1
|
Liang P, Peng X, Hu G, Wu R, Jin J, Ang S, Li D. Four new sesquiterpenoids from the aerial parts of Pogostemon cablin (Blanco.) Benth. and their hypoglycemic activity. Fitoterapia 2024; 177:106054. [PMID: 38852891 DOI: 10.1016/j.fitote.2024.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Four previously undescribed sesquiterpenoids (1-4), including two natural guaiane-type sesquiterpenoids (1-2), a rearranged guaiane-type sesquiterpenoid (3), and a norsesquiterpenoid (4), were isolated from the ethanol extract of the aerial parts of Pogostemon cablin (Blanco.) Benth. Their chemical structures were determined based on extensive spectroscopic data analysis, including UV, IR, NMR, HRESIMS, and CD spectroscopy. Compound 1 exhibited a good hypoglycemic activity with glucose uptake of 124.3% and 131.2% in myotubes, respectively, at the concentrations of 20 and 40 μM and showed no cytotoxicity. These findings provide a material basis for further research on P. cablin.
Collapse
Affiliation(s)
- Peiting Liang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Xingjia Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Gui'e Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jingwei Jin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Song Ang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Dongli Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
2
|
Hanif M, Zahoor AF, Saif MJ, Nazeer U, Ali KG, Parveen B, Mansha A, Chaudhry AR, Irfan A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: a review. RSC Adv 2024; 14:13100-13128. [PMID: 38655462 PMCID: PMC11036177 DOI: 10.1039/d4ra01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Epoxides are oxygen containing heterocycles which are significantly employed as crucial intermediates in various organic transformations. They are considered highly reactive three-membered heterocycles due to ring strain and they undergo epoxide ring opening reactions with diverse range of nucleophiles. Epoxide ring-opening reactions have gained prominence as flexible and effective means to obtain various functionalized molecules. These reactions have garnered substantial attention in organic synthesis, driven by the need to comprehend the synthesis of biologically and structurally important organic compounds. They have also found applications in the synthesis of complex natural products. In this review article, we have summarized the implementation of epoxide ring opening reactions in the synthesis of alkaloids and terpenoids based natural products reported within the last decade (2014-2023).
Collapse
Affiliation(s)
- Madiha Hanif
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P.O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Zong J, Christensen KE, Robertson J. Routes to Advanced Intermediates in the Synthesis of Tetracarbocyclic Sesquiterpenoids Daphnenoid A and Artatrovirenols A and B. Org Lett 2024; 26:1556-1560. [PMID: 38373293 PMCID: PMC10913076 DOI: 10.1021/acs.orglett.3c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
A short route from dihydrocarvone is described, which led to the tetracarbocyclic core common to artatrovirenol A and B and daphnenoid A. A variant of this route afforded guaia-4,6-dien-3-one (from Enterospermum madagascarensis) and its epimer. From 2-(2-oxoethyl)furan, a 15-step sequence then delivered the complete carbon skeleton and all functionality necessary for daphnenoid A. Key steps in the route include diastereoselective intramolecular oxidopyrylium cycloaddition, oxa-bridge cleavage under "push-pull" conditions, and intramolecular Diels-Alder cycloaddition.
Collapse
Affiliation(s)
- Jiarui Zong
- Department of Chemistry, University
of Oxford, Chemistry Research
Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Kirsten E. Christensen
- Department of Chemistry, University
of Oxford, Chemistry Research
Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jeremy Robertson
- Department of Chemistry, University
of Oxford, Chemistry Research
Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
4
|
Pan X, Cai J, Liu K, Guo J, Li S, Wang L, Han L, Zhou K, Meng X, Qin L, Li H. Glaucatotones A-I: Guaiane-type sesquiterpenoids from the roots of Lindera glauca with anti-inflammatory activity. Bioorg Chem 2024; 144:107135. [PMID: 38281383 DOI: 10.1016/j.bioorg.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Glaucatotones A - I, nine new guaiane-type sesquiterpenoids, along with two reported compounds, namely (1β,5β)-1-hydroxyguaia-4(15),11(13)-dieno-12,5-lactone (10) and pseudoguaianelactone C (11), were isolated from the roots of Lindera glauca. The structures and absolute configurations of these compounds were elucidated by extensive spectroscopic analyses, single-crystal X-ray diffraction, and comparison of experimental and calculated electronic circular dichroism (ECD) data. Structurally, glaucatotone A (1) is characterized as a dihomosesquiterpenoid with an unprecedented 5/5/7/6 ring system. A pair of enantiomers, (±)-glaucatotone B (2a/2b), represent the first rearranged norsesquiterpenoid with a (cyclopentylmethyl)cyclohexane skeleton. 3 is defined as a dinorsesquiterpenoid possessing a 5/7/5 ring system. 4-6 are three guaiane-type norsesquiterpenoids. In vitro bioactivity, 2a selectively inhibited Bcap-37 with IC50 value of 5.60 μM, and 9 selectively inhibited Du-145 with IC50 value of 5.52 μM. The anti-inflammatory activity of 1-9 were tested, and of these compounds, 1, 2a, 2b and 7 exhibited potent inhibitory effects.
Collapse
Affiliation(s)
- Xinyuan Pan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Jiayi Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310003, China
| | - Kaohua Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Jiaqi Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Ling Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Lizhu Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Kexin Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China.
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China.
| |
Collapse
|
5
|
Iacovelli R, He T, Allen JL, Hackl T, Haslinger K. Genome sequencing and molecular networking analysis of the wild fungus Anthostomella pinea reveal its ability to produce a diverse range of secondary metabolites. Fungal Biol Biotechnol 2024; 11:1. [PMID: 38172933 PMCID: PMC10763133 DOI: 10.1186/s40694-023-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Filamentous fungi are prolific producers of bioactive molecules and enzymes with important applications in industry. Yet, the vast majority of fungal species remain undiscovered or uncharacterized. Here we focus our attention to a wild fungal isolate that we identified as Anthostomella pinea. The fungus belongs to a complex polyphyletic genus in the family of Xylariaceae, which is known to comprise endophytic and pathogenic fungi that produce a plethora of interesting secondary metabolites. Despite that, Anthostomella is largely understudied and only two species have been fully sequenced and characterized at a genomic level. RESULTS In this work, we used long-read sequencing to obtain the complete 53.7 Mb genome sequence including the full mitochondrial DNA. We performed extensive structural and functional annotation of coding sequences, including genes encoding enzymes with potential applications in biotechnology. Among others, we found that the genome of A. pinea encodes 91 biosynthetic gene clusters, more than 600 CAZymes, and 164 P450s. Furthermore, untargeted metabolomics and molecular networking analysis of the cultivation extracts revealed a rich secondary metabolism, and in particular an abundance of sesquiterpenoids and sesquiterpene lactones. We also identified the polyketide antibiotic xanthoepocin, to which we attribute the anti-Gram-positive effect of the extracts that we observed in antibacterial plate assays. CONCLUSIONS Taken together, our results provide a first glimpse into the potential of Anthstomella pinea to provide new bioactive molecules and biocatalysts and will facilitate future research into these valuable metabolites.
