1
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025; 125:1468-1603. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Rivas-García L, López-Varela A, Quiles JL, Montes-Bayón M, Aranda P, Llopis J, Sánchez-González C. Elucidating the Therapeutic Potential of Bis(Maltolato)OxoVanadium(IV): The Protective Role of Copper in Cellular Metabolism. Int J Mol Sci 2023; 24:ijms24119367. [PMID: 37298322 DOI: 10.3390/ijms24119367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Vanadium (V) is a trace mineral whose biological activity, role as a micronutrient, and pharmacotherapeutic applications remain unknown. Over the last years, interest in V has increased due to its potential use as an antidiabetic agent mediated by its ability to improve glycemic metabolism. However, some toxicological aspects limit its potential therapeutic application. The present study aims to evaluate the effect of the co-treatment with copper (Cu) and bis(maltolato)oxovanadium(IV) (BMOV) as a possible strategy to reduce the toxicity of BMOV. Treating hepatic cells with BMOV reduced cell viability under the present conditions, but cell viability was corrected when cells were co-incubated with BMOV and Cu. Additionally, the effect of these two minerals on nuclear and mitochondrial DNA was evaluated. Co-treatment with both metals reduced the nuclear damage caused by BMOV. Moreover, treatment with these two metals simultaneously tended to reduce the ND1/ND4 deletion of the mitochondrial DNA produced with the treatment using BMOV alone. In conclusion, these results showed that combining Cu and V could effectively reduce the toxicity associated with V and enhance its potential therapeutic applications.
Collapse
Affiliation(s)
- Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Alfonso López-Varela
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| | - María Montes-Bayón
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Pilar Aranda
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| |
Collapse
|
3
|
Effect of Bis(maltolato)oxovanadium(IV) on Zinc, Copper, and Manganese Homeostasis and DMT1 mRNA Expression in Streptozotocin-Induced Hyperglycemic Rats. BIOLOGY 2022; 11:biology11060814. [PMID: 35741335 PMCID: PMC9219771 DOI: 10.3390/biology11060814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
Our aim was to examine whether vanadium (IV) corrects alterations in zinc, copper and manganese homeostasis, observed in streptozotocin-induced hyperglycemic rats, and whether such changes are related to divalent metal transporter 1 (DMT1) mRNA expression, and antioxidant and proinflammatory parameters. Four groups of Wistar rats were examined: control; hyperglycemic (H); hyperglycemic treated with 1 mg V/day (HV); and hyperglycemic treated with 3 mg V/day (HVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(IV) for five weeks. Zinc, copper and manganese were measured in food, excreta, serum and tissues. DMT1 mRNA expression was quantified in the liver. Hyperglycemic rats showed increased Zn and Cu absorption and content in the liver, serum, kidneys and femurs; DMT1 expression also increased (p < 0.05 in all cases). HV rats showed no changes compared to H rats other than decreased DMT1 expression (p < 0.05). In the HVH group, decreased absorption and tissular content of studied elements (p < 0.05 in all cases) and DMT1 expression compared to H (p < 0.05) were observed. Liver zinc, copper and manganese content correlated positively with glutathione peroxidase activity and negatively with catalase activity (p < 0.05 in both cases). In conclusion, treatment with 3 mg V/d reverted the alterations in zinc and copper homeostasis caused by hyperglycemia, possibly facilitated by decreased DMT1 expression.
