1
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
2
|
Li W, Tian W, Wu Y, Guo S. A Novel Magnetic Manipulation Promotes Directional Growth of Periodontal Ligament Stem Cells. Tissue Eng Part A 2023; 29:620-632. [PMID: 37603495 DOI: 10.1089/ten.tea.2023.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Periodontium is the rally of soft and hard tissues, which will be devastated continuously by the compromise of periodontitis. Current periodontal therapeutic methods cannot effectively reconstruct periodontal ligament (PDL), which is oriented at an angle with tooth root and combined hard tissues to form cementum-PDL-alveolar bone complex. Hence, it is urgent to find new techniques for PDL reconstruction to achieve functional regeneration of periodontium. Herein, we developed a novel method to manipulate the distribution and growth of periodontal ligament stem cells (PDLSCs) by utilizing highly paralleled static magnetic field (SMF) and magnetic nanoparticles (MNPs). PDLSCs were incubated with MNPs in vitro to label with them. Meanwhile, CCK8 and live/dead cell staining assay were used to detect the impact of SMF and MNPs on cell viability. The directional migration and growth of PDLSCs were visualized under microscope. Furthermore, real-time quantitative PCR and western blot were utilized to calculate the expression level of PDL-related genes. The results showed that PDLSCs could rapidly take up MNPs without compromising cell proliferation and viability, consequently endowed with the ability to respond via magnetic force. The cell migration analysis indicated that PDLSCs could move along the magnetic induction line, testifying that SMF exerted forces on PDLSCs that labeled with MNPs. It was demonstrated that collective application of SMF and MNPs not only induced PDLSCs organized and grew directionally, but also initiated elongation of cells and nucleus. Furthermore, the morphological alteration of the nucleus could also effectively enhance the gene and protein expression of Collagen Ⅰα2, Collagen Ⅲ, and Periostin, suggesting the capability of PDLSCs to differentiate into PDL. In conclusion, this study exhibits a new approach for directional reconstruction of PDL to obtain physiological and functional regeneration of periodontium. The Clinical Trial Registration number: WCHSIRB-D-2022-458.
Collapse
Affiliation(s)
- Weiguang Li
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yafei Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Shujuan Guo
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
3
|
Yan B, Wang S, Liu C, Wen N, Li H, Zhang Y, Wang H, Xi Z, Lv Y, Fan H, Liu X. Engineering magnetic nano-manipulators for boosting cancer immunotherapy. J Nanobiotechnology 2022; 20:547. [PMID: 36587223 PMCID: PMC9805281 DOI: 10.1186/s12951-022-01760-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has shown promising therapeutic results in the clinic, albeit only in a limited number of cancer types, and its efficacy remains less than satisfactory. Nanoparticle-based approaches have been shown to increase the response to immunotherapies to address this limitation. In particular, magnetic nanoparticles (MNPs) as a powerful manipulator are an appealing option for comprehensively regulating the immune system in vivo due to their unique magnetically responsive properties and high biocompatibility. This review focuses on assessing the potential applications of MNPs in enhancing tumor accumulation of immunotherapeutic agents and immunogenicity, improving immune cell infiltration, and creating an immunotherapy-sensitive environment. We summarize recent progress in the application of MNP-based manipulators to augment the efficacy of immunotherapy, by MNPs and their multiple magnetically responsive effects under different types of external magnetic field. Furthermore, we highlight the mechanisms underlying the promotion of antitumor immunity, including magnetically actuated delivery and controlled release of immunotherapeutic agents, tracking and visualization of immune response in real time, and magnetic regulation of innate/adaptive immune cells. Finally, we consider perspectives and challenges in MNP-based immunotherapy.
