UMR CNRS 5270, F-69622 Villeurbanne, France
| | - Lucie Descamps
- Université Lyon, Université Claude Bernard Lyon1, Institut des Nanotechnologies de Lyon INL, UMR CNRS 5270, F-69622 Villeurbanne, France
| | - Marie-Charlotte Audry
- Université Lyon, Université Claude Bernard Lyon1, Institut des Nanotechnologies de Lyon INL, UMR CNRS 5270, F-69622 Villeurbanne, France
| | - Anne-Laure Deman
- Université Lyon, Université Claude Bernard Lyon1, Institut des Nanotechnologies de Lyon INL, UMR CNRS 5270, F-69622 Villeurbanne, France
| | - Damien Le Roy
- Université Lyon, Université Claude Bernard Lyon1, Institut Lumière Matière ILM, UMR CNRS 5306, F-69622 Villeurbanne, France
| |
Collapse
|
12
|
Liu P, Jonkheijm P, Terstappen LWMM, Stevens M. Magnetic Particles for CTC Enrichment. Cancers (Basel) 2020; 12:cancers12123525. [PMID: 33255978 PMCID: PMC7760229 DOI: 10.3390/cancers12123525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the enrichment of very rare cells, such as Circulating Tumor Cells (CTCs), immunomagnetic enrichment is frequently used. For this purpose, magnetic nanoparticles (MNPs) coated with specific antibodies directed against cancer cells are used. In this review, we look at the properties such a particle needs to have in order to be used successfully, and describe the different methods used in the production of such a particle as well as the methods for their separation. Additionally, an overview is given of the antibodies that could potentially be used for this purpose. Abstract Here, we review the characteristics and synthesis of magnetic nanoparticles (MNPs) and place these in the context of their usage in the immunomagnetic enrichment of Circulating Tumor Cells (CTCs). The importance of the different characteristics is explained, the need for a very specific enrichment is emphasized and different (commercial) magnetic separation techniques are shown. As the specificity of an MNP is in a large part dependent on the antibody coated onto the particle, different strategies in the coupling of specific antibodies as well as an overview of the available antibodies is given.
Collapse
Affiliation(s)
- Peng Liu
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Pascal Jonkheijm
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Leon W. M. M. Terstappen
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
| | - Michiel Stevens
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
- Correspondence: ; Tel.: +31-53-489-4101
| |
Collapse
|
13
|
Dudaie M, Nissim N, Barnea I, Gerling T, Duschl C, Kirschbaum M, Shaked NT. Label-free discrimination and selection of cancer cells from blood during flow using holography-induced dielectrophoresis. JOURNAL OF BIOPHOTONICS 2020; 13:e202000151. [PMID: 32700785 DOI: 10.1002/jbio.202000151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023]
Abstract
We present a method for label-free imaging and sorting of cancer cells in blood, which is based on a dielectrophoretic microfluidic chip and label-free interferometric phase microscopy. The chip used for imaging has been embedded with dielectrophoretic electrodes, and therefore it can be used to sort the cells based on the decisions obtained during the cell flow by the label-free quantitative imaging method. Hence, we obtained a real-time, automatic, label-free imaging flow cytometry with the ability to sort the cells during flow. To validate our model, we combined into the label-free imaging interferometer a fluorescence imaging channel that indicated the correctness of the label-free sorting. We have achieved above 98% classification success and 69% sorting accuracy at flow rates of 4 to 7 μL hr-1 . In the future, this method is expected to help in label-free sorting of circulating tumor cells in blood following an initial state-of-the-art cell enrichment.
Collapse
Affiliation(s)
- Matan Dudaie
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Noga Nissim
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Itay Barnea
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Gerling
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Potsdam, Germany
| | - Claus Duschl
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Potsdam, Germany
| | - Michael Kirschbaum
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Potsdam, Germany
| | - Natan T Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Saei A, Asfia S, Kouchakzadeh H, Rahmandoust M. Antibody‐modified magnetic nanoparticles as specific high‐efficient cell‐separation agents. J Biomed Mater Res B Appl Biomater 2020; 108:2633-2642. [DOI: 10.1002/jbm.b.34595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/09/2020] [Accepted: 02/22/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Arezoo Saei
- Protein Research Center, Shahid Beheshti University Tehran Iran
| | - Shima Asfia
- Protein Research Center, Shahid Beheshti University Tehran Iran
| | | | | |
Collapse
|
15
|
Zhou Y, Dong Z, Andarge H, Li W, Pappas D. Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation. Analyst 2020; 145:257-267. [DOI: 10.1039/c9an01719d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a nanoparticle surface modification approach to improve the microfluidic performance in detecting cancer cells. Multiple cancer cell lines were included in this work, and the capture ability of the chip with surface modification reached a significant increase.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Ziye Dong
- Department of Chemical Engineering
- Texas Tech University
- Lubbock
- USA
| | - Hermella Andarge
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Wei Li
- Department of Chemical Engineering
- Texas Tech University
- Lubbock
- USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
16
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
17
|
Abstract
Microfluidics is an emerging field in diagnostics that allows for extremely precise fluid control and manipulation, enabling rapid and high-throughput sample processing in integrated micro-scale medical systems. These platforms are well-suited for both standard clinical settings and point-of-care applications. The unique features of microfluidics-based platforms make them attractive for early disease diagnosis and real-time monitoring of the disease and therapeutic efficacy. In this chapter, we will first provide a background on microfluidic fundamentals, microfluidic fabrication technologies, microfluidic reactors, and microfluidic total-analysis-systems. Next, we will move into a discussion on the clinical applications of existing and emerging microfluidic platforms for blood analysis, and for diagnosis and monitoring of cancer and infectious disease. Together, this chapter should elucidate the potential that microfluidic systems have in the development of effective diagnostic technologies through a review of existing technologies and promising directions.