Collapse
Affiliation(s)
- R Iacovelli
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - T He
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - J L Allen
- Department of Biology, Eastern Washington University, Cheney, WA, 99004, USA
| | - T Hackl
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - K Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
6
|
Chen TH, Lin HC. Terpene Synthases in the Biosynthesis of Drimane-Type Sesquiterpenes across Diverse Organisms. Chembiochem 2023; 24:e202300518. [PMID: 37605310 DOI: 10.1002/cbic.202300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Drimane-type sesquiterpenes (DTSs) are significant terpenoid natural products characterized by their unique C15 bicyclic skeleton. They are produced by various organisms including plants, fungi, bacteria and marine organisms, and exhibit a diverse array of bioactivities. These bioactivities encompass antifeedant, anti-insecticidal, anti-bacterial, anti-fungal, anti-viral and anti-proliferative properties. Some DTSs contribute to the pungent flavor found in herb plants like water pepper, while others serve as active components responsible for the anti-cancer activities observed in medicinal mushrooms such as (-)-antrocin from Antrodia cinnamomea. Recently, DTS synthases have been identified in various organisms, biosynthesizing drimenol, drim-8-ene-11-ol and (+)-albicanol, which all possess the characteristic drimane skeleton. Interestingly, despite these enzymes producing chemical molecules with a drimane scaffold, they exhibit minimal amino acid sequence identity across different organisms. This Concept article focuses on the discovery of DTS synthases and the tailoring enzymes generating the chemical diversity of drimane natural products. We summarize and discuss their key features, including the chemical mechanisms, catalytic motifs and functional domains employed by these terpene synthases to generate DTS scaffolds.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| |
Collapse
|
7
|
Lavernhe R, Domke P, Wang Q, Zhu J. Enantioselective Total Synthesis of (-)-Artatrovirenol A. J Am Chem Soc 2023; 145:24408-24415. [PMID: 37874878 DOI: 10.1021/jacs.3c09683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report herein an enantioselective total synthesis of (-)-artatrovirenol A, a structurally unprecedented cage-like sesquiterpenoid. The synthesis features the following key steps: (a) cationic chiral oxazaborolidinium-catalyzed Diels-Alder reaction between isoprene and ethyl (E)-5-((tert-butyldimethylsilyl)oxy)-4-oxopent-2-enoate for the rapid synthesis of an enantioenriched 10-carbon bicyclic lactone; (b) union of two enantioenriched fragments by a diastereoselective Mukaiyama-Michael addition for the convergent assembly of an intermediate with all 15 carbons of the natural product; (c) intramolecular de Mayo [2 + 2] cycloaddition/retro-aldol sequence transforming a bicyclic compound to a tetracyclic one with concomitant generation of a five- and a seven-membered ring; (d) Lewis acid-triggered intramolecular ring opening of epoxide generating the norbornane substructure; and (e) Chugaev elimination converting the norbornane to the more strained norbornene.
Collapse
Affiliation(s)
- Rémi Lavernhe
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Patrick Domke
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Xue G, Zhao C, Xue J, Duan J, Pan H, Zhao X, Yang Z, Chen H, Sun Y, Feng W. 2,3-Seco and 3-nor guaianolides fromAchillea alpina with antidiabetic activity. Chin J Nat Med 2023; 21:610-618. [PMID: 37611979 DOI: 10.1016/s1875-5364(23)60411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 08/25/2023]
Abstract
In this study, we presented the isolation and characterization of eight novel seco-guaianolide sesquiterpenoids (1-8) and two known guaianolide derivatives (9 and 10), from the aerial part of Achillea alpina L.. Compounds 1-3 were identified as guaianolides bearing an oxygen insertion at the 2, 3 position, while compounds 4-8 belonged to a group of special 3-nor guaianolide sesquiterpenoids. The structural elucidation of 1-8, including their absolute configurations, were accomplished by a combination of spectroscopic data analysis and quantum electronic circular dichroism (ECD) calculations. To evaluate the potential antidiabetic activity of compounds 1-10, we investigated their effects on glucose consumption in palmitic acid (PA)-mediated HepG2-insulin resistance (IR) cells. Among the tested compounds, compound 7 demonstrated the most pronounced ability to reverse IR. Moreover, a mechanistic investigation revealed that compound 7 exerted its antidiabetic effect by reducing the production of the pro-inflammatory cytokine IL-1β, which was achieved through the suppression of the NLRP3 pathway.
Collapse
Affiliation(s)
- Guimin Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Chenguang Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinfeng Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangjing Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hao Pan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuan Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhikang Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanjun Sun
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Zheng CY, Yue JM. Allylic hydroxylation of enones useful for the functionalization of relevant drugs and natural products. Nat Commun 2023; 14:2399. [PMID: 37100800 PMCID: PMC10133259 DOI: 10.1038/s41467-023-38154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Enones are privileged structural motifs in bioactive natural products and pharmaceuticals, but the γ-hydroxylation of enones is challenging. Here we show a mild and efficient method for the direct C(sp3)-H hydroxylation of enones via visible-light-induced hydrogen-atom transfer (HAT), which facilitates γ-hydroxylation of primary, secondary, and tertiary C-H bonds of different enones without involving metal and peroxide. The mechanism study shows that Na2-eosin Y serves as both the photocatalyst and the source of catalytic bromine radical species in the HAT-based catalytic cycle, and finally sacrifices itself completely by oxidative degradation to produce bromine radical and a major product phthalic anhydride in an environmentally friendly way. This scalable method was demonstrated by plenty of substrates (41 examples) including 10 clinical drugs and 15 natural products to be useful for the late-stage functionalization of enone-containing compounds, and, in particular, has potential application in industry for large-scale production.
Collapse
Affiliation(s)
- Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai, 201203, China.
| |
Collapse
|
10
|
Chen M, Chen RQ, Guo Y, Chen JX, Jin Q, Chen MH, Chen BY, Tu ZC, Ye WC, Wang L. Eugenilones A-N: sesquiterpenoids from the fruits of Eugenia uniflora. PHYTOCHEMISTRY 2023; 211:113699. [PMID: 37105351 DOI: 10.1016/j.phytochem.2023.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
(+) and (-)-Eugenilones A-K, 11 pairs of undescribed enantiomeric sesquiterpenoids, together with three undescribed biogenetically related members eugenilones L-N, were discovered from the fruits of Eugenia uniflora Linn. (Myrtaceae). Structurally, eugenilones A-D were four caged sesquiterpenoids featuring 9,10-dioxatricyclo [6.2.2.02,7]dodecane, 11-oxatricyclo [5.3.1.03,8]undecane, and tricyclo [4.4.0.02,8]decane cores, respectively. Eugenilones E-K were eudesmane-type sesquiterpenoids, while eugenilones L-N were epoxy germacrane-type sesquiterpenoids. Notably, eugenilones A-K were efficiently resolved by chiral HPLC to give 11 pairs of optically pure enantiomers. The structures and absolute configurations of eugenilones A-N were determined through spectroscopic analyses, X-ray crystallography, and ECD calculations. The putative biosynthetic pathways for these undescribed isolates were proposed. Moreover, eugenilones A and E exhibited significant anti-inflammatory effects by inhibiting LPS-stimulated NO overproduction in RAW264.7 cells (IC50 values of 4.89 ± 0.37 μM and 20.89 ± 1.49 μM, respectively) and TNF-α-induced NF-κB activation in HEK293 cells (IC50 values of 10.97 ± 1.03 μM and 28.63 ± 1.59 μM, respectively).
