1
|
Singh B, Kashyap S, Singh S, Gupta S, Ghorai MK. Catalytic Aminium Radical-Cation Salt (Magic Blue)-Initiated S N2-Type Nucleophilic Ring-Opening Transformations of Aziridines. J Org Chem 2024; 89:2247-2263. [PMID: 38323416 DOI: 10.1021/acs.joc.3c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A simple and atom economic protocol for the construction of C-X/C-C bonds via catalytic aminium radical-cation salt (Magic Blue)-initiated SN2-type nucleophilic ring-opening transformations of racemic and nonracemic aziridines with different hetero and carbon nucleophiles to afford various amino ethers, thioethers, and amines in up to 99% yield, and with perfect enantiospecificity for some substrates but reduced ee with others (for nonracemic aziridines), is developed. This aminium radical-cation salt-initiated, SN2-type nucleophilic ring-opening strategy, along with various cyclization protocols, is employed to synthesize various biologically significant compounds.
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Suraj Kashyap
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Shishir Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Sikha Gupta
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
2
|
Rajni, Versha, Singh L, Rana R, Bendi A. Chemistry of Quinoline Based Heterocycle Scaffolds: A Comprehensive Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202203648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajni
- Department of Chemistry Faculty of Science SGT University Gurugram 122505 Haryana India
| | - Versha
- Department of Chemistry Baba Masthnath University Rohtak 124001 Haryana India
| | - Lakhwinder Singh
- Department of Chemistry Faculty of Science SGT University Gurugram 122505 Haryana India
| | - Ravi Rana
- Department of Chemistry Baba Masthnath University Rohtak 124001 Haryana India
| | - Anjaneyulu Bendi
- Department of Chemistry Faculty of Science SGT University Gurugram 122505 Haryana India
| |
Collapse
|
3
|
Mittersteiner M, Pereira GS, Wessjohann LA, Bonacorso HG, Martins MAP, Zanatta N. Chemoselective O-Alkylation of 4-(Trifluoromethyl)pyrimidin-2(1 H)-ones Using 4-(Iodomethyl)pyrimidines. ACS OMEGA 2022; 7:18930-18939. [PMID: 35694463 PMCID: PMC9178747 DOI: 10.1021/acsomega.2c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 06/09/2023]
Abstract
This study reports two strategies for preparing O-alkyl derivatives of 6-substituted-4-(trifluoromethyl)pyrimidin-(1H)-ones: a linear protocol of alkylation, using a CCC-building block followed by [3 + 3]-type cyclocondensation with 2-methylisothiourea sulfate and a convergent protocol based on direct alkylation, using 4-(iodomethyl)-2-(methylthio)-6-(trihalomethyl)pyrimidines. It was found that the cyclocondensation strategy is not feasible; thus, the direct chemoselective O-alkylation was performed, and 18 derivatives of the targeted pyrimidines were obtained in 70-98% yields. The structure of the products was unambiguously determined via single crystal X-ray analyses and two-dimensional nuclear magnetic resonance experiments.
Collapse
Affiliation(s)
- Mateus Mittersteiner
- Núcleo
de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa
Maria, RS, Brazil
- Department
of Bioorganic Chemistry, Leibniz-Institute
of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Genilson S. Pereira
- Núcleo
de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa
Maria, RS, Brazil
| | - Ludger A. Wessjohann
- Department
of Bioorganic Chemistry, Leibniz-Institute
of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Helio G. Bonacorso
- Núcleo
de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa
Maria, RS, Brazil
| | - Marcos A. P. Martins
- Núcleo
de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa
Maria, RS, Brazil
| | - Nilo Zanatta
- Núcleo
de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa
Maria, RS, Brazil
| |
Collapse
|
4
|
Mittersteiner M, Pereira GS, Silva Y, Wessjohann LA, Bonacorso HG, Martins MAP, Zanatta N. Substituent-Driven Selective N-/ O-Alkylation of 4-(Trihalomethyl)pyrimidin-2(1 H)-ones Using Brominated Enones. J Org Chem 2022; 87:4590-4602. [DOI: 10.1021/acs.joc.1c02919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Genilson S. Pereira
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Yuri Silva
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
5
|
Saini M, Das R, Mehta DK, Chauhan S. Styrylquinolines Derivatives: SAR study and Synthetic Approaches. Med Chem 2022; 18:859-870. [DOI: 10.2174/1573406418666220214085856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
In the present-day scenario, heterocyclic derivatives have revealed the primary function of various medicinal agents precious for humanity. Out of a diverse range of heterocycles, Styrylquinolines scaffolds have been proved to play an essential role in a broad range of biological activities, includinganti-HIV-1, antimicrobial, anti-inflammatory, anti-Alzheimer activity with antiproliferative effects on tumor cell lines.