Collapse
Affiliation(s)
- Alison Burklund
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States; Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.
| |
Collapse
|
18
|
Chu CH, Liu R, Ozkaya-Ahmadov T, Boya M, Swain BE, Owens JM, Burentugs E, Bilen MA, McDonald JF, Sarioglu AF. Hybrid negative enrichment of circulating tumor cells from whole blood in a 3D-printed monolithic device. LAB ON A CHIP 2019; 19:3427-3437. [PMID: 31553343 DOI: 10.1039/c9lc00575g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Isolation and analysis of circulating tumor cells (CTCs) from blood samples present exciting opportunities for basic cancer research and personalized treatment of the disease. While microchip-based negative CTC enrichment offers both sensitive microfluidic cell screening and unbiased selection, conventional microchips are inherently limited by their capacity to deplete a large number of normal blood cells. In this paper, we use 3D printing to create a monolithic device that combines immunoaffinity-based microfluidic cell capture and a commercial membrane filter for negative enrichment of CTCs directly from whole blood. In our device, stacked layers of chemically-functionalized microfluidic channels capture millions of white blood cells (WBCs) in parallel without getting saturated and the leuko-depleted blood is post-filtered with a 3 μm-pore size membrane filter to eliminate anucleated blood cells. This hybrid negative enrichment approach facilitated direct extraction of viable CTCs off the chip on a membrane filter for downstream analysis. Immunofluorescence imaging of enriched cells showed ∼90% tumor cell recovery rate from simulated samples spiked with prostate, breast or ovarian cancer cells. We also demonstrated the feasibility of our approach for processing clinical samples by isolating prostate cancer CTCs directly from a 10 mL whole blood sample.
Collapse
Affiliation(s)
- Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Su Y, Tian Q, Pan D, Hui L, Chen Y, Zhang Q, Tian W, Yu J, Hu S, Gao Y, Qian D, Xie T, Wang B. Antibody-Functional Microsphere-Integrated Filter Chip with Inertial Microflow for Size-Immune-Capturing and Digital Detection of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29569-29578. [PMID: 31361117 DOI: 10.1021/acsami.9b09655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circulating tumor cells (CTCs) in blood is the direct cause of tumor metastasis. The isolation and detection of CTCs in the whole blood is very important and of clinical value in early diagnosis, postoperative review, and personalized treatment. It is difficult to separate all types of CTCs that efficiently rely on a single path due to cancer cell heterogenicity. Here, we designed a new kind of "filter chip" for the retention of CTCs with very high efficiency by integrating the effects of cell size and specific antigens on the surface of tumor cells. The filter chip consists of a semicircle arc and arrays and can separate large-scale CTC microspheres, which combined with CTCs automatically. We synthesized interfacial zinc oxide coating with nanostructure on the surface of the microsphere to increase the specific surface area to enhance the capturing efficiency of CTCs. Microspheres, trapped in the arrays, would entrap CTCs, too. The combination of the three kinds of strategies resulted in more than 90% capture efficiency of different tumor cell lines. Furthermore, it is easy to find and isolate the circulating tumor cells from the chip as tumor cells would be fixed inside the structure of a filter chip. To avoid the high background contamination when a few CTCs are surrounded by millions of nontarget cells, a digital detection method was applied to improve the detection sensitivity. The CTCs in the whole blood were specifically labeled by the antibody-DNA conjugates and detected via the DNA of the conjugates with a signal amplification. The strategy of the antibody-functional microsphere-integrated microchip for cell sorting and detection of CTCs may find broad implications that favor the fundamental cancer biology research, the precise diagnosis, and monitoring of cancer in the clinics.