Collapse
Affiliation(s)
- Mu Chen
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Run-Qiang Chen
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yuan Guo
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Xin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qian Jin
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Mei-Hong Chen
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Bo-Yong Chen
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zheng-Chao Tu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
11
|
Jiang Y, Chen C, Zhu H, Li Q, Mao L, Liao H, Nan Y, Wang Z, Zhou H, Zhou Q, Zhang Y. An indole diketopiperazine alkaloid and a bisabolane sesquiterpenoid with unprecedented skeletons from Aspergillus fumigatus. Org Biomol Chem 2023; 21:2236-2242. [PMID: 36815264 DOI: 10.1039/d2ob02220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fumitryprostatin A (1), the first example of an indole diketopiperazine alkaloid with a tricyclic 5/6/5 skeleton characterized by a dipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione ring system decorated with a prenylated indole moiety, and fuminoid A (2), a sesquiterpenoid with a bicyclo[3.2.1]octane ring featuring a novel carbon skeleton via the transformation of the methyl, were isolated from the fungus Aspergillus fumigatus along with six known diketopiperazine alkaloids. The structure with the absolute configuration of 1 was determined based on spectroscopic analyses and X-ray crystallographic analysis, while the configuration of 2 was assigned tentatively by 13C NMR data with DP4+ probability analyses and ECD calculations. A plausible biosynthetic pathway for 1 was proposed starting from L-Trp and L-Pro via normal indole diketopiperazine. Compound 1 exhibited moderate cytotoxic activity with an IC50 value of 14.6 μM, while compound 8 exhibited moderate immunosuppressive activity in vitro.
Collapse
Affiliation(s)
- Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyang Nan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Hongjian Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Kang X, Yang W, Zheng Y, Zheng M, Xiao Y, Wang J, Zhu H, Li Q, Chen C, Zhang Y. Caryophyllene sesquiterpenoids with various ring systems from the fungus Pestalotiopsis chamaeropis. PHYTOCHEMISTRY 2023; 207:113569. [PMID: 36566821 DOI: 10.1016/j.phytochem.2022.113569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Six undescribed caryophyllene sesquiterpenoids named pestalotiopsins O-T, along with eight known analogues, were obtained from the fungus Pestalotiopsis chamaeropis. Their structures and absolute configurations were assigned by NMR spectroscopic analyses, HRESIMS, single-crystal X-ray diffraction, electronic circular dichroism (ECD) calculations, Mo2(OAc)4-induced ECD, and chemical derivatization. Pestalotiopsin P represents the first example of a caryophyllene sesquiterpenoid possessing an oxatricyclo [7.2.2.03.6]tridecane decorated with a rare bridgehead double bond, while pestalotiopsin Q has an oxatricyclic [6.3.1.01,4]dodecane skeleton with an unusual ether bridge between C-1 and C-5. These undescribed caryophyllene sesquiterpenoids were screened for their cytotoxic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wanqi Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Meijia Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
14
|
Masunaga N, Kitaoka T, Ichinose H. Biocatalyst collection and heterologous expression of sesquiterpene synthases from basidiomycetous fungi: Discovery of a novel sesquiterpene hydrocarbon. Microb Biotechnol 2023; 16:632-644. [PMID: 36576879 PMCID: PMC9948225 DOI: 10.1111/1751-7915.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022] Open
Abstract
Basidiomycetes produce a wide variety of sesquiterpenoids, which attract significant interest in pharmaceutical and industrial applications. Structural diversification of sesquiterpenoids is performed by sesquiterpene synthases (STSs), which produce a wide array of backbone structures; therefore, functional characterization and increased biocatalyst collection of STSs are important for expanding scientific knowledge and meeting the needs of advanced biotechnology. Gene identification and functional annotation of STSs from the basidiomycetous fungi Agaricus bisporus, Auriscalpium vulgare, Lepista nuda, Pleurotus ostreatus and Trametes versicolor were conducted. Through these investigations, the catalytic functions of 30 STSs were revealed using recombinant enzymes heterologously expressed in Saccharomyces cerevisiae. Furthermore, the unique function of an STS from P. ostreatus, PoSTS-06, was revealed to be the production of a novel sesquiterpene hydrocarbon that we named pleostene. The absolute structure of pleostene was determined by NMR spectroscopy and X-ray crystallography using the crystalline sponge method.
Collapse
Affiliation(s)
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
15
|
Enzyme-like polyene cyclizations catalyzed by dynamic, self-assembled, supramolecular fluoro alcohol-amine clusters. Nat Commun 2023; 14:813. [PMID: 36781877 PMCID: PMC9925744 DOI: 10.1038/s41467-023-36157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Terpene cyclases catalyze one of the most powerful transformations with respect to efficiency and selectivity in natural product (bio)synthesis. In such polyene cyclizations, structurally highly complex carbon scaffolds are built by the controlled ring closure of linear polyenes. Thereby, multiple C,C bonds and stereocenters are simultaneously created with high precision. Structural pre-organization of the substrate carbon chain inside the active center of the enzyme is responsible for the product- and stereoselectivity of this cyclization. Here, we show that in-situ formed fluorinated-alcohol-amine supramolecular clusters serve as artificial cyclases by triggering enzyme-like reactivity and selectivity by controlling substrate conformation in solution. Because of the dynamic nature of these supramolecular assemblies, a broad range of terpenes can be produced diastereoselectively. Mechanistic studies reveal a finely balanced interplay of fluorinated solvent, catalyst, and substrate as key to establishing nature's concept of a shape-selective polyene cyclization in organic synthesis.
Collapse
|
16
|
Wang H, Zou Y, Li M, Tang Z, Wang J, Tian Z, Strassner N, Yang Q, Zheng Q, Guo Y, Liu W, Pan L, Houk KN. A cyclase that catalyses competing 2 + 2 and 4 + 2 cycloadditions. Nat Chem 2023; 15:177-184. [PMID: 36690833 DOI: 10.1038/s41557-022-01104-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/01/2022] [Indexed: 01/24/2023]
Abstract
Cycloaddition reactions are among the most widely used reactions in chemical synthesis. Nature achieves these cyclization reactions with a variety of enzymes, including Diels-Alderases that catalyse concerted 4 + 2 cycloadditions, but biosynthetic enzymes with 2 + 2 cyclase activity have yet to be discovered. Here we report that PloI4, a β-barrel-fold protein homologous to the exo-selective 4 + 2 cyclase that functions in the biosynthesis of pyrroindomycins, catalyses competitive 2 + 2 and 4 + 2 cycloaddition reactions. PloI4 is believed to catalyse an endo-4 + 2 cycloaddition in the biosynthesis of pyrrolosporin A; however, when the substrate precursor of pyrroindomycins was treated with PloI4, an exo-2 + 2 adduct was produced in addition to the exo- and endo-4 + 2 adducts. Biochemical characterizations, computational analyses, (co)crystal structures and mutagenesis outcomes have allowed the catalytic versatility of PloI4 to be rationalized. Mechanistic studies involved the directed engineering of PloI4 to variants that produced the exo-4 + 2, endo-4 + 2 or exo-2 + 2 product preferentially. This work illustrates an enzymatic thermal 2 + 2 cycloaddition and provides evidence of a process through which an enzyme evolves along with its substrate for specialization and activity improvement.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Miao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiabao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry, Shanghai Normal University, Shanghai, China
| | - Zhenhua Tian
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,Abiochem Biotechnology Co., Ltd, Shanghai, China
| | - Nina Strassner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujiao Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China. .,Department of Chemistry, Shanghai Normal University, Shanghai, China.