Collapse
|
4
|
Response of Cytoprotective and Detoxifying Proteins to Vanadate and/or Magnesium in the Rat Liver: The Nrf2-Keap1 System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8447456. [PMID: 34950419 PMCID: PMC8689234 DOI: 10.1155/2021/8447456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 10/15/2021] [Indexed: 01/11/2023]
Abstract
Oxidative stress (OS) is a mechanism underlying metal-induced toxicity. As a redox-active element, vanadium (V) can act as a strong prooxidant and generate OS at certain levels. It can also attenuate the antioxidant barrier and intensify lipid peroxidation (LPO). The prooxidant potential of V reflected in enhanced LPO, demonstrated by us previously in the rat liver, prompted us to analyze the response of the nuclear factor erythroid-derived 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) system involved in cellular regulation of OS to administration of sodium metavanadate (SMV, 0.125 mg V/mL) and/or magnesium sulfate (MS, 0.06 mg Mg/mL). The levels of some Nrf2-dependent cytoprotective and detoxifying proteins, i.e., glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), glutamate cysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), NAD(P) H dehydrogenase quinone 1 (NQO1), UDP-glucumno-syltransferase 1 (UGT1), and heme oxygenase 1 (HO-1); glutathione (GSH); metallothionein (MT1); and glutamate-cysteine ligase (GCL) mRNA were measured. We also focused on the V-Mg interactive effects and trends toward interactive action as well as relationships between the examined indices. The elevated levels of Nrf2, GCL mRNA, and GCL catalytic subunit (GCLC) confirm OS in response to SMV and point to the capacity to synthesize GSH. The results also suggest a limitation of the second step in GSH synthesis reflected by the unchanged glutathione synthetase (GSS) and GSH levels. The positive correlations between certain cytoprotective/detoxifying proteins (which showed increasing trends during the SMV and/or MS administration, compared to the control) and between them and malondialdehyde (MDA), the hepatic V concentration/total content, and/or V dose (discussed by us previously) point to cooperation between the components of antioxidant defense in the conditions of the hepatic V accumulation and SMV-induced LPO intensification. The V-Mg interactive effect and trend are involved in changes in Nrf2 and UGT1, respectively. The p62 protein has to be determined in the context of potential inhibition of degradation of Keap1, which showed a visible upward trend, in comparison with the control. The impact of Mg on MT1 deserves further exploration.
Collapse
|
5
|
Sánchez-González C, Rivas-García L, Rodríguez-Nogales A, Algieri F, Gálvez J, Aranda P, Montes-Bayón M, Llopis J. Vanadium Decreases Hepcidin mRNA Gene Expression in STZ-Induced Diabetic Rats, Improving the Anemic State. Nutrients 2021; 13:nu13041256. [PMID: 33920401 PMCID: PMC8069891 DOI: 10.3390/nu13041256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes is a disease with an inflammatory component that courses with an anemic state. Vanadium (V) is an antidiabetic agent that acts by stimulating insulin signaling. Hepcidin blocks the intestinal absorption of iron and the release of iron from its deposits. We aim to investigate the effect of V on hepcidin mRNA expression and its consequences on the hematological parameters in streptozotocin-induced diabetic Wistar rats. Control healthy rats, diabetic rats, and diabetic rats treated with 1 mgV/day were examined for five weeks. The mineral levels were measured in diet and serum samples. Hepcidin expression was quantified in liver samples. Inflammatory and hematological parameters were determined in serum or whole blood samples. The inflammatory status was higher in diabetic than in control rats, whereas the hematological parameters were lower in the diabetic rats than in the control rats. Hepcidin mRNA expression was significantly lower in the V-treated diabetic rats than in control and untreated diabetic rats. The inflammatory status remained at a similar level as the untreated diabetic group. However, the hematological profile improved after the V-treatment, reaching similar levels to those found in the control group. Serum iron level was higher in V-treated than in untreated diabetic rats. We conclude that V reduces gene expression of hepcidin in diabetic rats, improving the anemic state caused by diabetes.