Collapse
Affiliation(s)
- Bin Yan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Siyao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Chen Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Nana Wen
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Hugang Li
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yihan Zhang
- grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Hao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Ziyi Xi
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yi Lv
- grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiming Fan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Xiaoli Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
4
|
Hansapaiboon S, Bulatao BP, Sorasitthiyanukarn FN, Jantaratana P, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Fabrication of Curcumin Diethyl γ-Aminobutyrate-Loaded Chitosan-Coated Magnetic Nanocarriers for Improvement of Cytotoxicity against Breast Cancer Cells. Polymers (Basel) 2022; 14:5563. [PMID: 36559930 PMCID: PMC9785553 DOI: 10.3390/polym14245563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
This study shows the effectiveness of magnetic-guide targeting in the delivery of curcumin diethyl γ-aminobutyrate (CUR-2GE), a prodrug of curcumin (CUR) previously synthesized to overcome unfavorable physicochemical properties of CUR. In this study, chitosan (Ch)-coated iron oxide nanoparticles (Ch-IONPs) were fabricated and optimized using Box-Behnken design-based response surface methodology for delivery of CUR-2GE. Ch was used as a coating material on the nanoparticle surface to avoid aggregation. The optimized condition for preparing Ch-IONPs consisted of using 4 mg Ch fabricated at pH 11 under a reaction temperature of 85 °C. The optimized Ch-IONPs were successfully loaded with CUR-2GE with sufficient loading capacity (1.72 ± 0.01%) and encapsulation efficiency (94.9 ± 0.8%). The obtained CUR-2GE-loaded Ch-IONPs (CUR-2GE-Ch-IONPs) exhibited desirable characteristics including a particle size of less than 50 nm based on TEM images, superparamagnetic property, highly crystalline IONP core, sufficient stability, and sustained-release profile. In the presence of permanent magnets, CUR-2GE-Ch-IONPs significantly increased cellular uptake and cytotoxicity toward MDA-MB-231 with a 12-fold increase in potency compared to free CUR-2GE, indicating the potential of magnetic-field assisted delivery of CUR-2GE-Ch-IONPs for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Supakarn Hansapaiboon
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul Bulatao
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Philippines
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Jantaratana
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Irrsack E, Schuller J, Petters C, Willmann W, Dringen R, Koch M. Effects of Local Administration of Iron Oxide Nanoparticles in the Prefrontal Cortex, Striatum, and Hippocampus of Rats. Neurotox Res 2021; 39:2056-2071. [PMID: 34705254 PMCID: PMC8639550 DOI: 10.1007/s12640-021-00432-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 10/26/2022]
Abstract
Iron oxide nanoparticles (IONPs) are used for diverse medical approaches, although the potential health risks, for example adverse effects on brain functions, are not fully clarified. Several in vitro studies demonstrated that the different types of brain cells are able to accumulate IONPs and reported a toxic potential for IONPs, at least for microglia. However, little information is available for the in vivo effects of direct application of IONPs into the brain over time. Therefore, we examined the cellular responses and the distribution of iron in the rat brain at different time points after local infusion of IONPs into selected brain areas. Dispersed IONPs or an equivalent amount of low molecular weight iron complex ferric ammonium citrate or vehicle were infused into the medial prefrontal cortex (mPFC), the caudate putamen (CPu), or the dorsal hippocampus (dHip). Rats were sacrificed 1 day, 1 week, or 4 weeks post-infusion and brain sections were histologically examined for treatment effects on astrocytes, microglia, and neurons. Glial scar formation was observed in the mPFC and CPu 1 week post-infusion independent of the substance and probably resulted from the infusion procedure. Compared to vehicle, IONPs did not cause any obvious additional adverse effects and no additional tissue damage, while the infusion of ferric ammonium citrate enhanced neurodegeneration in the mPFC. Results of iron staining indicate that IONPs were mainly accumulated in microglia. Our results demonstrate that local infusions of IONPs in selected brain areas do not cause any additional adverse effects or neurodegeneration compared to vehicle.
Collapse
Affiliation(s)
- Ellen Irrsack
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany.