Due to the immense pharmacological importance, distinct synthetic methods have been executed to attain new drug entities from Styrylquinolines. Various schemes for synthesizing Styrylquinolines derivatives like one-pot, ultrasound-promoted heterogeneous acid-catalysed, microwave-assisted, solvent-free, and green synthesis were discussed in the present review. Some products of Styrylquinolines are in clinical trials, and patents are also granted for the novel synthesis of Styrylquinolines. According to the structure-activity relationship, replacement at the R-7 and R-8 positions is required for various activities.
In this review, recent synthetic approaches in the medicinal chemistry of Styrylquinolines and potent Styrylquinolines derivatives based on structural activity relationships (SAR) are outlined. Moreover, their primary methods and modifications are also discussed.
Collapse
Affiliation(s)
- Monika Saini
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Rina Das
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Dinesh Kumar Mehta
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Samrat Chauhan
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| |
Collapse
|
6
|
Mittersteiner M, Farias FFS, Bonacorso HG, Martins MAP, Zanatta N. Ultrasound-assisted synthesis of pyrimidines and their fused derivatives: A review. ULTRASONICS SONOCHEMISTRY 2021; 79:105683. [PMID: 34562732 PMCID: PMC8473776 DOI: 10.1016/j.ultsonch.2021.105683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 06/09/2023]
Abstract
The pyrimidine scaffold is present in many bioactive drugs; therefore, efficient synthetic routes that provide shorter reaction times, higher yields, and site-selective reactions are constantly being sought. Ultrasound (US) irradiation has emerged as an alternative energy source in the synthesis of these heterocyclic scaffolds, and over the last ten years there has been a significant increase in the number of publications mentioning US in either the construction or derivatization of the pyrimidine core. This review presents a detailed summary (with 140 references) of the effects of US (synergic or not) on the construction and derivatization of the pyrimidine core through classical reactions (e.g., multicomponent, cyclocondensation, cycloaddition, and alkylation reactions). The main points that were taken into consideration are as follows: chemo- and regioselectivity issues, and the results of conventional heating methods compared to US and mechanistic insights that are also presented and discussed for key reactions.
Collapse
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| | - Fellipe F S Farias
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| |
Collapse
|
7
|
Xu J, Li Y, Ding T, Guo H. Metal-Free Chemoselective Oxidation of 4-Methylquinolines into Quinoline-4-Carbaldehydes. Chem Asian J 2021; 16:3114-3117. [PMID: 34472705 DOI: 10.1002/asia.202100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/17/2021] [Indexed: 11/09/2022]
Abstract
A convenient protocol for the synthesis of quinoline-4-carbaldehydes via chemoselective oxidation of 4-methylquinolines using hypervalent iodine(III) reagents as oxidant is described. This method highlights metal-free and mild reaction conditions, nice yield, good functional group tolerance, and high chemoselectivity.
Collapse
Affiliation(s)
- Jincheng Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R China
| | - Yang Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R China
| | - Tianling Ding
- Department of Hematology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, P. R China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R China
| |
Collapse
|
8
|
Matada BS, Pattanashettar R, Yernale NG. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg Med Chem 2020; 32:115973. [PMID: 33444846 DOI: 10.1016/j.bmc.2020.115973] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Amongst heterocyclic compounds, quinoline is an advantaged scaffold that appears as a significant assembly motif for the development of new drug entities. Quinoline and its derivatives tested with diverse biological activity constitute an important class of compounds for new drug development. Therefore, many scientific communities have developed these compounds as intent structure and evaluated their biological activities. The present, review provides brief natural sources of quinoline and including a new extent of quinoline-based marketed drugs. This review also confers information about the biological activities of quinoline derivatives such as antibacterial, antifungal, antimycobacterial, antiviral, anti-protozoal, antimalarial, anticancer, cardiovascular, CNS effects, antioxidant, anticonvulsant, analgesic, anti-inflammatory, anthelmintic and miscellaneous activities.