Collapse
Affiliation(s)
- Yi Su
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
| | - Qingchang Tian
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
- Department of Medical Oncology, Holistic Integrative Oncology Institute and Holistic Integrative Pharmacy Institute, The Affiliated Hospital of Hangzhou Normal University, College of Medicine , Hangzhou Normal University , Hangzhou 311100 , China
| | - Dingyi Pan
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics , Zhejiang University , Hangzhou 310027 , China
| | - Lanlan Hui
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
| | - Yanni Chen
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | | | - Jie Yu
- Hangzhou Watson Biotech. Inc. , Hangzhou 310051 , China
| | | | | | - Dahong Qian
- School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , China
| | - Tian Xie
- Department of Medical Oncology, Holistic Integrative Oncology Institute and Holistic Integrative Pharmacy Institute, The Affiliated Hospital of Hangzhou Normal University, College of Medicine , Hangzhou Normal University , Hangzhou 311100 , China
| | - Ben Wang
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
| |
Collapse
|
20
|
|
21
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
22
|
Rapid prototyping of Nanoroughened polydimethylsiloxane surfaces for the enhancement of immunomagnetic isolation and recovery of rare tumor cells. Biomed Microdevices 2019; 21:58. [PMID: 31227909 DOI: 10.1007/s10544-019-0418-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Traditional immunomagnetic assays for the isolation and recovery of circulating tumor cells (CTCs) usually require sophisticated device or intense magnetic field to simultaneously achieve high capture efficiency and high throughout. In this study, a simple microfluidic chip featured with nanoroughened channel substrate was developed for effectively capture and release of CTCs based on an immunomagnetic chip-based approach. The nanoroughened substrate aims to increase the cell-surface contact area, facilitate the immobilization of magnet particles (MPs) and accommodate cell attachment tendency. Hep3B tumor cells were firstly conjugated with MPs that were functionalized with anti-EpCAM. Comparing with the flat channel, MPs modified tumor cells can be more effectively captured on nanoroughened substrate at the presence of the magnetic field. Upon the removal of magnetic field, these captured cells can be released from the device and collected for further analysis. Under the optimum operating conditions, the capture efficiency of tumor cells was obtained as high as ~90% with a detection limit of 10 cell per mL. Additionally, recovery rates of trapped tumor cells at various densities all exceeded 90% and their biological potencies were well retained by investigating the cell attachment and proliferation. Therefore, the present approach may potentially be used in clinical CTC analysis for cancer diagnosis and prognosis as well as the fundamental understanding of tumor metastasis.
Collapse
|
23
|
Ribeiro-Samy S, Oliveira MI, Pereira-Veiga T, Muinelo-Romay L, Carvalho S, Gaspar J, Freitas PP, López-López R, Costa C, Diéguez L. Fast and efficient microfluidic cell filter for isolation of circulating tumor cells from unprocessed whole blood of colorectal cancer patients. Sci Rep 2019; 9:8032. [PMID: 31142796 PMCID: PMC6541613 DOI: 10.1038/s41598-019-44401-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy offers unique opportunities for low invasive diagnosis, real-time patient monitoring and treatment selection. The phenotypic and molecular profile of circulating tumor cells (CTCs) can provide key information about the biology of tumor cells, contributing to personalized therapy. CTC isolation is still challenging, mainly due to their heterogeneity and rarity. To overcome this limitation, a microfluidic chip for label-free isolation of CTCs from peripheral blood was developed. This device, the CROSS chip, captures CTCs based on their size and deformability with an efficiency of 70%. Using 2 chips, 7.5 ml of whole blood are processed in 47 minutes with high purity, as compared to similar technologies and assessed by in situ immunofluorescence. The CROSS chip performance was compared to the CellSearch system in a set of metastatic colorectal cancer patients, resulting in higher capture of DAPI+/CK+/CD45- CTCs in all individuals tested. Importantly, CTC enumeration by CROSS chip enabled stratification of patients with different prognosis. Lastly, cells isolated in the CROSS chip were lysed and further subjected to molecular characterization by droplet digital PCR, which revealed a mutation in the APC gene for most patient samples analyzed, confirming their colorectal origin and the versatility of the technology for downstream applications.
Collapse
Affiliation(s)
- Silvina Ribeiro-Samy
- Department of Life Sciences, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Marta I Oliveira
- Department of Life Sciences, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Thais Pereira-Veiga
- Roche-CHUS Joint Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Sandra Carvalho
- Department of Life Sciences, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - João Gaspar
- Department of Micro and Nanofabrication, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Paulo P Freitas
- Department of Nanoelectronics Engineering, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Rafael López-López
- Roche-CHUS Joint Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Clotilde Costa
- Roche-CHUS Joint Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain.
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.
| | - Lorena Diéguez
- Department of Life Sciences, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
24
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019. [PMID: 31263514 DOI: 10.1063/1.5119052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
25
|
Li F, Xu H, Sun P, Hu Z, Aguilar ZP. Size effects of magnetic beads in circulating tumour cells magnetic capture based on streptavidin-biotin complexation. IET Nanobiotechnol 2019; 13:6-11. [PMID: 30964030 PMCID: PMC8675959 DOI: 10.1049/iet-nbt.2018.5104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/09/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2024] Open
Abstract
Circulating tumour cells (CTCs) draw significant attention as a promising biomarker for cancer prognosis, status monitoring, and metastasis diagnosis. However, the concentration of CTCs in peripheral blood is usually extremely low, thereby requiring enrichment followed by isolation of CTCs prior to detection. An immunomagnetic separation is a promising tool for CTCs enrichment. In this study, a cost-effective magnetic separation method, based on streptavidin-biotin complexation, was developed and the effects of magnetic beads' size in CTCs capture were compared. Magnetic nanobeads which were 25 nm in diameter lead to highest capture efficiency (82.2%) compared with 150 nm magnetic beads and 1 µm microbeads. Based on the streptavidin-biotin system, 25 nm magnetic nanobeads could capture model CTCs over 80% efficiency even at concentrations as low as ∼25 cells/mL that may represent the actual level of CTCs in peripheral blood of cancer patients. Furthermore, the isolated cells remained robust and healthy showing insignificant changes in morphology and behaviour when cultured for 24 h immediately after capture and isolation. The magnetic nanobeads based on streptavidin-biotin complexation showed promise for the easy and efficient capture and isolation of healthy CTCs for further diagnosis and analysis.