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Lungu L, Blaja S, Cucicova C, Ciocarlan A, Barba A, Kulcițki V, Shova S, Vornicu N, Geana EI, Mangalagiu II, Aricu A. Synthesis and Antimicrobial Activity Evaluation of Homodrimane Sesquiterpenoids with a Benzimidazole Unit. Molecules 2023; 28:molecules28030933. [PMID: 36770601 PMCID: PMC9921711 DOI: 10.3390/molecules28030933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herein we report a feasible study concerning the synthesis and the in vitro antimicrobial activity of some new homodrimane sesquiterpenoids with a benzimidazole unit. Based on some homodrimane carboxylic acids, on their acyl chlorides and intermediate monoamides, a series of seven N-homodrimenoyl-2-amino-1,3-benzimidazoles and 2-homodrimenyl-1,3-benzimidazoles was synthesized. The syntheses involved the decarboxylative cyclization and condensation of the said acids or acyl chlorides with o-phenylendiamine and 2-aminobenzimidazole, as well as the p-TsOH-mediated cyclodehydration of the said monoacylamides. The structures of the synthesized compounds have been fully confirmed, including by the X-ray diffraction. Their biological activities were evaluated on five species of fungi (Aspergillus niger, Fusarium solani, Penicillium chrysogenum, P. frequentans, and Alternaria alternata) and two strains of bacteria (Bacillus sp. and Pseudomonas aeruginosa). Compounds 7 and 20 showed higher antifungal (MIC = 0.064 and 0.05 μg/mL) and antibacterial (MIC = 0.05 and 0.032 μg/mL) activities compared to those of the standards: caspofungin (MIC = 0.32 μg/mL) and kanamycin (MIC = 2.0 μg/mL), and compounds 4, 10, 14, and 19 had moderate activities.
Collapse
Affiliation(s)
- Lidia Lungu
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Svetlana Blaja
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Caleria Cucicova
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Alexandru Ciocarlan
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Alic Barba
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Veaceslav Kulcițki
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, 700487 Iasi, Romania
| | - Nicoleta Vornicu
- Metropolitan Center of Research T.A.B.O.R., 9 Closca Str., 700066 Iasi, Romania
| | - Elisabeta-Irina Geana
- Department of Research and Development, National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm., Valcea, 4th Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 11 Carol Bd., 700506 Iasi, Romania
| | - Aculina Aricu
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
- Correspondence: or
| |
Collapse
|
18
|
Zhao H, He Y, Zhang K, Li S, Chen Y, He M, He F, Gao B, Yang D, Fan Y, Zhu X, Yan M, Giglioli‐Guivarc'h N, Hano C, Fernie AR, Georgiev MI, Janovská D, Meglič V, Zhou M. Rewiring of the seed metabolome during Tartary buckwheat domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:150-164. [PMID: 36148785 PMCID: PMC9829391 DOI: 10.1111/pbi.13932] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 05/22/2023]
Abstract
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- College of Plant PathologyGansu Agricultural UniversityLanzhouChina
| | - Yong Chen
- Wuhan Metware Biotechnology Co., Ltd.WuhanChina
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Di Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuemei Zhu
- College of Environmental SciencesSichuan Agricultural UniversityChengduChina
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans TeamUniversité d'OrléansOrléans Cédex 2France
| | - Alisdair R. Fernie
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Milen I. Georgiev
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Laboratory of MetabolomicsInstitute of Microbiology, Bulgarian Academy of SciencesPlovdivBulgaria
| | - Dagmar Janovská
- Department of Gene BankCrop Research Institute (CRI)Praha 6Czech Republic
| | | | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
19
|
Fungal Bergamotane Sesquiterpenoids-Potential Metabolites: Sources, Bioactivities, and Biosynthesis. Mar Drugs 2022; 20:md20120771. [PMID: 36547918 PMCID: PMC9787638 DOI: 10.3390/md20120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The marine environment represents the largest ecosystem on the Earth's surface. Marine-derived fungi are of remarkable importance as they are a promising pool of diverse classes of bioactive metabolites. Bergamotane sesquiterpenoids are an uncommon class of terpenoids. They possess diverse biological properties, such as plant growth regulation, phototoxic, antimicrobial, anti-HIV, cytotoxic, pancreatic lipase inhibition, antidiabetic, anti-inflammatory, and immunosuppressive traits. The current work compiles the reported bergamotane sesquiterpenoids from fungal sources in the period ranging from 1958 to June 2022. A total of 97 compounds from various fungal species were included. Among these metabolites, 38 compounds were derived from fungi isolated from different marine sources. Furthermore, the biological activities, structural characterization, and biosynthesis of the compounds are also discussed. The summary in this work provides a detailed overview of the reported knowledge of fungal bergamotane sesquiterpenoids. Moreover, this in-depth and complete review could provide new insights for developing and discovering new valuable pharmaceutical agents from these natural metabolites.
Collapse
|
20
|
Wu JF, Turak A, Zang D, Zou GA, Aisa HA. Sesquiterpenoids from Seriphidium transiliense and Their Melanogenic Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:2570-2582. [PMID: 36326734 DOI: 10.1021/acs.jnatprod.2c00527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A sesquiterpenoid with an unprecedented 5/5/4 tricyclic skeleton (1), a nor-sesquiterpenoid with a rare 6/7 bicyclic skeleton (2), 10 new sesquiterpenoids (3-12), and six known analogues (13-18) were isolated from the whole plants of Seriphidium transiliense. The structures of compounds 1-12 were elucidated by spectroscopic data analysis. Compound 7 showed melanogenic promotion activity in murine melanoma (B16) cells more potent than the positive control used, 8-methoxypsoralen (8-MOP). Further mechanistic studies indicated that compound 7 promotes melanogenesis through activating the transcription of microphthalmia-associated transcription factor (MITF) and tyrosinase family genes in B16 cells. Moreover, compound 7 also inhibited the expression of IFN-γ-chemokine through the JAK/STAT signaling pathway in immortalized human keratinocyte (HaCaT) cells. These results suggest that the sesquiterpenoid 7 shows potential activity for treating vitiligo.
Collapse
Affiliation(s)
- Jun-Fang Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Ablajan Turak
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Guo-An Zou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| |
Collapse
|
21
|
ZHANG YJ, BAI M, LI JY, QIN SY, LIU YY, HUANG XX, ZHENG J, SONG SJ. Diverse sesquiterpenoids from Litsea lancilimba Merr. with potential neuroprotective effects against H2O2-induced SH-SY5Y cell injury. Chin J Nat Med 2022; 20:701-711. [DOI: 10.1016/s1875-5364(22)60199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/26/2022]
|
22
|
Zhao YY, Li YJ, Yu XM, Su QT, Wang LW, Zhu YS, Fu YH, Chen GY, Liu YP. Bisabolane-type sesquiterpenoids with potential anti-inflammatory and anti-HIV activities from the stems and leaves of Morinda citrifolia. Nat Prod Res 2022; 37:1961-1968. [PMID: 35975763 DOI: 10.1080/14786419.2022.2112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The phytochemical study on the stems and leaves of Morinda citrifolia L. resulted in the isolation of a new naturally occurring bisabolane-type sesquiterpenoid, morincitrinoid A (1), together with five known analogues (2-6). The chemical structure of 1 was elucidated by comprehensive spectral analyses. The known compounds 2-6 were identified by comparing their spectral data with those reported in the literature, which were isolated from M. citrifolia for the first time. In addition, the anti-inflammatory and anti-HIV activities of compounds 1-6 were evaluated in vitro. Compounds 1-6 displayed significant inhibitory activities on NO (nitric oxide) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells with IC50 values ranging from 0.98 ± 0.07 to 6.32 ± 0.11 μM, which was comparable to hydrocortisone. Meanwhile, compounds 1-6 showed remarkable anti-HIV-1 reverse transcriptase (RT) effects with the EC50 values ranging from 0.16 to 6.29 μM.