Collapse
Affiliation(s)
| | | | - Nagesh Gunavanthrao Yernale
- Department of Chemistry, Guru Nanak First Grade Science, Commerce and Post Graduate College, Bidar 585 403, Karnataka, India.
| |
Collapse
|
9
|
Van de Walle T, Boone M, Van Puyvelde J, Combrinck J, Smith PJ, Chibale K, Mangelinckx S, D'hooghe M. Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents. Eur J Med Chem 2020; 198:112330. [PMID: 32408064 PMCID: PMC7294232 DOI: 10.1016/j.ejmech.2020.112330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 01/09/2023]
Abstract
The parasitic disease malaria places almost half of the world's population at risk of infection and is responsible for more than 400,000 deaths each year. The first-line treatment, artemisinin combination therapies (ACT) regimen, is under threat due to emerging resistance of Plasmodium falciparum strains in e.g. the Mekong delta. Therefore, the development of new antimalarial agents is crucial in order to circumvent the growing resistance. Chloroquine, the long-established antimalarial drug, still serves as model compound for the design of new quinoline analogues, resulting in numerous new active derivatives against chloroquine-resistant P. falciparum strains over the past twenty years. In this work, a set of functionalized quinoline analogues, decorated with a modified piperidine-containing side chain, was synthesized. Both amino- and (aminomethyl)quinolines were prepared, resulting in a total of 18 novel quinoline-piperidine conjugates representing four different chemical series. Evaluation of their in vitro antiplasmodium activity against a CQ-sensitive (NF54) and a CQ-resistant (K1) strain of P. falciparum unveiled highly potent activities in the nanomolar range against both strains for five 4-aminoquinoline derivatives. Moreover, no cytotoxicity was observed for all active compounds at the maximum concentration tested. These five new aminoquinoline hit structures are therefore of considerable value for antimalarial research and have the potency to be transformed into novel antimalarial agents upon further hit-to-lead optimization studies.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Maya Boone
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Julie Van Puyvelde
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jill Combrinck
- Division of Clinical Pharmacology, Department of Medicine, Medical School, University of Cape Town, K45, OMB, Groote Schuur Hospital, Observatory, 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, South Africa
| | - Peter J Smith
- Division of Clinical Pharmacology, Department of Medicine, Medical School, University of Cape Town, K45, OMB, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Kelly Chibale
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
10
|
Sharma M, Prasher P. An epigrammatic status of the ' azole'-based antimalarial drugs. RSC Med Chem 2020; 11:184-211. [PMID: 33479627 PMCID: PMC7536834 DOI: 10.1039/c9md00479c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
The development of multidrug resistance in the malarial parasite has sabotaged majority of the eradication efforts by restraining the inhibition profile of first line as well as second line antimalarial drugs, thus necessitating the development of novel pharmaceutics constructed on appropriate scaffolds with superior potency against the drug-resistant and drug-susceptible Plasmodium parasite. Over the past decades, the infectious malarial parasite has developed resistance against most of the contemporary therapeutics, thus necessitating the rational development of novel approaches principally focused on MDR malaria. This review presents an epigrammatic collation of the epidemiology and the contemporary antimalarial therapeutics based on the 'azole' motif.
Collapse
Affiliation(s)
- Mousmee Sharma
- Department of Chemistry , Uttaranchal University , Dehradun 248007 , India
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| | - Parteek Prasher
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|
11
|
Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 2018; 158:917-936. [PMID: 30261467 DOI: 10.1016/j.ejmech.2018.08.040] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
The upward extend of malaria collectively with the emergence of resistance against predictable drugs has put enormous pressure on public health systems to introduce new malaria treatments. Heterocycles play an important role in the design and discovery of new malaria active compounds. Heterocyclic compounds have attracted significant attention for malaria treatment because of simplicity of parallelization and the examining power with regard to chemical space. Introduction of a variety of heterocyclic compounds have enabled to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species. In this review, we present an overview of recent literature to provide imminent into the applications of different heterocyclic scaffolds in fighting against malaria.