| | - Julia Schuller
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Charlotte Petters
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Wiebke Willmann
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Michael Koch
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| |
Collapse
|
6
|
Parimi DS, Gupta Y, Marpu S, Bhatt CS, Bollu TK, Suresh AK. Nanomagnet-facilitated pharmaco-compatibility for cancer diagnostics: Underlying risks and the emergence of ultrasmall nanomagnets. J Pharm Anal 2021; 12:365-379. [PMID: 35811618 PMCID: PMC9257447 DOI: 10.1016/j.jpha.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer therapy is a fast-emerging biomedical paradigm that elevates the diagnostic and therapeutic potential of a nanovector for identification, monitoring, targeting, and post-treatment response analysis. Nanovectors of superparamagnetic iron oxide nanoparticles (SPION) are of tremendous significance in cancer therapy because of their inherited high surface area, high reactivity, biocompatibility, superior contrast, and magnetic and photo-inducibility properties. In addition to a brief introduction, we summarize various progressive aspects of nanomagnets pertaining to their production with an emphasis on sustainable biomimetic approaches. Post-synthesis particulate and surface alterations in terms of pharmaco-affinity, liquid accessibility, and biocompatibility to facilitate cancer therapy are highlighted. SPION parameters including particle contrast, core-fusions, surface area, reactivity, photosensitivity, photodynamics, and photothermal properties, which facilitate diverse cancer diagnostics, are discussed. We also elaborate on the concept of magnetism to selectively focus chemotherapeutics on tumors, cell sorting, purification of bioentities, and elimination of toxins. Finally, while addressing the toxicity of nanomaterials, the advent of ultrasmall nanomagnets as a healthier alternative with superior properties and compatible cellular interactions is reviewed. In summary, these discussions spotlight the versatility and integration of multi-tasking nanomagnets and ultrasmall nanomagnets for diverse cancer theragnostics. SPION synthesis with ascribed prominence on sustainable procedures. Particulate species, composition, and surface alteration-enabled theragnostics are highlighted. Inherent properties of SPIONs facilitating cancer diagnostics are elaborated. Magnetism-based “chemotherapeutics,” cell-sorting, and bioentity purification are emphasized. Emergence of ultrasmall SPIONs as a healthier option is summarized.
Collapse
|
7
|
Fakhrullin R, Nigamatzyanova L, Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145478. [PMID: 33571774 DOI: 10.1016/j.scitotenv.2021.145478] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nanoscale contaminants (including engineered nanoparticles and nanoplastics) pose a significant threat to organisms and environment. Rapid and non-destructive detection and identification of nanosized materials in cells, tissues and organisms is still challenging, although a number of conventional methods exist. These approaches for nanoparticles imaging and characterisation both inside the cytoplasm and on the cell or tissue outer surfaces, such as electron or scanning probe microscopies, are unquestionably potent tools, having excellent resolution and supplemented with chemical analysis capabilities. However, imaging and detection of nanomaterials in situ, in wet unfixed and even live samples, such as living isolated cells, microorganisms, protozoans and miniature invertebrates using electron microscopy is practically impossible, because of the elaborate sample preparation requiring chemical fixation, contrast staining, matrix embedding and exposure into vacuum. Atomic force microscopy, in several cases, can be used for imaging and mechanical analysis of live cells and organisms under ambient conditions, however this technique allows for investigation of surfaces. Therefore, a different approach allowing for imaging and differentiation of nanoscale particles in wet samples is required. Dark-field microscopy as an optical microscopy technique has been popular among researchers, mostly for imaging relatively large specimens. In recent years, the so-called "enhanced dark field" microscopy based on using higher numerical aperture light condensers and variable numerical aperture objectives has emegred, which allows for imaging of nanoscale particles (starting from 5 nm nanospheres) using almost conventional optical microscopy methodology. Hyperspectral imaging can turn a dark-field optical microscope into a powerful chemical characterisation tool. As a result, this technique is becoming popular in environmental nanotoxicology studies. In this Review Article we introduce the reader into the methodology of enhanced dark-field and dark-field-based hyperspectral microscopy, covering the most important advances in this rapidly-expanding area of environmental nanotoxicology.
Collapse
Affiliation(s)
- Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Gölnur Fakhrullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| |
Collapse
|
8
|
Persano S, Das P, Pellegrino T. Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. Cancers (Basel) 2021; 13:2735. [PMID: 34073106 PMCID: PMC8198238 DOI: 10.3390/cancers13112735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy has shown remarkable results in various cancer types through a range of immunotherapeutic approaches, including chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB), and therapeutic vaccines. Despite the enormous potential of cancer immunotherapy, its application in various clinical settings has been limited by immune evasion and immune suppressive mechanisms occurring locally or systemically, low durable response rates, and severe side effects. In the last decades, the rapid advancement of nanotechnology has been aiming at the development of novel synthetic nanocarriers enabling precise and enhanced delivery of immunotherapeutics, while improving drug stability and effectiveness. Magnetic nanostructured formulations are particularly intriguing because of their easy surface functionalization, low cost, and robust manufacturing procedures, together with their suitability for the implementation of magnetically-guided and heat-based therapeutic strategies. Here, we summarize and discuss the unique features of magnetic-based nanostructures, which can be opportunely designed to potentiate classic immunotherapies, such as therapeutic vaccines, ICB, adoptive cell therapy (ACT), and in situ vaccination. Finally, we focus on how multifunctional magnetic delivery systems can facilitate the anti-tumour therapies relying on multiple immunotherapies and/or other therapeutic modalities. Combinatorial magnetic-based therapies are indeed offering the possibility to overcome current challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | | | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