Collapse
Affiliation(s)
- Cristina Sánchez-González
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
- Correspondence: ; Tel.: +34-958241000 (ext. 20320)
| | - Lorenzo Rivas-García
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| | - Alba Rodríguez-Nogales
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Francesca Algieri
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Julio Gálvez
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Pilar Aranda
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain;
| | - Juan Llopis
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| |
Collapse
|
6
|
Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 2020; 61:126508. [PMID: 32305626 PMCID: PMC7152879 DOI: 10.1016/j.jtemb.2020.126508] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Collapse
Key Words
- 3-HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA
- AIDS, acquired immune deficiency syndrome
- ALB, albumin
- ALP, alkaline phosphatase
- AS, antioxidant status
- Akt, protein kinase B (PKB)
- AmD, Assoc American Dietetic Association
- Anti-B, anti-bacterial
- Anti-C, anti-cancer
- Anti-D, anti-diabetic
- Anti-F, anti-fungal
- Anti-O, anti-obesity
- Anti-P, anti-parasitic
- Anti-V, anti-viral
- Anti−HC, anti-hypercholesterolemic
- ApoA-I, apolipoprotein A
- ApoB, apolipoprotein B
- B, bone
- BCOV, bis(curcumino)oxavanadyl
- BEOV, bis(ethylmaltolato)oxovanadium
- BMOV, bis(maltolato)oxavanadium(IV)
- Bim, Blc-2 interacting mediator of cell death
- Biological role
- BrOP, bromoperoxidase
- C, cholesterol
- C/EBPα, CCAAT-enhancer-binding protein α
- CD4, CD4 receptor
- CH, cerebral hemisphere
- CHO-K1, Chinese hamster ovary cells
- CXCR-4, CXCR-4 chemokine co-receptor
- Cardio-P, cardioprotective
- Citrate-T, citrate transporter
- CoA, coenzyme A
- Cyt c, cytochrome c
- DM, diabetes mellitus
- ELI, extra low interstitial
- ERK, extracellular regulated kinase
- FHR, fructose hypertensive rats
- FKHR/FKHR1/AFX, class O members of the forkhead transcription factor family
- FLIP, FLICE-inhibitory protein
- FOXOs, forkhead box class O family member proteins
- FPP, farnesyl-pyrophosphate
- FasL, Fas ligand, FER: ferritin
- GI, gastrointestinal
- GLU, glucose
- GLUT-4, glucose transporter type 4
- GPP, geranyl-pyrophosphate
- GPT, glutamate-pyruvate transaminase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, disulfide glutathione
- HDL, high-density lipoproteins
- HDL-C, HDL cholesterol
- HIV, human immunodeficiency virus
- HMMF, high molecular mass fraction
- HOMA-IR, insulin resistance index
- Hb, hemoglobin
- HbF, hemoglobin fraction
- Hyper-LEP, hyperleptynemia
- IDDM, insulin-dependent diabetes mellitus
- IGF-IR, insulin-like growth factor receptor
- IL, interleukin
- INS, insulin
- INS-R, insulin resistance
- INS-S, insulin sensitivity
- IPP, isopentenyl-5-pyrophosphate
- IRS, insulin receptor tyrosine kinase substrate
- IgG, immunoglobulin G
- Industrial importance
- Interactions
- JAK2, Janus kinase 2
- K, kidney
- L, liver
- L-AA, L-ascorbic acid
- LDL, low-density lipoproteins
- LDL-C, LDL cholesterol
- LEP, leptin
- LEP-R, leptin resistance
- LEP-S, leptin sensitivity
- LEPS, the concentration of leptin in the serum
- LMMF, low molecular mass fraction
- LPL, lipoprotein lipase
- LPO, lipid peroxidation
- Lactate-T, lactate transporter
- M, mitochondrion
- MEK, ERK kinase activator
- MRC, mitochondrial respiratory chain
- NAC, N-acetylcysteine
- NEP, neutral endopeptidase
- NIDDM, noninsulin-dependent diabetes mellitus
- NO, nitric oxide
- NPY, neuropeptide Y
- NaVO3, sodium metavanadate
- Neuro-P, neuroprotective
- OXPHOS, oxidative phosphorylation
- Organic-AT, organic anion transporter
- Over-W, over-weight
- P, plasma
- PANC-1, pancreatic ductal adenocarcinoma cells
- PARP, poly (ADP-ribose) polymerase
- PLGA, (Poly)Lactide-co-Glycolide copolymer
- PO43−, phosphate ion
- PPARγ, peroxisome-activated receptor γ