Collapse
Affiliation(s)
- Fulai Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, People's Republic of China.
| | - Pingfeng Sun
- The Obstetrics and Gynecology Department of Second Affiliated Hospital of Nanchang University, Nanchang University, 2 Min De Road, Nanchang 330006, People's Republic of China
| | - Zhibin Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, People's Republic of China
| | | |
Collapse
|
26
|
Liu N, Petchakup C, Tay HM, Li KHH, Hou HW. Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Hao N, Nie Y, Tadimety A, Shen T, Zhang JX. Microfluidics-enabled rapid manufacturing of hierarchical silica-magnetic microflower toward enhanced circulating tumor cell screening. Biomater Sci 2018; 6:3121-3125. [PMID: 30375583 PMCID: PMC6246810 DOI: 10.1039/c8bm00851e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The emergence of microfluidic techniques provides new opportunities for chemical synthesis and biomedical applications. Herein, we first develop a microfluidics-based flow and sustainable strategy to synthesize hierarchical silica-magnetic microflower with unique multilayered structure for the efficient capture of circulating tumor cells through our engineered microfluidic screening chip. The production of microflower materials can be realized within 94 milliseconds and a yield of nearly 5 grams per hour can be achieved. The enhanced bioaccessibility of such a multilayered microflower towards cancer cells (MCF-7 and MDA-MB-231) is demonstrated, and the cancer cell capture efficiency of this hierarchical immunomagnetic system in clinical blood samples is significantly increased compared with a standard CellSearch™ assay. These findings bring new insights for engineering functional micro-/nanomaterials in liquid biopsy.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Ting Shen
- NanoLite Systems, 1521 Concord Pike, Wilmington, DE 19803, United States
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| |
Collapse
|
28
|
Hao N, Nie Y, Shen T, Zhang JXJ. Microfluidics-enabled rational design of immunomagnetic nanomaterials and their shape effect on liquid biopsy. LAB ON A CHIP 2018; 18:1997-2002. [PMID: 29923569 PMCID: PMC6071334 DOI: 10.1039/c8lc00273h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microfluidics brings unique opportunities for the synthesis of nanomaterials toward efficient liquid biopsy. Herein, we developed the microreactor-enabled flow synthesis of immunomagnetic nanomaterials with controllable shapes (sphere, cube, rod, and belt) by simply tuning the flow rates. The particle shape-dependent screening efficiency of circulating tumor cells was first investigated and compared with commercial ferrofluids, providing new insights into the rational design of a particulate system toward the screening and analysis of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
29
|
Binary-blend fibber-based capture assay of circulating tumor cells for clinical diagnosis of colorectal cancer. J Nanobiotechnology 2018; 16:4. [PMID: 29338768 PMCID: PMC5769517 DOI: 10.1186/s12951-017-0330-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
Background In addition to conventional approaches, detecting and characterizing CTCs in patient blood allows for early diagnosis of cancer metastasis. Methods We blended poly(ethylene oxide) (PEO) into nylon-6 through electrospinning to generate a fibrous matbased circulating tumour cells (CTCs) assay. The contents of nylon-6 and PEO in the electrospun blend fibrous mats (EBFMs) were optimized to facilitate high cell-substrate affinity and low leukocyte adsorption. Results Compared with the IsoFlux System, a commercial instrument for CTC detection, the CTC assay of EBFMs exhibited lower false positive readings and high sensitivity and selectivity with preclinical specimens. Furthermore, we examined the clinical diagnosis accuracy of colorectal cancer, using the CTC assay and compared the results with those identified through pathological analyses of biopsies from colonoscopies. Our positive expressions of colorectal cancer through CTC detection completely matched those recognized through the pathological analyses for the individuals having stage II, III, and IV colorectal cancer. Nevertheless, two in four individuals having stage I colorectal cancer, recognized through pathological analysis of biopsies from colonoscopies, exhibited positive expression of CTCs. Ten individuals were identified through pathological analysis as having no colorectal tumours. Nevertheless, two of these ten individuals exhibited positive expression of CTCs. Conclusions Thus, in this population, the low cost EBFMs exhibited considerable capture efficiency for the non-invasive diagnosis of colorectal cancer.