Collapse
Affiliation(s)
- Ying-Ying Zhao
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yu-Jie Li
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Xiao-Mei Yu
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Qin-Ting Su
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Li-Wen Wang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yu-Shu Zhu
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yan-Hui Fu
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yan-Ping Liu
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| |
Collapse
|
23
|
Syringenes A–L: Bioactive dimeric eremophilane sesquiterpenoids from Syringa pinnatifolia. Bioorg Chem 2022; 125:105879. [DOI: 10.1016/j.bioorg.2022.105879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
|
24
|
Tori M. Cumulative Data of 1H and 13C NMR Signals and Specific Rotations of Eremophilane Sesquiterpenoids. 1. Bicyclic Eremophilanes (1). Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
1H and 13C Nuclear Magnetic Resonance (NMR) signals and specific rotations of eremophilane sesquiterpenoids are cumulated as a series of review articles. In the first chapter of this review, 332 bicyclic eremophilanes, namely with no furan or lactone rings (except for epoxides), without 3-OR functionality (except for hydroxy, acetoxy, and carbonyl) are listed in tables. These data may help chemists working in the area of natural products chemistry as well as synthetic scientists.
Collapse
Affiliation(s)
- Motoo Tori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| |
Collapse
|
25
|
Ge J, Liu Z, Zhong Z, Wang L, Zhuo X, Li J, Jiang X, Ye XY, Xie T, Bai R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorg Chem 2022; 124:105817. [DOI: 10.1016/j.bioorg.2022.105817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
26
|
Li A, Ma X, Zhang R, Jiao S, Li W, Gao X, Xu J, Tu P, Chai X. Syringenes M - Q, Eremophilane Sesquiterpenoid Dimers from the Peeled Stems of Syringa pinnatifolia. Chem Biodivers 2022; 19:e202200245. [PMID: 35652443 DOI: 10.1002/cbdv.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022]
Abstract
As a part of systematic studies on Syringa pinnatifolia, a continued phytochemical investigation guided by 1 H-NMR and LC/MS data on the ethanol extract afforded five new dimeric eremophilane sesquiterpenoids, namely syringenes M-Q (1-5). These structures were elucidated by extensive analysis of spectroscopic data, including infrared (IR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), nuclear magnetic resonance (NMR), quantum-mechanics-based computational analysis of NMR chemical shifts, and single-crystal X-ray diffraction. Compounds 4 and 5 showed inhibitory activities against NO production induced by lipopolysaccharide in RAW264.7 macrophage cells, with IC50 values of 5.1 and 9.3 μM, compared to positive control indomethacin (IC50 33.6 μM). These dimeric eremophilane sesquiterpenoids may be potential markers for discriminating this species from the genus Syringa and the Oleaceae family.
Collapse
Affiliation(s)
- Anni Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xiaojing Ma
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Ruifei Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Shungang Jiao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Weifeng Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xiaoli Gao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Jixuan Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Pengfei Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xingyun Chai
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| |
Collapse
|
27
|
Wang KY, Li Y, Zhang SL, Chen JH, Yang Z. Asymmetric syntheses of (–)-hedyosumins A–C via enantioselective Diels–Alder reaction of (E)-Hex-3-en-5-yn-2-one and platinum(II)-catalyzed [3+2]-cyclization. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Park KHK, Frank N, Duarte F, Anderson EA. Collective Synthesis of Illudalane Sesquiterpenes via Cascade Inverse Electron Demand (4 + 2) Cycloadditions of Thiophene S, S-Dioxides. J Am Chem Soc 2022; 144:10017-10024. [PMID: 35609003 PMCID: PMC9185749 DOI: 10.1021/jacs.2c03304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiophene S,S-dioxides are underutilized tools for the de novo construction of benzene rings in organic synthesis. We report a collective synthesis of nine illudalane sesquiterpenes using bicyclic thiophene S,S-dioxides as generalized precursors to the indane core of the natural products. Exploiting furans as unusual dienophiles in this inverse electron demand Diels-Alder cascade, this concise and convergent approach enables the synthesis of these targets in as little as five steps. Theoretical studies rationalize the reactivity of thiophene S,S-dioxides with both electron-poor and electron-rich dienophiles and reveal reaction pathways involving either nonpolar pericyclic or bifurcating ambimodal cycloadditions. Overall, this work demonstrates the wider potential of thiophene S,S-dioxides as convenient and flexible precursors to polysubstituted arenes.
Collapse
Affiliation(s)
- Kun Ho Kenny Park
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Nils Frank
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Fernanda Duarte
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Edward A Anderson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
29
|
Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids. Molecules 2022; 27:molecules27082501. [PMID: 35458699 PMCID: PMC9031474 DOI: 10.3390/molecules27082501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids.
Collapse
|
30
|
Latent potentials of the white-rot basidiomycete Phanerochaete chrysosporium responsible for sesquiterpene metabolism: CYP5158A1 and CYP5144C8 decorate (E)-α-bisabolene. Enzyme Microb Technol 2022; 158:110037. [DOI: 10.1016/j.enzmictec.2022.110037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022]
|
31
|
Zhao P, Xin BS, Qin SY, Li ZY, Lin B, Yao GD, Song SJ, Huang XX. Characteristic guaiane sesquiterpenes from Daphne penicillata and ECD/NMR-based assignment of C-1 configuration. Org Chem Front 2022. [DOI: 10.1039/d2qo01261h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
40 compounds including the first C17 homo-guaiane sesquiterpene (1) were isolated from Daphne penicillata and an efficient method using ECD/NMR strategy to access the C-1 configuration of characteristic guaiane sesquiterpenes has been developed.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shu-Yan Qin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhi-Yuan Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
32
|
Dai Q, Zhang FL, Li ZH, He J, Feng T. Immunosuppressive Sesquiterpenoids from the Edible Mushroom Craterellus odoratus. J Fungi (Basel) 2021; 7:jof7121052. [PMID: 34947034 PMCID: PMC8707212 DOI: 10.3390/jof7121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this work was to comprehensively understand the chemical constituents of the edible mushroom Craterellus ordoratus and their bioactivity. A chemical investigation on this mushroom led to the isolation of 23 sesquiterpenoids including eighteen previously undescribed bergamotane sesquiterpenes, craterodoratins A–R (1–18), and one new victoxinine derivative, craterodoratin S (19). The new structures were elucidated by detailed interpretation of spectrometric data, theoretical nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculations, and single-crystal X-ray crystallographic analysis. Compounds 1 and 2 possess a ring-rearranged carbon skeleton. Compounds 3, 10, 12–15, 19, 20 and 23 exhibit potent inhibitory activity against the lipopolysaccharide (LPS)-induced proliferation of B lymphocyte cells with the IC50 values ranging from 0.67 to 22.68 μM. Compounds 17 and 20 inhibit the concanavalin A (ConA)-induced proliferation of T lymphocyte cell with IC50 values of 31.50 and 0.98 μM, respectively. It is suggested that C. ordoratus is a good source for bergamotane sesquiterpenoids, and their immunosuppressive activity was reported for the first time. This research is conducive to the further development and utilization of C. ordoratus.
Collapse
Affiliation(s)
- Quan Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Fa-Lei Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (J.H.); (T.F.)