- PTK, tyrosine protein kinase
- PTP, protein tyrosine phosphatase
- PTP-1B, protein tyrosine phosphatase 1B
- Pharmacological activity
- Pi3K, phosphoinositide 3-kinase (phosphatidylinositol 3-kinase)
- RBC, erythrocytes
- ROS, reactive oxygen species
- RT, reverse transcriptase
- SARS, severe acute respiratory syndrome
- SAcP, acid phosphatase secreted by Leshmania
- SC-Ti-6Al-4V, surface-coated Ti-6Al-4V
- SHR, spontaneously hypertensive rats
- SOD, superoxide dismutase
- STAT3, signal transducer/activator of transcription 3
- Sa, mean roughness
- Sq, root mean square roughness
- Sz, ten-point height
- TC, total cholesterol
- TG, triglycerides
- TS, transferrin saturation
- Tf, transferrin
- TfF, transferrin fraction
- TiO2, nHA:Ag-Ti-6Al-4V: titanium oxide-based coating containing hydroxyapatite nanoparticle and silver particles
- Top-IB, IB type topoisomerase
- Toxicological potential
- V, vanadium
- V-BrPO, vanadium bromoperoxidase
- V-DLC, diamond-like layer with vanadium
- V5+/V4+, pentavalent/tetravalent vanadium
- VO2+, vanadyl cation
- VO2+-FER, vanadyl-ferritin complex
- VO4-/VO3-, vanadate anion
- VO43-, vanadate ion
- VS, vanadyl sulfate
- Vanadium
- WB, whole blood
- ZDF rats, Zucker diabetic fatty rats
- ZF rats, Zucker fatty rats
- breakD, breakdown
- eNOS, endothelial nitric oxide synthase
- mo, months
- n-HA, nano-hydroxyapatite
- pRb, retinoblastoma protein
- wk, weeks
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
| | - Łukasz Pietrzyk
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| | - Andrzej Skiba
- Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| |
Collapse
|
7
|
Ścibior A, Hus I, Mańko J, Jawniak D. Evaluation of the level of selected iron-related proteins/receptors in the liver of rats during separate/combined vanadium and magnesium administration. J Trace Elem Med Biol 2020; 61:126550. [PMID: 32464446 DOI: 10.1016/j.jtemb.2020.126550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The current knowledge about the effects of vanadium (V) on iron (Fe)-related proteins and Fe homeostasis (which is regulated at the systemic, organelle, and cellular levels) is still insufficient. OBJECTIVE This fact and our earlier results prompted us to conduct studies with the aim to explain the mechanism of anemia accompanied by a rise in hepatic and splenic Fe deposition in rats receiving sodium metavanadate (SMV) separately and in combination with magnesium sulfate (MS). RESULTS We demonstrated for the first time that SMV (0.125 mg V/mL) administered to rats individually and in conjunction with MS (0.06 mg Mg/mL) for 12 weeks did not cause significant differences in the hepatic hepcidin (Hepc) and hemojuvelin (HJV) concentrations, compared to the control. In comparison with the control, there were no significant changes in the concentration of transferrin receptor 1 (TfR1) in the liver of rats treated with SMV and MS alone (in both cases only a downward trend of 14% and 15% was observed). However, a significant reduction in the hepatic TfR1 level was found in rats receiving SMV and MS simultaneously. In turn, the concentration of transferrin receptor 2 (TfR2) showed an increasing trend in the liver of rats treated with SMV and/or MS. CONCLUSIONS The experimental data suggest that the pathomechanism of the SMV-induced anemia is not associated with the effect of V on the concentration of Hepc in the liver, as confirmed by the unaltered hepatic HJV and TfR1 levels. Therefore, further studies are needed in order to check whether anemia that developed in the rats at the SMV administration (a) results from the inhibitory effect of V on erythropoietin (EPO) production, (b) is related to the effect of V on the induction of matriptase-2 (TMPRSS6) expression, or (c) is associated with the influence of this metal on haem synthesis.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Poland.