Collapse
Affiliation(s)
- Piyush N Kalaria
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| | - Sharad C Karad
- Department of Chemistry, Marwadi University, Rajkot, Gujarat, India.
| | - Dipak K Raval
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| |
Collapse
|
12
|
Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 2017; 139:22-47. [DOI: 10.1016/j.ejmech.2017.07.061] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
|
13
|
In(OTf)3-HBF4Assisted Multicomponent Approach for One-Pot Synthesis of Pyrazolopyridinone Fused Imidazopyridines. ChemistrySelect 2016. [DOI: 10.1002/slct.201601133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Vandekerckhove S, Van Herreweghe S, Willems J, Danneels B, Desmet T, de Kock C, Smith PJ, Chibale K, D'hooghe M. Synthesis of functionalized 3-, 5-, 6- and 8-aminoquinolines via intermediate (3-pyrrolin-1-yl)- and (2-oxopyrrolidin-1-yl)quinolines and evaluation of their antiplasmodial and antifungal activity. Eur J Med Chem 2014; 92:91-102. [PMID: 25544689 DOI: 10.1016/j.ejmech.2014.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/28/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
(3-Pyrrolin-1-yl)- and (2-oxopyrrolidin-1-yl)quinolines were prepared via cyclization of diallylaminoquinolines and 4-chloro-N-quinolinylbutanamides, respectively, as novel synthetic intermediates en route to N-functionalized 3-, 5-, 6- and 8-aminoquinolines with potential biological activity. (3-Pyrrolin-1-yl)quinolines were subjected to bromination reactions, and the reactivity of (2-oxopyrrolidin-1-yl)quinolines toward lithium aluminum hydride and methyllithium was assessed, providing an entry into a broad range of novel functionalized (pyrrolidin-1-yl)- and (hydroxyalkylamino)quinolines. Antiplasmodial evaluation of these novel quinolines and their functionalized derivatives revealed moderate micromolar potency against a chloroquine-sensitive strain of the malaria parasite Plasmodium falciparum, and the two most potent compounds also showed micromolar activity against a chloroquine-resistant strain of P. falciparum. Antifungal assessment of (hydroxyalkylamino)quinolines revealed three compounds with promising MIC values against Rhodotorula bogoriensis and one compound with potent activity against Aspergillus flavus.
Collapse
Affiliation(s)
- Stéphanie Vandekerckhove
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sofie Van Herreweghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jasmine Willems
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Barbara Danneels
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Carmen de Kock
- Division of Pharmacology, University of Cape Town, K45, OMB, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Peter J Smith
- Division of Pharmacology, University of Cape Town, K45, OMB, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Kelly Chibale
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
15
|
Patel AB, Kumari P, Chikhalia KH. One-Pot Synthesis of Novel Quinoline-Fused Azeto[1,2-a]benzimidazole Analogs Via Intramolecular Pd-Catalyzed C–N Coupling. Catal Letters 2014. [DOI: 10.1007/s10562-014-1266-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Rajasekar M, Mohan Das T. Synthesis and Antioxidant Properties of Novel Fluorescein-Based Quinoline Glycoconjugates. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2014.897351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Mishra A, Batchu H, Srivastava K, Singh P, Shukla PK, Batra S. Synthesis and evaluation of new diaryl ether and quinoline hybrids as potential antiplasmodial and antimicrobial agents. Bioorg Med Chem Lett 2014; 24:1719-23. [DOI: 10.1016/j.bmcl.2014.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
18
|
Garudachari B, Isloor AM, Satyanarayana M, Fun HK, Hegde G. Click chemistry approach: Regioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur J Med Chem 2014; 74:324-32. [DOI: 10.1016/j.ejmech.2014.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
|
19
|
Mahendar L, Satyanarayana G. Substitution Controlled Functionalization of ortho-Bromobenzylic Alcohols via Palladium Catalysis: Synthesis of Chromenes and Indenols. J Org Chem 2014; 79:2059-74. [DOI: 10.1021/jo402763m] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lodi Mahendar
- Department of Chemistry, Indian Institute of Technology, Hyderabad Ordnance Factory
Estate Campus, Yeddumailaram 502 205, Medak District, Andhra Pradesh, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology, Hyderabad Ordnance Factory
Estate Campus, Yeddumailaram 502 205, Medak District, Andhra Pradesh, India
| |
Collapse
|
20
|
Vandekerckhove S, Desmet T, Tran HG, de Kock C, Smith PJ, Chibale K, D’hooghe M. Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorg Med Chem Lett 2014; 24:1214-7. [DOI: 10.1016/j.bmcl.2013.12.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
|
21
|
Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. Recent advances in the synthesis of quinolines: a review. RSC Adv 2014. [DOI: 10.1039/c4ra01814a] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This review article gives information about the recent advances in the synthesis of quinoline derivatives by various eco-friendly, green and clean protocols.