9
|
Wang S, Sun Z, Hou Y. Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2000845. [PMID: 32790039 DOI: 10.1002/adhm.202000845] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapy is a new therapeutic strategy to fight cancer by activating the patients' own immune system. At present, immunotherapy approaches such as cancer vaccines, immune checkpoint blockade (ICB), adoptive cell transfer (ACT), monoclonal antibodies (mAbs) therapy, and cytokines therapy have therapeutic potential in preclinical and clinical applications. However, the intrinsic limitations of conventional immunotherapy are difficulty of precise dosage control, insufficient enrichment in tumor tissues, partial immune response silencing or hyperactivity, and high cost. Engineering nanoparticles (NPs) have been emerging as a promising multifunctional platform to enhance conventional immunotherapy due to their intrinsic immunogenicity, convenient delivery function, controlled surface chemistry activity, multifunctional modifying potential, and intelligent targeting. This review presents the recent progress reflected by engineering NPs, including the diversified selection of functionalized NPs, the superiority of engineering NPs for enhancing conventional immunotherapy, and NP-mediated multiscale strategies for synergistic therapy consisting of compositions and their mechanism. Finally, the perspective on multifunctional NP-based cancer immunotherapy for boosting immunomodulation is discussed, which reveals the expanding landscape of engineering NPs in clinical translation.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
| | - Zhaoli Sun
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
- College of Life Sciences Peking University Beijing 100871 China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
| |
Collapse
|
10
|
Alabresm A, Decho AW, Lead J. A novel method to estimate cellular internalization of nanoparticles into gram-negative bacteria: Non-lytic removal of outer membrane and cell wall. NANOIMPACT 2021; 21:100283. [PMID: 35559775 DOI: 10.1016/j.impact.2020.100283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/15/2023]
Abstract
Bacteria efficiently take up small organic molecules and ions. However, the internalization of particulate forms, specifically nanoparticles (NPs) has been understudied and is a newly-emerging area of interest. However, determination of true cellular internalization is challenging owing to the difficulty of separating the aqueous phase from bacteria-associated NPs and, more importantly, of differentiating between internalized and NPs sorbed on bacteria surfaces. In this work, we developed and validated an extraction method which can operationally estimate internalization of metal NPs into Gram-negative bacteria. The outer cell membrane and cell wall, collectively called the periplasm, was successfully removed from bacteria using ethylenediaminetetraacetic acid (EDTA) at an optimized exposure period and concentration, without lysis of bacteria. This was followed by standard digestion and metal measurements. Verification of each step of the methodology was conducted by assessing both cellular and metal behavior. Specifically, the combined approaches of live/dead staining of bacteria, optical density measurements, transmission electron microscopy (TEM) and metal analyses of the supernatant indicated that the method operationally separated externally-sorbed NPs from those internalized actually localized within the bacterial cytoplasm. However, this new method is ideally used alongside other methods in a multi-method approach, to provide improved data quality. Therefore, it should be used with CSLM, FACS, TEM and other available methods.
Collapse
Affiliation(s)
- Amjed Alabresm
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Jamie Lead
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
11
|
Bongaerts M, Aizel K, Secret E, Jan A, Nahar T, Raudzus F, Neumann S, Telling N, Heumann R, Siaugue JM, Ménager C, Fresnais J, Villard C, El Haj A, Piehler J, Gates MA, Coppey M. Parallelized Manipulation of Adherent Living Cells by Magnetic Nanoparticles-Mediated Forces. Int J Mol Sci 2020; 21:ijms21186560. [PMID: 32911745 PMCID: PMC7555211 DOI: 10.3390/ijms21186560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
The remote actuation of cellular processes such as migration or neuronal outgrowth is a challenge for future therapeutic applications in regenerative medicine. Among the different methods that have been proposed, the use of magnetic nanoparticles appears to be promising, since magnetic fields can act at a distance without interactions with the surrounding biological system. To control biological processes at a subcellular spatial resolution, magnetic nanoparticles can be used either to induce biochemical reactions locally or to apply forces on different elements of the cell. Here, we show that cell migration and neurite outgrowth can be directed by the forces produced by a switchable parallelized array of micro-magnetic pillars, following the passive uptake of nanoparticles. Using live cell imaging, we first demonstrate that adherent cell migration can be biased toward magnetic pillars and that cells can be reversibly trapped onto these pillars. Second, using differentiated neuronal cells we were able to induce events of neurite outgrowth in the direction of the pillars without impending cell viability. Our results show that the range of forces applied needs to be adapted precisely to the cellular process under consideration. We propose that cellular actuation is the result of the force on the plasma membrane caused by magnetically filled endo-compartments, which exert a pulling force on the cell periphery.