Collapse
|
30
|
Huang Q, Wang Y, Chen X, Wang Y, Li Z, Du S, Wang L, Chen S. Nanotechnology-Based Strategies for Early Cancer Diagnosis Using Circulating Tumor Cells as a Liquid Biopsy. Nanotheranostics 2018; 2:21-41. [PMID: 29291161 PMCID: PMC5743836 DOI: 10.7150/ntno.22091] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from a primary tumor and circulate in the bloodstream. As a form of “tumor liquid biopsy”, CTCs provide important information for the mechanistic investigation of cancer metastasis and the measurement of tumor genotype evolution during treatment and disease progression. However, the extremely low abundance of CTCs in the peripheral blood and the heterogeneity of CTCs make their isolation and characterization major technological challenges. Recently, nanotechnologies have been developed for sensitive CTC detection; such technologies will enable better cell and molecular characterization and open up a wide range of clinical applications, including early disease detection and evaluation of treatment response and disease progression. In this review, we summarize the nanotechnology-based strategies for CTC isolation, including representative nanomaterials (such as magnetic nanoparticles, gold nanoparticles, silicon nanopillars, nanowires, nanopillars, carbon nanotubes, dendrimers, quantum dots, and graphene oxide) and microfluidic chip technologies that incorporate nanoroughened surfaces and discuss their key challenges and perspectives in CTC downstream analyses, such as protein expression and genetic mutations that may reflect tumor aggressiveness and patient outcome.
Collapse
Affiliation(s)
- Qinqin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xingxiang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
31
|
Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron 2017; 98:494-506. [DOI: 10.1016/j.bios.2017.07.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
32
|
Hosseini A, Philpott DN, Soleymani L. Enrichment of magnetic particles using temperature and magnetic field gradients induced by benchtop fabricated micro-electromagnets. LAB ON A CHIP 2017; 17:4097-4104. [PMID: 29076512 DOI: 10.1039/c7lc00825b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The active transport of analytes inside biosensing systems is important for reducing the response time and enhancing the limit-of-detection of these systems. Due to the ease of functionalization with bio-recognition agents and manipulation with magnetic fields, magnetic particles are widely used for active and directed transport of biological analytes. On-chip active electromagnets are ideally suited for manipulating magnetic particles in an automated and miniaturized fashion inside biosensing systems. Unfortunately, the magnetic force exerted by these devices decays rapidly as we move away from the device edges, and increasing the generated force to the levels necessary for particle manipulation requires a parallel increase in the applied current and the resultant Joule heating. In this paper, we designed a study to understand the combined role of thermal and magnetic forces on the movement of magnetic particles in order to extend the interaction distance of on-chip magnetic devices beyond the device edges. For this purpose, we used a rapid prototyping method to create an active/passive on-chip electromagnet with a micro/nano-structured active layer and a patterned ferromagnetic passive layer. We demonstrated that the measured terminal velocities of particles positioned near the electromagnet edge (∼5.5 μm) closely reflect the values obtained by multi-physics modelling. Interestingly, we observed a two orders of magnitude deviation between the experimental and modelling results for the terminal velocities of particles far from the electromagnet edge (∼55.5 μm). Heat modelling of the system using experimentally-measured thermal gradients indicates that this discrepancy is related to the enhanced fluid movement caused by thermal forces. This study enables the rational design of thermo-magnetic systems for thermally driving and magnetically capturing particles that are positioned at distances tens to hundreds of microns away from the edges of on-chip magnetic devices.
Collapse
Affiliation(s)
- A Hosseini
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | | | | |
Collapse
|
33
|
Suh YS, Joung JY, Kim SH, Seo HK, Chung J, Lee KH. Establishment and Application of Prostate Cancer Circulating Tumor Cells in the Era of Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7206307. [PMID: 29230413 PMCID: PMC5694577 DOI: 10.1155/2017/7206307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/27/2017] [Indexed: 11/17/2022]
Abstract
Prostate cancer (PC) is the second most common cancer in men and is the fifth leading cause of cancer-related deaths worldwide. Additionally, there is concern for overdiagnosis and overtreatment of PC. Thus, selection of an appropriate candidate for active surveillance as well as more accurate and less invasive tools for monitoring advanced PC is required. Circulating tumor cells (CTCs) have emerged as a liquid biopsy tool; there have been several reports on its role, technologies, and applications to various cancers, including PC. Liquid biopsy using CTCs has been gaining attention as a minimal invasive tool for investigation of biomarkers and for prognosis and assessment of response to therapies in patients with PC. Because of the lower invasiveness of liquid biopsy using CTCs, it can be performed more frequently; accordingly, personalized disease status can be successively determined at serial time points. CTC analysis enables detection of genomic alterations, which is drug-targetable, and it is a potential tool for monitoring response to therapeutic agents in patients with PC. This review focuses on the characteristics, technologies for analysis, and advantages and disadvantages of CTCs as a liquid biopsy tool and their application in PC. Finally, we propose future directions of CTCs.