| | - Iwona Hus
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Joanna Mańko
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| | - Dariusz Jawniak
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| |
Collapse
|
8
|
Ścibior A, Kurus J. Vanadium and Oxidative Stress Markers - In Vivo Model: A Review. Curr Med Chem 2019; 26:5456-5500. [PMID: 30621554 DOI: 10.2174/0929867326666190108112255] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
In vitro study of the protective effect of manganese against vanadium-mediated nuclear and mitochondrial DNA damage. Food Chem Toxicol 2019; 135:110900. [PMID: 31654710 DOI: 10.1016/j.fct.2019.110900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/24/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022]
Abstract
We aimed to study the effect of vanadium(V) exposure on cell viability, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) and to elucidate if these effects can be reverted by co-exposure to V and manganese (Mn). HepG2 cells were incubated with various concentrations of bis(maltolato)oxovanadium(IV) or MnCl2 for 32 h for viability study. The higher concentrations (59 μM V, 54 nM Mn and 59 μM V+54 nM Mn) were used to study DNA damage and uptake of V and Mn. Comet assay was used for the study of nDNA damage; mtDNA damage was studied by determining deletions and number of copies of the ND1/ND4 mtDNA region. Cellular content of V and Mn was determined using ICPMS. Cellular exposure to 59 μM V decreased viability (14%) and damaged nDNA and mtDNA. This effect was partially prevented by the co-exposure to V + Mn. Exposure to V increased the cellular content of V and Mn (812.3% and 153.5%, respectively). Exposure to Mn decreased the content of V and Mn (62% and 56%, respectively). Exposure to V + Mn increased V (261%) and decreased Mn (56%) content. The positive effects on cell viability and DNA damage when incubated with V + Mn could be due to the Mn-mediated inhibition of V uptake.
Collapse
|
10
|
Evaluation of lipid peroxidation and the level of some elements in rat erythrocytes during separate and combined vanadium and magnesium administration. Chem Biol Interact 2018; 293:1-10. [PMID: 30028963 DOI: 10.1016/j.cbi.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
Abstract
The impact of vanadium (V) and magnesium (Mg) as sodium metavanadate (SMV, 0.125 mg V/ml) and magnesium sulfate (MS, 0.06 mg Mg/ml) on lipid peroxidation (LPO) and selected elements in the rat erythrocytes (RBCs) was investigated. Relationships between some indices determined in RBC were also studied. SMV alone (Group II) elevated the malondialdehyde level (MDARBC) (by 95% and 60%), compared with the control (Group I) and MS-supplemented rats (Group III), respectively, reduced the concentration of CuRBC (by 23.5%), in comparison with Group I, but did not change the levels of NaRBC, KRBC, and CaRBC, whereas MS alone (Group III) only reduced the CuRBC concentration (by 22%), compared with Group I. The SMV + MS combination (Group IV) reduced and elevated the CuRBC (by 24%) and CaRBC (by 111%) concentrations, respectively, in comparison with Groups I and III, and these changes were induced by the V-Mg antagonistic and synergistic interaction, respectively. The combined SMV + MS effect also enhanced the MDARBC level, compared with Groups I (by 79%) and III (by 47%) and slightly limited its concentration, compared with Group II, which, in turn, resulted from the distinct trend toward the V-Mg antagonistic interaction. We can conclude that V (as SMV) is able to stimulate LPO in rat RBCs and that V-Mg interactive effects are involved in changes in CuRBC, CaRBC, and MDARBC. Further studies are needed to elucidate the exact mechanisms of the V-Mg antagonistic/synergistic interactions and to provide insight into the biochemical mechanisms of changes in rats suffering from anemia [1], characterized by a disrupted antioxidant barrier in RBCs [2] and an intensified free radical process in these cells.
Collapse
|
11
|
Fatola OI, Olaolorun FA, Olopade FE, Olopade JO. Trends in vanadium neurotoxicity. Brain Res Bull 2018; 145:75-80. [PMID: 29577939 DOI: 10.1016/j.brainresbull.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/05/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Vanadium, atomic number 23, is a transition metal widely distributed in nature. It is a major contaminant of fossil fuels and is widely used in industry as catalysts, in welding, and making steel alloys. Over the years, vanadium compounds have been generating interests due to their use as therapeutic agents in the control of diabetes, tuberculosis, and some neoplasms. However, the toxicity of vanadium compounds is well documented in literature with occupational exposure of workers in vanadium allied industries, environmental pollution from combustion of fossil fuels and industrial exhausts receiving concerns as major sources of toxicity and a likely predisposing factor in the aetiopathogenesis of neurodegenerative diseases. A lot has been done to understand the neurotoxic effects of vanadium, its mechanisms of action and possible antidotes. Sequel to our review of the subject in 2011, this present review is to detail the recent insights gained in vanadium neurotoxicity.