Collapse
Affiliation(s)
- Maud Bongaerts
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (M.B.); (K.A.)
| | - Koceila Aizel
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (M.B.); (K.A.)
| | - Emilie Secret
- Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France; (E.S.); (J.-M.S.); (C.M.); (J.F.)
| | - Audric Jan
- Laboratoire Physico Chimie Curie, Institut Pierre Gilles de Gène, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (A.J.); (C.V.)
| | - Tasmin Nahar
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.N.); (N.T.)
| | - Fabian Raudzus
- Department of Biochemistry II – Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany; (F.R.); (S.N.); (R.H.)
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Sebastian Neumann
- Department of Biochemistry II – Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany; (F.R.); (S.N.); (R.H.)
| | - Neil Telling
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.N.); (N.T.)
| | - Rolf Heumann
- Department of Biochemistry II – Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany; (F.R.); (S.N.); (R.H.)
| | - Jean-Michel Siaugue
- Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France; (E.S.); (J.-M.S.); (C.M.); (J.F.)
| | - Christine Ménager
- Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France; (E.S.); (J.-M.S.); (C.M.); (J.F.)
| | - Jérôme Fresnais
- Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France; (E.S.); (J.-M.S.); (C.M.); (J.F.)
| | - Catherine Villard
- Laboratoire Physico Chimie Curie, Institut Pierre Gilles de Gène, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (A.J.); (C.V.)
| | - Alicia El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK;
| | - Jacob Piehler
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany;
| | - Monte A. Gates
- Institute of Pharmacy and Bioengineering, School of Medicine, Keele University, Keele ST5 5BG, UK;
| | - Mathieu Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (M.B.); (K.A.)
- Correspondence:
| |
Collapse
|
12
|
Pai A, Cao P, White EE, Hong B, Pailevanian T, Wang M, Badie B, Hajimiri A, Berlin JM. Dynamically Programmable Magnetic Fields for Controlled Movement of Cells Loaded with Iron Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:4139-4147. [PMID: 35025416 DOI: 10.1021/acsabm.0c00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-based therapies are becoming increasingly prominent in numerous medical contexts, particularly in regenerative medicine and the treatment of cancer. However, since the efficacy of the therapy is largely dependent on the concentration of therapeutic cells at the treatment area, a major challenge associated with cell-based therapies is the ability to move and localize therapeutic cells within the body. In this article, a technique based on dynamically programmable magnetic fields is successfully demonstrated to noninvasively aggregate therapeutic cells at a desired location. Various types of therapeutically relevant cells (neural stem cells, monocytes/macrophages, and chimeric antigen receptor T cells) are loaded with iron oxide nanoparticles and then focused at a particular site using externally controlled electromagnets. These experimental results serve as a readily scalable prototype for designing an apparatus that patients can wear to focus therapeutic cells at the anatomical sites needed for treatment.