Collapse
Affiliation(s)
- Yoon Seok Suh
- Center for Prostate Cancer, Hospital, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Jae Young Joung
- Center for Prostate Cancer, Hospital, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Sung Han Kim
- Center for Prostate Cancer, Hospital, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Ho Kyung Seo
- Center for Prostate Cancer, Hospital, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Jinsoo Chung
- Center for Prostate Cancer, Hospital, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Kang Hyun Lee
- Center for Prostate Cancer, Hospital, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| |
Collapse
|
34
|
Zhang Y, Lyons V, Pappas D. Fundamentals of affinity cell separations. Electrophoresis 2017; 39:732-741. [PMID: 28960354 DOI: 10.1002/elps.201700311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 12/17/2022]
Abstract
Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Veronica Lyons
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
35
|
Xu H, Dong B, Xu S, Xu S, Sun X, Sun J, Yang Y, Xu L, Bai X, Zhang S, Yin Z, Song H. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites. Biomaterials 2017; 138:69-79. [PMID: 28554009 DOI: 10.1016/j.biomaterials.2017.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/13/2017] [Accepted: 05/21/2017] [Indexed: 01/12/2023]
|
36
|
Kruspe S, Dickey DD, Urak KT, Blanco GN, Miller MJ, Clark KC, Burghardt E, Gutierrez WR, Phadke SD, Kamboj S, Ginader T, Smith BJ, Grimm SK, Schappet J, Ozer H, Thomas A, McNamara JO, Chan CH, Giangrande PH. Rapid and Sensitive Detection of Breast Cancer Cells in Patient Blood with Nuclease-Activated Probe Technology. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:542-557. [PMID: 28918054 PMCID: PMC5577414 DOI: 10.1016/j.omtn.2017.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
A challenge for circulating tumor cell (CTC)-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1) their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2) their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers.
Collapse
Affiliation(s)
- Sven Kruspe
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - David D Dickey
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin T Urak
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Giselle N Blanco
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew J Miller
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Karen C Clark
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Elliot Burghardt
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Wade R Gutierrez
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Sneha D Phadke
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Sukriti Kamboj
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Timothy Ginader
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Sarah K Grimm
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - James Schappet
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Howard Ozer
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexandra Thomas
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Department of Hematology & Oncology, Wake Forest, Winston Salem, NC, USA
| | - James O McNamara
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Carlos H Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Surgery, University of Iowa, Iowa City, IA, USA.
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA; Environmental Health Sciences Research Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
37
|
Li W, Zhang Y, Reynolds CP, Pappas D. Microfluidic Separation of Lymphoblasts for the Isolation of Acute Lymphoblastic Leukemia Using the Human Transferrin Receptor as a Capture Target. Anal Chem 2017; 89:7340-7347. [DOI: 10.1021/acs.analchem.7b00377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjie Li
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Ye Zhang
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - C. Patrick Reynolds
- Cancer Center, Departments of Cell Biology & Biochemistry, Pediatrics, Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas 79430, United States
| | - Dimitri Pappas
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
38
|
Hao N, Zhang JX. Microfluidic Screening of Circulating Tumor Biomarkers toward Liquid Biopsy. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1320763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
39
|
In situ single cell detection via microfluidic magnetic bead assay. PLoS One 2017; 12:e0172697. [PMID: 28222140 PMCID: PMC5319813 DOI: 10.1371/journal.pone.0172697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/08/2017] [Indexed: 01/13/2023] Open
Abstract
We present a single cell detection device based on magnetic bead assay and micro Coulter counters. This device consists of two successive micro Coulter counters, coupled with a high gradient magnetic field generated by an external magnet. The device can identify single cells in terms of the transit time difference of the cell through the two micro Coulter counters. Target cells are conjugated with magnetic beads via specific antibody and antigen binding. A target cell traveling through the two Coulter counters interacts with the magnetic field, and have a longer transit time at the 1st counter than that at the 2nd counter. In comparison, a non-target cell has no interaction with the magnetic field, and hence has nearly the same transit times through the two counters. Each cell passing through the two counters generates two consecutive voltage pulses one after the other; the pulse widths and magnitudes indicating the cell’s transit times through the counters and the cell’s size respectively. Thus, by measuring the pulse widths (transit times) of each cell through the two counters, each single target cell can be differentiated from non-target cells even if they have similar sizes. We experimentally proved that the target human umbilical vein endothelial cells (HUVECs) and non-target rat adipose-derived stem cells (rASCs) have significant different transit time distribution, from which we can determine the recognition regions for both cell groups quantitatively. We further demonstrated that within a mixed cell population of rASCs and HUVECs, HUVECs can be detected in situ and the measured HUVECs ratios agree well with the pre-set ratios. With the simple device structure and easy sample preparation, this method is expected to enable single cell detection in a continuous flow and can be applied to facilitate general cell detection applications such as stem cell identification and enumeration.
Collapse
|
40
|
Ming Y, Li Y, Xing H, Luo M, Li Z, Chen J, Mo J, Shi S. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection. Front Pharmacol 2017; 8:35. [PMID: 28203204 PMCID: PMC5285331 DOI: 10.3389/fphar.2017.00035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells with stem-cell properties are regarded as tumor initiating cells. Sharing stem-cell properties, circulating tumor cells (CTCs) are responsible for the development of metastasis, which significant affects CTC analysis in clinical practice. Due to their extremely low occurrence in blood, however, it is challenging to enumerate and analyze CTCs. Nanotechnology is able to address the problems of insufficient capture efficiency and low purity of CTCs owing to the unique structural and functional properties of nanomaterials, showing strong promise for CTC isolation and detection. In this review, we discuss the role of stem-like CTCs in metastases, provide insight into recent progress in CTC isolation and detection approaches using various nanoplatforms, and highlight the role of nanotechnology in the advancement of CTC research.