Collapse
Affiliation(s)
| | | | | | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
12
|
Ścibior A, Gołębiowska D, Adamczyk A, Kurus J, Staniszewska M, Sadok I. Evaluation of lipid peroxidation and antioxidant defense mechanisms in the bone of rats in conditions of separate and combined administration of vanadium (V) and magnesium (Mg). Chem Biol Interact 2018; 284:112-125. [PMID: 29453945 DOI: 10.1016/j.cbi.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/13/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
The impact of vanadium (V) and magnesium (Mg) applied as sodium metavanadate (SMV, 0.125 mg V/ml) and magnesium sulfate (MS, 0.06 mg Mg/ml) on oxidative stress markers in bone of male Wistar rats was investigated. Some of them were also measured in the liver, e.g. l-ascorbic acid (hepatic L-AA). Additionally, relationships between selected indices determined in bone were examined. SMV alone (Group II) did not significantly alter the level of TBARS and the activity of SOD, compared with the control (Group I), but it slightly reduced the GR activity (by 13%) and the L-AA level (by 15.5%). It also markedly lowered the activity of CAT and GPx (by 34% and 29%), and to some degree elevated the activity of GST (by 16%) and the hepatic L-AA level (by 119%). MS alone (Group III) decreased the TBARS level (by 49%), slightly lowered the L-AA concentration (by 14%), and reduced the SOD, GPx, and GR activities (by 31%, 40%, and 28%), but did not change the activity of CAT, compared with the control. Additionally, it elevated the GST activity (by 56%) and the hepatic L-AA level (by 40%). In turn, the SMV + MS combination (Group IV) reduced the TBARS level (by 38%) and the SOD, CAT, GPx, and GR activities (by 61%, 58%, 72%, and 40%) but elevated the GST activity (by 66%), compared with the control. The activity of SOD and GPx in the rats in Group IV was also reduced, compared with Group II (by 61% and 61%) and Group III (by 44% and 54%). In turn, the activities of CAT and GR were decreased, compared with Group III (by 55%) and Group II (by 31%), and the L-AA level was lowered, in comparison with Groups II and III (by 53% and 54%). Further, the concentration of V in the bone of rats in Groups II and IV increased, whereas the concentration of Mg decreased, compared with Groups I and III, in which the V and Mg levels dropped and were not altered, respectively, compared with Group I. The total content of Fe in the bone of rats in Groups II and IV increased, compared with Group III, in which the total Fe content did not change, compared with Group I. In turn, the total bone Cu content significantly decreased in the rats in Groups III and IV, compared with Groups I and II, whereas the total Zn content and the Ca concentration did not change markedly. The results provided evidence that the concentration of V used as SMV did not enhance LPO in bone, whereas Mg, at the selected level, markedly reduced LPO in this tissue. On the other hand, both elements administered separately and in combination disrupted the antioxidant defense mechanisms and homeostasis of some metals in bone tissue, which consequently may have contributed to disturbances in the balance in the activities of osteoblastic and osteoclastic cells, and thereby negatively affected bone health.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| | - Dorota Gołębiowska
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Agnieszka Adamczyk
- Department of Zoology and Invertebrate Ecology, Laboratory of Physiology and Animal Biochemistry, The John Paul II Catholic University of Lublin, Kraśnicka Ave. 102, 20-718, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Methods Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Ilona Sadok
- Laboratory of Separation and Spectroscopic Methods Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| |
Collapse
|
13
|