Collapse
Affiliation(s)
| | - Kinjal D. Patel
- Department of Chemistry
- School of Sciences
- Gujarat University
- Ahmedabad, India
| | - Rajesh H. Vekariya
- Department of Chemistry
- School of Sciences
- Gujarat University
- Ahmedabad, India
| | | | - Hitesh D. Patel
- Department of Chemistry
- School of Sciences
- Gujarat University
- Ahmedabad, India
| |
Collapse
|
22
|
Garudachari B, Isloor AM, Satyanaraya MN, Ananda K, Fun HK. Synthesis, characterization and antimicrobial studies of some new trifluoromethyl quinoline-3-carbohydrazide and 1,3,4-oxadiazoles. RSC Adv 2014. [DOI: 10.1039/c4ra04456h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
7-(Trifluoromethyl)-4-hydroxy substituted quinolinecarbazide derivatives (6a–eand7a–g) andN-alkyl-3-(5-phenyl-1,3,4-oxadiazol-2-yl)-7-(trifluoromethyl) quinolin-4-amine (9a–f) were synthesized, characterized and screened for their antimicrobial activity.
Collapse
Affiliation(s)
- B. Garudachari
- Medicinal Chemistry Laboratory
- Department of Chemistry
- National Institute of Technology Karnataka
- Mangalore-575 025, India
| | - Arun M. Isloor
- Medicinal Chemistry Laboratory
- Department of Chemistry
- National Institute of Technology Karnataka
- Mangalore-575 025, India
| | - M. N. Satyanaraya
- Department of Physics
- National Institute of Technology Karnataka
- Mangalore-575 025, India
| | - K. Ananda
- Biological Sciences Division
- Poornaprajna Institute of Scientific Research
- Bangalore-562 110, India
| | - Hoong-Kun Fun
- Deparment of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Evaluation of (4-aminobutyloxy)quinolines as a novel class of antifungal agents. Bioorg Med Chem Lett 2013; 23:4641-3. [DOI: 10.1016/j.bmcl.2013.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 11/22/2022]
|
24
|
Vandekerckhove S, D'hooghe M. Exploration of aziridine- and β-lactam-based hybrids as both bioactive substances and synthetic intermediates in medicinal chemistry. Bioorg Med Chem 2013; 21:3643-7. [PMID: 23684232 DOI: 10.1016/j.bmc.2013.04.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022]
Abstract
The concept of pharmacophore hybridization is attracting an increasing interest from medicinal chemists. Whereas the main motivation for the application of this methodology relates to the pharmacological advantages associated with hybrid molecules, molecular hybridization can also deliver a synthetic advantage through selective chemical modification of the more reactive entity within hybrid systems. Moreover, if both features are combined, new hybrid structures result displaying both a biological and a synthetic benefit, and elaboration of this methodology might culminate in structural diversity and chemical novelty. In this perspective, a new approach based on hybrid structures combining a biologically interesting yet rather chemically reactive nucleus with a privileged heterocyclic scaffold is discussed by means of β-lactam-purine chimeras useful in antiviral research and aziridine-(iso)quinoline hybrids for antimalarial purposes.
Collapse
Affiliation(s)
- Stéphanie Vandekerckhove
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | |
Collapse
|