Collapse
Affiliation(s)
- Yue Ming
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Yuanyuan Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Haiyan Xing
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Minghe Luo
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Sanjun Shi
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| |
Collapse
|
41
|
Lin R, Li Y, MacDonald T, Wu H, Provenzale J, Peng X, Huang J, Wang L, Wang AY, Yang J, Mao H. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 2017; 150:261-270. [PMID: 28029547 PMCID: PMC5253252 DOI: 10.1016/j.colsurfb.2016.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/29/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023]
Abstract
Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×105 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads®).
Collapse
Affiliation(s)
- Run Lin
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tobey MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Provenzale
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xingui Peng
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Radiology, The Medical College of Southeastern University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Jianyong Yang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
42
|
Tadimety A, Syed A, Nie Y, Long CR, Kready KM, Zhang JXJ. Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis. Integr Biol (Camb) 2017; 9:22-49. [DOI: 10.1039/c6ib00202a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amogha Tadimety
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - Abeer Syed
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - Yuan Nie
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - Christina R. Long
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - Kasia M. Kready
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - John X. J. Zhang
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
- Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon NH, 03766, USA
| |
Collapse
|
43
|
Abstract
Microfluidics has been undergoing fast development in the past two decades due to its promising applications in biotechnology, medicine, and chemistry. Towards these applications, enhancing concentration sensitivity and detection resolution are indispensable to meet the detection limits because of the dilute sample concentrations, ultra-small sample volumes and short detection lengths in microfluidic devices. A variety of microfluidic techniques for concentrating analytes have been developed. This article presents an overview of analyte concentration techniques in microfluidics. We focus on discussing the physical mechanism of each concentration technique with its representative advancements and applications. Finally, the article is concluded by highlighting and discussing advantages and disadvantages of the reviewed techniques.
Collapse
Affiliation(s)
- Cunlu Zhao
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (C.Z.); (C.Y.); Tel.: +86-29-8266-3222 (C.Z.); +65-6790-4883 (C.Y.)
| | - Zhengwei Ge
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
- Correspondence: (C.Z.); (C.Y.); Tel.: +86-29-8266-3222 (C.Z.); +65-6790-4883 (C.Y.)
| |
Collapse
|
44
|
Immunomagnetic separation of tumor initiating cells by screening two surface markers. Sci Rep 2017; 7:40632. [PMID: 28074882 PMCID: PMC5225414 DOI: 10.1038/srep40632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
Isolating tumor initiating cells (TICs) often requires screening of multiple surface markers, sometimes with opposite preferences. This creates a challenge for using bead-based immunomagnetic separation (IMS) that typically enriches cells based on one abundant marker. Here, we propose a new strategy that allows isolation of CD44+/CD24− TICs by IMS involving both magnetic beads coated by anti-CD44 antibody and nonmagnetic beads coated by anti-CD24 antibody (referred to as two-bead IMS). Cells enriched with our approach showed significant enhancement in TIC marker expression (examined by flow cytometry) and improved tumorsphere formation efficiency. Our method will extend the application of IMS to cell subsets characterized by multiple markers.
Collapse
|
45
|
Huang L, Bian S, Cheng Y, Shi G, Liu P, Ye X, Wang W. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. BIOMICROFLUIDICS 2017; 11:011501. [PMID: 28217240 PMCID: PMC5303167 DOI: 10.1063/1.4975666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 05/03/2023]
Abstract
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation-high-efficiency cell enrichment and precise single cell capture-have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Shengtai Bian
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Guanya Shi
- Department of Automotive Engineering, Tsinghua University , Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| |
Collapse
|
46
|
Wu J, Wei X, Gan J, Huang L, Shen T, Lou J, Liu B, Zhang JX, Qian K. Multifunctional Magnetic Particles for Combined Circulating Tumor Cells Isolation and Cellular Metabolism Detection. ADVANCED FUNCTIONAL MATERIALS 2016; 26:4016-4025. [PMID: 27524958 PMCID: PMC4978350 DOI: 10.1002/adfm.201504184] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We for the first time demonstrate multi-functional magnetic particles based rare cell isolation combined with the downstream laser desorption/ionization mass spectrometry (LDI-MS) to measure the metabolism of enriched circulating tumor cells (CTCs). The characterization of CTCs metabolism plays a significant role in understanding the tumor microenvironment, through exploring the diverse cellular process. However, characterizing cell metabolism is still challenging due to the low detection sensitivity, high sample complexity, and tedious preparation procedures, particularly for rare cells analysis in clinical study. Here we conjugate ferric oxide magnetic particles with anti-EpCAM on the surface for specific, efficient enrichment of CTCs from PBS and whole blood with cells concentration of 6-100 cells per mL. Moreover, these hydrophilic particles as matrix enable sensitive and selective LDI-MS detection of small metabolites (MW<500 Da) in complex bio-mixtures and can be further coupled with isotopic quantification to monitor selected molecules metabolism of ~50 CTCs. Our unique approach couples the immunomagnetic separation of CTCs and LDI-MS based metabolic analysis, which represents a key step forward for downstream metabolites analysis of rare cells to investigate the biological features of CTCs and their cellular responses in both pathological and physiological phenomena.