Sanchez-Gonzalez C, Moreno L, Lopez-Chaves C, Nebot E, Pietschmann P, Rodriguez-Nogales A, Galvez J, Montes-Bayon M, Sanz-Medel A, Llopis J. Effect of vanadium on calcium homeostasis, osteopontin mRNA expression, and bone microarchitecture in diabetic rats. Metallomics 2017; 9:258-267. [PMID: 28194470 DOI: 10.1039/c6mt00272b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine whether alterations caused by diabetes in calcium homeostasis, expression of osteopontin and the microarchitecture of bone are corrected by exposure to vanadium. Four study groups were examined over a period of five weeks: control (C), diabetic (DM), diabetic treated with 1 mg V per d (DMV), and diabetic treated with 3 mg V per d (DMVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(iv). Calcium was measured in the food, faeces, urine, serum, kidneys, liver, muscles, and femur. Osteopontin gene expression was determined in the liver, and the bone microarchitecture was studied with the aid of micro-computed tomography. In the DM group, food intake as well as calcium absorbed and retained and liver osteopontin mRNA increased, while Ca in the serum and femur decreased, and the bone microarchitecture worsened, in comparison with the control. In the DMV group, the amount of Ca absorbed and retained was similar to DM rats. Although the Ca content in the femur increased and osteopontin mRNA decreased, there were no significant changes in the bone microarchitecture, in comparison to the DM rats. In the DMVH group, the amount of Ca absorbed and retained, and the serum and femur content were equivalent to the control. The levels of osteopontin mRNA decreased and bone mineralization improved, compared to the DM group. We conclude that treatment with 3 mg V per d of the glucose lowering agent bis(maltolato)oxovanadium(iv) causes a decrease in osteopontin mRNA, which could favour the normalization of changes in Ca homeostasis and bone microarchitecture, both at the cortical and trabecular levels, caused by diabetes.
Collapse
Affiliation(s)
- Cristina Sanchez-Gonzalez
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Laura Moreno
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Carlos Lopez-Chaves
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Elena Nebot
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain. and Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | | | - Julio Galvez
- CIBERehd, Department of Pharmacology, University of Granada, 18071 Granada, Spain
| | - María Montes-Bayon
- Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain.
| | - Juan Llopis
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| |
Collapse
|
14
|
Vanadium (V) and magnesium (Mg) - In vivo interactions: A review. Chem Biol Interact 2016; 258:214-33. [PMID: 27620816 DOI: 10.1016/j.cbi.2016.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
Abstract
Vanadium (V) and magnesium (Mg) arouse interest of many research centres worldwide. Many aspects of their action have already been recognized but some of them have not been fully elucidated yet. Relatively little is known about the mechanisms of absorption, transport, and excretion of V. There is also a lack of sufficient data about the most sensitive biomarkers of V toxicity and the mechanisms of its toxic action, which have not been fully explained yet. There is also a lack of comprehensive research on the consequences, character, and mechanisms of mutual interactions of V (which has strong pro-oxidant properties) with elements with an antioxidant potential such as Mg, the recognition of which, besides the cognitive value, may have great practical importance. It should be highlighted that the question of interactions between elements is always up to date and it is still an important issue in toxicology. A comprehensive research on interactions of V with Mg can be particularly important in the studies of the usage of V (which has a narrow margin of safety) in the treatment of certain diseases in humans, especially diabetes, which is accompanied by changes in the level of Mg in the tissues and weakening of the antioxidant barrier and oxidative stress. Therefore, the aspect concerning the possible interaction of V (as a potent pro-oxidant) with Mg (as an antioxidant) was the subject of our special interest. In addition, the examination of the effects of the interactions between V and Mg is very important especially for extending the knowledge of the mechanism of the influence of V on the organism and a potential role of Mg (which is characterized by a wide therapeutic window) in prevention of V toxicity. This review summarizes the most important results obtained from our experiments in a rodent model referring to the interactions of V with Mg on the background of the in vivo experimental data published by other researchers of this issue. Our studies have shown that V and Mg supplied in combination are able to modulate the response in an interactive manner to produce a specific effect that is distinct from that observed during separate administration thereof. The present report also provides the most important information about the effects of the action of V and Mg with other metals.