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (J.H.); (T.F.)
| |
Collapse
|
33
|
Gao RR, Liu ZF, Yang XF, Song YL, Cui XY, Yang JY, Lu CH, Shen YM. Specialised metabolites as chemotaxonomic markers of Coptosapelta diffusa, supporting its delimitation as sisterhood phylogenetic relationships with Rubioideae. PHYTOCHEMISTRY 2021; 192:112929. [PMID: 34481176 DOI: 10.1016/j.phytochem.2021.112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
From the aerial extracts of Coptosapelta diffusa (Champ. ex Benth.) Steenis, twenty-one compounds were isolated and identified by means of column chromatography and NMR and MS techniques, respectively. Amongst, ten ones were determined to be undescribed compounds including six seco-iridoid glucosides (1-6), 2-(hydroxymethyl)-1,2,3,4-tetrahydroanthracene-9,10-dione (7) and three guaiane-type sesquiterpenes (15-17). Compounds 7, 8 and 9 exhibited inhibitory activities against Staphylococcus aureus ATCC25923 with MIC of 8, 4 and 8 μg/mL. The use of 1-6 (iridoids), 7-14 (anthraquinones) and 15-17 (sesquiterpenes) as chemotaxonomic markers for this species was evidenced. Structurally, 7-14 are similar to those anthraquinones isolated from other species of the family Rubiaceae, confirming their close phylogenetic relationship. Whereas, these iridoids and sesquiterpenes with unique structures provided chemotaxonomic evidence to support the genus Coptosapelta (the tribe Coptosapelteae) as a sister of the subfamily Rubioideae. These results contrast with the general producing tendency of indole alkaloids by the species of the subfamily Cinchonoideae, and merit chemotaxonomic significance for the delimitation of Coptosapelta.
Collapse
Affiliation(s)
- Rong-Rong Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhi-Fang Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xue-Fei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu-Liang Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiao-Yun Cui
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ji-Yuan Yang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chun-Hua Lu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yue-Mao Shen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| |
Collapse
|
34
|
Dai Q, Zhang FL, Feng T. Sesquiterpenoids Specially Produced by Fungi: Structures, Biological Activities, Chemical and Biosynthesis (2015-2020). J Fungi (Basel) 2021; 7:1026. [PMID: 34947008 PMCID: PMC8705726 DOI: 10.3390/jof7121026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fungi are widely distributed in the terrestrial environment, freshwater, and marine habitat. Only approximately 100,000 of these have been classified although there are about 5.1 million characteristic fungi all over the world. These eukaryotic microbes produce specialized metabolites and participate in a variety of ecological functions, such as quorum detection, chemical defense, allelopathy, and maintenance of symbiosis. Fungi therefore remain an important resource for the screening and discovery of biologically active natural products. Sesquiterpenoids are arguably the richest natural products from plants and micro-organisms. The rearrangement of the 15 high-ductility carbons gave rise to a large number of different skeletons. At the same time, abundant structural variations lead to a diversification of biological activity. This review examines the isolation, structural determination, bioactivities, and synthesis of sesquiterpenoids that were specially produced by fungi over the past five years (2015-2020).
Collapse
Affiliation(s)
| | | | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.)
| |
Collapse
|
35
|
Kato R, Saito H, Uda S, Domon D, Ikeuchi K, Suzuki T, Tanino K. Synthesis of Seven-Membered Cross-Conjugated Cyclic Trienes by 8π Electrocyclic Reaction. Org Lett 2021; 23:8878-8882. [PMID: 34714079 DOI: 10.1021/acs.orglett.1c03383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A method for the synthesis of 3-methylene-1,4-cycloheptadiene derivatives via an 8π electrocyclization reaction was developed. The triene substrate bearing a phosphate or carbamate group was prepared from γ,δ-unsaturated esters and α,β-unsaturated aldehydes in four steps. Upon treatment with NaHMDS or KHMDS, the substrate formed a heptatrienyl anion, which underwent electrocyclization and subsequent β-elimination of the leaving group. The product could be converted into a tropylium salt in two steps.
Collapse
Affiliation(s)
- Ranmaru Kato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroki Saito
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Shoko Uda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Daisuke Domon
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
36
|
Guo ZY, Song WM, Xia GR, He Y, Zhang XQ. Preparation, Structure Elucidation, and Cytotoxic Activity of Amide Derivatives of Hydroxysydonic Acid. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Zhao P, Li ZY, Qin SY, Xin BS, Liu YY, Lin B, Yao GD, Huang XX, Song SJ. Three Unusual Sesquiterpenes with Distinctive Ring Skeletons from Daphne penicillata Uncovered by Molecular Networking Strategies. J Org Chem 2021; 86:15298-15306. [PMID: 34612634 DOI: 10.1021/acs.joc.1c01880] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Daphnenoids A-C (1-3), three unusual sesquiterpenes with distinctive ring skeletons, together with a biogenetically related daphnenoid D (4) were obtained from the herb of Daphne penicillata by molecular networking strategies. Daphnenoid A (1) possesses a unique caged tetracyclo [5.3.2.01,6.04,11] dodecane scaffold by unexpected cyclizations of C-1/C-11 and C-2/C-14. Daphnenoids B and C (2 and 3) were the first discovered natural sesquiterpenes with unique 5/5 spirocyclic systems in nature. Their structures were determined by NMR spectroscopic analysis, computer-assisted structure elucidation methods, quantum chemical calculations, and X-ray diffraction. A hypothetical biogenetic pathway begins with typical guaiane sesquiterpene (a), including a key intermediate (4) was proposed. Daphnenoids B and C (2 and 3) exhibited potential inhibitory activities on the production of NO against LPS-induced BV2 microglial cells.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhi-Yuan Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shu-Yan Qin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yu-Yang Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
38
|
Thorat SS, Rama Krishna G, Kontham R. Stereoselective Total Synthesis of (±)-Pleurospiroketals A and B. J Org Chem 2021; 86:13572-13582. [PMID: 34547199 DOI: 10.1021/acs.joc.1c01634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A full account of our efforts toward the stereoselective total synthesis of sesquiterpenoid-derived natural products (±)-pleurospiroketals A and B is described. Commercially available 3-methyl-2-cyclohexenone and 2,2-dimethyloxirane were used as key building blocks, and the substrate-controlled stereoselection was exploited to access the entire stereochemistry of these natural products. Initially, a planned synthetic route involving a [6,5]-bicyclic lactone intermediate was found to be insurmountable, and the later strategy comprising OsO4-NMO-mediated dihydroxylation of 3-methyl-2-cyclohexenone, followed by Luche reduction, Eschenmoser methylenation, and Brønsted acid-induced spiroketalization steps, was ultimately identified as the reliable strategy.
Collapse
Affiliation(s)
- Sagar S Thorat
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gamidi Rama Krishna
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
39
|
Minh Le T, Szakonyi Z. Enantiomeric Isopulegol as the Chiral Pool in the Total Synthesis of Bioactive Agents. CHEM REC 2021; 22:e202100194. [PMID: 34553822 DOI: 10.1002/tcr.202100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Indexed: 11/12/2022]
Abstract
Isopulegol, a pool of abundant chiral terpene, has long served as the starting material for the total synthesis of isopulegol-based drugs. As an inexpensive and versatile starting material, this compound continues to serve modern synthetic chemistry. This review highlights the total syntheses of terpenoids in the period from 1980 to 2020 in which with isopulegol applied as a building block.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Stereochemistry Research Group of the Hungarian Academy Science, Eötvös utca 6, H-6720, Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720, Szeged, Hungary
| |
Collapse
|
40
|
Zhang C, Zhou W, Lei X, Zhao S. Nitric oxide inhibitory terpenes and its glycosides from Ainsliaea bonatii. Fitoterapia 2021; 156:105028. [PMID: 34506870 DOI: 10.1016/j.fitote.2021.105028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
Seven new terpenes (1-5) and its derivatives (9 and 10) classified into a p-menthane glycoside (1), a guaianolide glycoside (2), three eudesmane and its glycosides (3-5), and two mono-terpene derivatives (9 and 10) were isolated from Ainsliaea bonatii, together with three known guaianolides (6-8). Their structures were elucidated by spectroscopic data analysis, and absolute configurations were determined by DP4+ probability analysis via calculated 13C NMR data of isomers. Compounds 6 and 9 showed nitric oxide (NO) inhibitory effects in LPS-induced RAW 264.7 macrophage cells with IC50 values of 9.3 and 10.6 μM, respectively.