Collapse
Affiliation(s)
- Jiao Wu
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiang Wei
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinrui Gan
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lin Huang
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ting Shen
- NanoLite Systems, Austin, TX 78795, USA
| | - Jiatao Lou
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Baohong Liu
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, NH 03755, USA
| | - Kun Qian
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
47
|
Del Ben F, Turetta M, Celetti G, Piruska A, Bulfoni M, Cesselli D, Huck WTS, Scoles G. A Method for Detecting Circulating Tumor Cells Based on the Measurement of Single-Cell Metabolism in Droplet-Based Microfluidics. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fabio Del Ben
- Graduate School of Nanotechnology; University of Trieste; Via Valerio 2 Trieste Italy
- Dept. of Clinical Pathology; CRO Aviano; Via F. Gallini 2 33081 Aviano, PN Italy
| | - Matteo Turetta
- Institute of Anatomic Pathology; Dept. of Medical and Biological Sciences; Azienda Ospedaliero-Universitaria di Udine; 33100 Udine Italy
| | - Giorgia Celetti
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Aigars Piruska
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Michela Bulfoni
- Institute of Anatomic Pathology; Dept. of Medical and Biological Sciences; Azienda Ospedaliero-Universitaria di Udine; 33100 Udine Italy
| | - Daniela Cesselli
- Institute of Anatomic Pathology; Dept. of Medical and Biological Sciences; Azienda Ospedaliero-Universitaria di Udine; 33100 Udine Italy
| | - Wilhelm T. S. Huck
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Giacinto Scoles
- Institute of Anatomic Pathology; Dept. of Medical and Biological Sciences; Azienda Ospedaliero-Universitaria di Udine; 33100 Udine Italy
| |
Collapse
|
48
|
Del Ben F, Turetta M, Celetti G, Piruska A, Bulfoni M, Cesselli D, Huck WTS, Scoles G. A Method for Detecting Circulating Tumor Cells Based on the Measurement of Single-Cell Metabolism in Droplet-Based Microfluidics. Angew Chem Int Ed Engl 2016; 55:8581-4. [DOI: 10.1002/anie.201602328] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/01/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Fabio Del Ben
- Graduate School of Nanotechnology; University of Trieste; Via Valerio 2 Trieste Italy
- Dept. of Clinical Pathology; CRO Aviano; Via F. Gallini 2 33081 Aviano, PN Italy
| | - Matteo Turetta
- Institute of Anatomic Pathology; Dept. of Medical and Biological Sciences; Azienda Ospedaliero-Universitaria di Udine; 33100 Udine Italy
| | - Giorgia Celetti
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Aigars Piruska
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Michela Bulfoni
- Institute of Anatomic Pathology; Dept. of Medical and Biological Sciences; Azienda Ospedaliero-Universitaria di Udine; 33100 Udine Italy
| | - Daniela Cesselli
- Institute of Anatomic Pathology; Dept. of Medical and Biological Sciences; Azienda Ospedaliero-Universitaria di Udine; 33100 Udine Italy
| | - Wilhelm T. S. Huck
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Giacinto Scoles
- Institute of Anatomic Pathology; Dept. of Medical and Biological Sciences; Azienda Ospedaliero-Universitaria di Udine; 33100 Udine Italy
| |
Collapse
|
49
|
Chen P, Huang YY, Bhave G, Hoshino K, Zhang X. Inkjet-Print Micromagnet Array on Glass Slides for Immunomagnetic Enrichment of Circulating Tumor Cells. Ann Biomed Eng 2016; 44:1710-20. [PMID: 26289942 PMCID: PMC4761332 DOI: 10.1007/s10439-015-1427-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022]
Abstract
We report an inkjet-printed microscale magnetic structure that can be integrated on regular glass slides for the immunomagnetic screening of rare circulating tumor cells (CTCs). CTCs detach from the primary tumor site, circulate with the bloodstream, and initiate the cancer metastasis process. Therefore, a liquid biopsy in the form of capturing and analyzing CTCs may provide key information for cancer prognosis and diagnosis. Inkjet printing technology provides a non-contact, layer-by-layer and mask-less approach to deposit defined magnetic patterns on an arbitrary substrate. Such thin film patterns, when placed in an external magnetic field, significantly enhance the attractive force in the near-field close to the CTCs to facilitate the separation. We demonstrated the efficacy of the inkjet-print micromagnet array integrated immunomagnetic assay in separating COLO205 (human colorectal cancer cell line) from whole blood samples. The micromagnets increased the capture efficiency by 26% compared with using plain glass slide as the substrate.
Collapse
Affiliation(s)
- Peng Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu-Yen Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Gauri Bhave
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiaojing Zhang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
50
|
Boken J, Soni SK, Kumar D. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications. Crit Rev Anal Chem 2016; 46:538-61. [DOI: 10.1080/10408347.2016.1169912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|