Collapse
|
15
|
Zwolak I. Increased Cytotoxicity of Vanadium to CHO-K1 Cells in the Presence of Inorganic Selenium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95. [PMID: 26201834 PMCID: PMC4608973 DOI: 10.1007/s00128-015-1615-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The effect of selenium applied as sodium selenite (Na2SeO3) on the cytotoxicity of vanadyl sulphate (VOSO4) was examined using CHO-K1 cells. From the resazurin-based assay, it appears that Na2SeO3 at low doses (0.5 and 1 μM) can enhance 100 μM VOSO4-induced cell damage. The two-way ANOVA analysis revealed that the increased cell damage was a consequence of a synergistic interaction of 0.5 μM Na2SeO3 with VOSO4 and 1 μM Na2SeO3 with VOSO4. Observations performed with a phase-contrast microscope showed most cells to be rounded upon treatment with VOSO4 alone. In turn, a majority of cells co-treated with VOSO4 and 1 μM Na2SeO3 were elongated, and exhibited cytoplasmic vacuolization. These results warn of the potential contribution of inorganic selenium to vanadium-induced toxicity.
Collapse
Affiliation(s)
- Iwona Zwolak
- Department of Cell Biology, Institute of Environmental Protection, The John Paul II Catholic University of Lublin, Kraśnicka Ave. 102, 20-718, Lublin, Poland.
| |
Collapse
|
16
|
Scibior A, Adamczyk A, Mroczka R, Niedźwiecka I, Gołębiowska D, Fornal E. Effects of vanadium (V) and magnesium (Mg) on rat bone tissue: mineral status and micromorphology. Consequences of V-Mg interactions. Metallomics 2014; 6:2260-78. [PMID: 25371215 DOI: 10.1039/c4mt00234b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extent to which the 12 week separate and combined administration of vanadium (as sodium metavanadate--SMV, 0.125 mg V per ml) and magnesium (as magnesium sulphate--MS, 0.06 mg Mg per ml) affects bone mineral status and micromorphology as well as the alkaline phosphatase (ALP) activity in femoral diaphysis (FD) was examined in male rats. The bone chemical composition of SMV-exposed rats was also investigated. SMV alone or in combination with MS (as SMV-MS) reduced the levels of MgFD (by 21% and 20%) and PFD (by 12% and 9%), lowered the CaFD content (by 7% and 10%), and caused a rise of the FeFD concentration (by 22.5% and 17%), compared with the control; SMV alone also reduced and enhanced the KFD and ZnFD concentrations (by 19% and 15%, respectively) but remained without significant effect on the femoral bone surface roughness (FBSR), whereas MS alone lowered the VFD, PFD, and CuFD levels (by 42%, 10%, and 20.6%), reduced FBSR, and created the regular femoral bone surface shape. The SMV-MS combination also induced a decline and rise in the levels of CuFD (by 30%) and NaFD (by 15%), respectively, compared with the control and the MS-supplemented rats; elevated ALPFD activity (by 24%, 35%, and 40%), compared with the control, SMV-exposed, and MS-supplemented animals; and increased FBSR. Relationships between the root mean square roughness (Sq) and skewness (Ssk): Sq [MS < SMV < Control < SMV-MS] ⇔ Ssk [SMV-MS > Control > SMV > MS], ALPFD and Sq: ALPFD⇔ Sq [SMV-MS > Control > SMV > MS], and between other variables were demonstrated. A partial limitation of the drop in the PFD and KFD levels and normalization of the ZnFD concentration were a consequence of the V-Mg antagonistic interaction whereas a consequence of the V-Mg synergistic interaction was the increase in the NaFD level, ALPFD activity, and FBSR. Ca10(PO4)5(SiO4)(OH) was part of the inorganic component of the bone of the SMV-exposed rats.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Laboratory of Oxidative Stress, Center for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Kraśnicka Ave, 20-718 Lublin, Poland.
| | | | | | | | | | | |
Collapse
|