Collapse
Affiliation(s)
- Chen Zhang
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Wenbin Zhou
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xiaoying Lei
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Suqing Zhao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| |
Collapse
|
41
|
Xue GM, Xue JF, Zhao CG, Zhao ZZ, Zhi YL, Du K, Li HW, Sun YJ, Feng WS. 1,10-seco guaianolide-type sesquiterpenoids from Chrysanthemum indicum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:877-883. [PMID: 32603195 DOI: 10.1080/10286020.2020.1787388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
ABSTACTA chemical investigation of the whole plant of traditional Chinese medicine, Chrysanthemum indicum L., led to the discovery of six guaianolide-type sesquiterpenoids 1-6 with a 1,10-splited skeleton. The structure of the new compound 1 was established by extensive analysis of UV, IR, MS, NMR and ECD data. Compounds 3-6 are mutually stereoisomers with four chiral centers and their absolute configurations were determined by comparison of ECD spectra. The anti-inflammatory effects of these isolates on lipopolysaccharide (LPS)-induced nitric oxide (NO) were investigated in RAW 264.7 cells. Results showed that most of the compounds displayed NO production inhibitory activities with IC50 values ranged from 3.54 to 8.17 μM.
Collapse
Affiliation(s)
- Gui-Min Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Jin-Feng Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Chen-Guang Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Zhen-Zhu Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yan-Le Zhi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Kun Du
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Han-Wei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yan-Jun Sun
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| |
Collapse
|
42
|
Russo TVC, Sá MM. One‐Pot Synthesis of α‐Diazo‐γ,δ‐unsaturated Esters as Versatile Building Blocks for Functionalized Dienes, Cyclopentenes, and 5,7‐Fused Bicycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Theo V. C. Russo
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis SC 88040-900 Brazil
| | - Marcus M. Sá
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis SC 88040-900 Brazil
| |
Collapse
|
43
|
Liang D, Li W, Yan X, Caiyin Q, Zhao G, Qiao J. Molecular and Functional Evolution of the Spermatophyte Sesquiterpene Synthases. Int J Mol Sci 2021; 22:ijms22126348. [PMID: 34198531 PMCID: PMC8232007 DOI: 10.3390/ijms22126348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
Sesquiterpenes are important defense and signal molecules for plants to adapt to the environment, cope with stress, and communicate with the outside world, and their evolutionary history is closely related to physiological functions. In this study, the information of plant sesquiterpene synthases (STSs) with identified functions were collected and sorted to form a dataset containing about 500 members. The phylogeny of spermatophyte functional STSs was constructed based on the structural comparative analysis to reveal the sequence–structure–function relationships. We propose the evolutionary history of plant sesquiterpene skeletons, from chain structure to small rings, followed by large rings for the first time and put forward a more detailed function-driven hypothesis. Then, the evolutionary origins and history of spermatophyte STSs are also discussed. In addition, three newly identified STSs CaSTS2, CaSTS3, and CaSTS4 were analyzed in this functional evolutionary system, and their germacrene D products were consistent with the functional prediction. This demonstrates an application of the structure-based phylogeny in predicting STS function. This work will help us to understand evolutionary patterns and dynamics of plant sesquiterpenes and STSs and screen or design STSs with specific product profiles as functional elements for synthetic biology application.
Collapse
Affiliation(s)
- Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Weiguo Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Ministry of Education, Tianjin 300072, China
- Correspondence: ; Tel.: +86-22-8740-2107
| |
Collapse
|
44
|
Zhai YJ, Li JN, Gao YQ, Gao LL, Wang DC, Han WB, Gao JM. Structurally Diverse Sesquiterpenoids with Anti-neuroinflammatory Activity from the Endolichenic Fungus Cryptomarasmius aucubae. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:325-332. [PMID: 33963522 PMCID: PMC8141073 DOI: 10.1007/s13659-021-00299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/27/2021] [Indexed: 05/04/2023]
Abstract
Two new sterpurane sesquiterpenoids named sterpurol D (1) and sterpurol E (2), and one skeletally new sesquiterpene, cryptomaraone (3), bearing a 5,6-fused bicyclic ring system, along with five known ones, sterpurol A (4), sterpurol B (5), paneolilludinic Acid (6), murolane-2α, 9β-diol-3-ene (7) and (-)-10,11-dihydroxyfarnesol (8) were isolated from an endolichenic fungus Cryptomarasmius aucubae. The structures of the new compounds were elucidated by analysis of NMR spectroscopic spectra and HRESIMS data. The absolute configurations of 1 and 2 were established by spectroscopic data analysis and comparison of specific optical rotation, as well as the biosynthetic consideration. Additionally, compounds 1, 2, 4-6, and 8 showed significant nitric oxide (NO) production inhibition in Lipopolysaccharide (LPS)-induced BV-2 microglial cells with the IC50 values ranging from 9.06 to 14.81 μM.
Collapse
Affiliation(s)
- Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lin-Lin Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Da-Cheng Wang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
45
|
Milker S, Sydow A, Torres-Monroy I, Jach G, Faust F, Kranz L, Tkatschuk L, Holtmann D. Gram-scale production of the sesquiterpene α-humulene with Cupriavidus necator. Biotechnol Bioeng 2021; 118:2694-2702. [PMID: 33844284 DOI: 10.1002/bit.27788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
Terpenoids have an impressive structural diversity and provide valuable substances for a variety of industrial applications. Among terpenes, the sesquiterpenes (C15 ) are the largest subclass with bioactivities ranging from aroma to health promotion. In this article, we show a gram-scale production of the sesquiterpene α-humulene in final aqueous concentrations of 2 g L-1 with the recombinant strain Cupriavidus necator pKR-hum in a fed-batch mode on fructose as carbon source and n-dodecane as an extracting organic phase for in situ product removal. Since C. necator is capable of both heterotrophic and autotrophic growth, we additionally modeled the theoretically possible yields of a heterotrophic versus an autotrophic process on CO2 in industrially relevant quantities. We compared the cost-effectiveness of both processes based on a production of 10 t α-humulene per year, with both processes performing equally with similar costs and gains. Furthermore, the expression and activity of 3-hydroxymethylglutaryl-CoA reductase (hmgR) from Myxococcus xanthus was identified as the main limitation of our constructed C. necator pKR-hum strain. Thus, we outlined possible solutions for further improvement of our production strain, for example, the replacement of the hmgR from M. xanthus by a plant-based variant to increase α-humulene production titers in the future.
Collapse
Affiliation(s)
| | - Anne Sydow
- DECHEMA Research Institute, Frankfurt, Germany
| | | | - Guido Jach
- Phytowelt Greentechnologies GmbH, Nettetal, Germany
| | - Frederik Faust
- THM Gießen University of Applied Sciences, Gießen, Germany
| | - Lea Kranz
- THM Gießen University of Applied Sciences, Gießen, Germany
| | | | - Dirk Holtmann
- DECHEMA Research Institute, Frankfurt, Germany.,THM Gießen University of Applied Sciences, Gießen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Gießen, Germany
| |
Collapse
|
46
|
First time β-farnesene production by the versatile bacterium Cupriavidus necator. Microb Cell Fact 2021; 20:89. [PMID: 33902586 PMCID: PMC8074451 DOI: 10.1186/s12934-021-01562-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background Terpenes are remarkably diverse natural structures, which can be formed via two different pathways leading to two common intermediates. Among those, sesquiterpenes represent a variety of industrially relevant products. One important industrially produced product is β-farnesene as a precursor for a jet fuel additive. So far, microbial terpene production has been mostly limited to known production hosts, which are only able to grow on heterotrophic substrates. Results In this paper, we for the first time describe β-farnesene production by the versatile bacterial host Cupriavidus necator on fructose, which is known to grow hetero- and autotrophically and even in bioelectrochemical systems. We were able to show a growth-dependent production of β-farnesene by expressing the β-farnesene synthase from Artemisia annua in C. necator H16 PHB-4. Additionally, we performed a scale-up in a parallel reactor system with production titers of 26.3 ± 1.3 µM β-farnesene with a fed-batch process. Conclusions The β-farnesene production titers reported in this paper are not in the same range as titers published with known heterotrophic producers E. coli or S. cerevisiae. However, this proof-of-principle study with C. necator as production host opens new synthesis routes toward a sustainable economy and leaves room for further optimizations, which have been already performed with the known production strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01562-x.
Collapse
|
47
|
Liu G, Huo R, Zhai Y, Liu L. New Bioactive Sesquiterpeniods From the Plant Endophytic Fungus Pestalotiopsis theae. Front Microbiol 2021; 12:641504. [PMID: 33868199 PMCID: PMC8044550 DOI: 10.3389/fmicb.2021.641504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
Three new secondary metabolites pestalothenins A-C (1-3), including two new humulane-derived sesquiterpeniods (1 and 2) and one new caryophyllene-derived sesquiterpeniod (3), together with five known compounds (4-8) were isolated from the crude extract of the plant endophytic fungus Pestalotiopsis theae (N635). Their structures were elucidated by the extensive analyses of HRESIMS and NMR spectroscopic data. The absolute configurations of 1-3 were determined by comparison of experimental and calculated electronic circular dichroism (ECD) spectra. The cytotoxic effects of these compounds were evaluated in vitro. Compound 6 showed moderate cytotoxicity against T24 and MCF7 cell lines. In addition, compounds 1-8 were also evaluated for antibacterial activity.
Collapse
Affiliation(s)
- Gaoran Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiyun Huo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Zhai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Tori M, Kuroda C. Chemical Constituents of Ligularia Species (Asteraceae) and Their Diversity in East Asia. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 113:1-247. [PMID: 33721145 DOI: 10.1007/978-3-030-53028-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
More than 100 Ligularia species and those of several related genera (Cremanthodium, Cacalia, Senecio, and others) in the plant family Senecioneae grow in East Asia. For many years, researchers have studied the chemical constituents of these plants, and terpenoids, flavonoids, sterols, alkaloids, and aromatic compounds have been isolated. Among these, in particular, numerous sesquiterpenoids were reported. In this contribution, relevant chemical studies are described mainly from literature reports appearing since 2000, inclusive of investigations performed by the present authors, on the diversity in secondary metabolites of Ligularia growing in the Hengduan Mountains area of China, focusing on eremophilane sesquiterpenoids and other metabolites. Terpenoids and aromatic compounds (totaling 1049), both new and known, are listed. Genetic studies and synthesis investigations are also reviewed briefly.
Collapse
Affiliation(s)
- Motoo Tori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan.
| | - Chiaki Kuroda
- Department of Chemistry, Rikkyo University, Tokyo, Japan
| |
Collapse
|
49
|
Yan X, Li W, Liang D, Zhao G, Caiyin Q, Qiao J. Comparative transcriptome analysis of sesquiterpene biosynthesis and functional characterization of sesquiterpene synthases in Leonurus sibiricus L. PLANTA 2021; 253:71. [PMID: 33604817 DOI: 10.1007/s00425-021-03586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Two sesquiterpene synthases were identified through comparative transcriptome analysis of Leonurus sibiricus. LsSqTPS2 could produce high titer of δ-cadinene in vivo which suggests the terpene specificity of L. sibiricus. Leonurus sibiricus L., a medicinal herb, is widely used in China due to its pharmacological activities. Cadinene type sesquiterpenes, one of major bioactive components mainly present in aerial parts of L. sibiricus, showed antibacterial, anti-inflammatory, antioxidant and antiproliferative properties. However, there is no report about the sesquiterpene biosynthesis in L. sibiricus. This study identified L. sibiricus sesquiterpene synthases (LsSqTPSs) through comparative transcriptome analysis of L. sibiricus leaf and root samples using the BGISEQ-500 sequencing technique. A total of 83,244 unigenes were obtained with an average length of 1025 bp. Among them, 50,356 unigenes (60.49%) acquired annotations according to the BLAST searching results. A total of 68 differentially expressed genes (DEGs) were potentially involved in the sesquiterpene biosynthesis. Furthermore, four candidate DEGs encoding LsSqTPSs were characterized. The enzymatic characterization in engineered yeast showed that LsSqTPS1 produced α-farnesene as the single product and LsSqTPS2 mainly produced 76.23 mg/L of δ-cadinene, which constituted the major component of L. sibiricus leaf essential oil. This work contributes to the investigation of sesquiterpene biosynthesis in L. sibiricus.
Collapse
Affiliation(s)
- Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Weiguo Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
50
|
Yan X, Li W, Liang D, Caiyin Q, Zhao G, Zhang Z, Wenzhang M, Qiao J. De novo assembly of the Mylia taylorii transcriptome and identification of sesquiterpene synthases. Arch Biochem Biophys 2020; 698:108742. [PMID: 33359564 DOI: 10.1016/j.abb.2020.108742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 11/25/2022]
Abstract
Mylia taylorii is an ancient nonseed land plant that accumulates various sesquiterpenes with insecticidal and antibacterial activities. Recently, microbial-type sesquiterpene synthases (STSs) with atypical aspartate-rich metal ion binding motifs have been identified in some liverworts. Here, transcriptome analysis of M. taylorii was performed to identify M. taylorii sesquiterpene synthases (MtSTSs) that are potentially involved in sesquiterpene biosynthesis and diversity. A total of 255,669 unigenes were obtained with an average length of 963 bp in the transcriptome data of M. taylorii, among which 148,093 (57.92%) unigenes had BLAST results. Forty-eight unigenes were related to the sesquiterpene backbone biosynthesis according to KEGG annotation. In addition, MtSTS1, MtSTS2 and MtSTS3 identified from putative MtSTSs display sesquiterpene catalytic activities on the basis of functional characterizations in yeast. Interestingly, MtSTSs exhibit a noncanonical metal ion binding motif and the structural composition of a single α-domain, which are features of microbial STSs instead of archetypical plant STSs. This study revealed new microbial-type STS members of nonseed plants, and functionally identified that MtSTSs may contribute to the investigation of the biosynthesis and biological role of sesquiterpenes in M. taylorii.
Collapse
Affiliation(s)
- Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
| | - Weiguo Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
| | - Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
| | - Zhijun Zhang
- Tianjin Research Institute of Forestry and Pomology, Tianjin, 300384, PR China; National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin, 300384, PR China; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, 300384, PR China; Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, 300384, PR China.
| | - Ma Wenzhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, 650201, PR China.
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
| |
Collapse
|