Collapse
Affiliation(s)
- Alex Pai
- Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, California, United States
| | - Pengpeng Cao
- Department of Molecular Medicine, City of Hope Beckman Research Institute, Duarte 91010, California, United States
| | - Ethan E White
- Department of Molecular Medicine, City of Hope Beckman Research Institute, Duarte 91010, California, United States.,Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte 91010, California, United States
| | - Brian Hong
- Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, California, United States
| | - Torkom Pailevanian
- Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, California, United States
| | - Michelle Wang
- Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, California, United States
| | - Behnam Badie
- Department of Surgery, Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte 91010, California, United States
| | - Ali Hajimiri
- Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, California, United States
| | - Jacob M Berlin
- Department of Molecular Medicine, City of Hope Beckman Research Institute, Duarte 91010, California, United States.,Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte 91010, California, United States
| |
Collapse
|
13
|
Sendra M, Saco A, Yeste MP, Romero A, Novoa B, Figueras A. Nanoplastics: From tissue accumulation to cell translocation into Mytilus galloprovincialis hemocytes. resilience of immune cells exposed to nanoplastics and nanoplastics plus Vibrio splendidus combination. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121788. [PMID: 31813690 DOI: 10.1016/j.jhazmat.2019.121788] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 05/22/2023]
Abstract
Plastic litter is an issue of global concern. In this work Mytilus galloprovincialis was used to study the distribution and effects of polystyrene nanoplastics (PS NPs) of different sizes (50 nm, 100 nm and 1 μm) on immune cells. Internalization and translocation of NPs to hemolymph were carried out by in vivo experiments, while endocytic routes and effects of PS NPs on hemocytes were studied in vitro. The smallest PS NPs tested were detected in the digestive gland and muscle. A fast and size-dependent translocation of PS NPs to the hemolymph was recorded after 3 h of exposure. The internalization rate of 50 nm PS NPs was lower when caveolae and clathrin endocytosis pathways were inhibited. On the other hand, the internalization of larger particles decreased when phagocytosis was inhibited. The hemocytes exposed to NPs had changes in motility, apoptosis, ROS and phagocytic capacity. However, they showed resilience when were infected with bacteria after PS NP exposure being able to recover their phagocytic capacity although the expression of the antimicrobial peptide Myticin C was reduced. Our findings show for the first time the translocation of PS NPs into hemocytes and how their effects trigger the loss of its functional parameters.
Collapse
Affiliation(s)
- M Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - A Saco
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - M P Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, University of Cádiz, Spain
| | - A Romero
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - B Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - A Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
14
|
Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, Jimenez-Lopez C, Melguizo C. Oxaliplatin-Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics 2019; 11:E395. [PMID: 31390773 PMCID: PMC6723246 DOI: 10.3390/pharmaceutics11080395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023] Open
Abstract
Conventional chemotherapy against colorectal cancer (CRC), the third most common cancer in the world, includes oxaliplatin (Oxa) which induces serious unwanted side effects that limit the efficiency of treatment. Therefore, alternative therapeutic approaches are urgently required. In this work, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC were coupled to Oxa to evaluate the potential of the Oxa-BMNP nanoassembly for directed local delivery of the drug as a proof of concept for the future development of targeted chemotherapy against CRC. Electrostatic interactions between Oxa and BMNPs trigger the formation of the nanoassembly and keep it stable at physiological pH. When the BMNPs become neutral at acidic pH values, the Oxa is released, and such a release is greatly potentiated by hyperthermia. The coupling of the drug with the BMNPs improves its toxicity to even higher levels than the soluble drug, probably because of the fast internalization of the nanoassembly by tumor cells through endocytosis. In addition, the BMNPs are cytocompatible and non-hemolytic, providing positive feedback as a proof of concept for the nanoassembly. Our study clearly demonstrates the applicability of Oxa-BMNP in colon cancer and offers a promising nanoassembly for targeted chemotherapy against this type of tumor.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Beatriz Garcia-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Guillermo Iglesias
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain.
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain.
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| |
Collapse
|
15
|
Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1571. [PMID: 31241251 DOI: 10.1002/wnan.1571] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022]
Abstract
Drug delivery strategies aim to maximize a drug's therapeutic index by increasing the concentration of drug at target sites while minimizing delivery to off-target tissues. Because biological tissues are minimally responsive to magnetic fields, there has been a great deal of interest in using magnetic nanoparticles in combination with applied magnetic fields to selectively control the accumulation and release of drug in target tissues while minimizing the impact on surrounding tissue. In particular, spatially variant magnetic fields have been used to encourage accumulation of drug-loaded magnetic nanoparticles at target sites, while time-variant magnetic fields have been used to induce drug release from thermally sensitive nanocarriers. In this review, we discuss nanoparticle formulations and approaches that have been developed for magnetic targeting and/or magnetically induced drug release, as well as ongoing challenges in using magnetism for therapeutic applications. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Jessica F Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bian Jang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Magnetically Assisted Control of Stem Cells Applied in 2D, 3D and In Situ Models of Cell Migration. Molecules 2019; 24:molecules24081563. [PMID: 31010261 PMCID: PMC6515403 DOI: 10.3390/molecules24081563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
The success of cell therapy approaches is greatly dependent on the ability to precisely deliver and monitor transplanted stem cell grafts at treated sites. Iron oxide particles, traditionally used in vivo for magnetic resonance imaging (MRI), have been shown to also represent a safe and efficient in vitro labelling agent for mesenchymal stem cells (MSCs). Here, stem cells were labelled with magnetic particles, and their resulting response to magnetic forces was studied using 2D and 3D models. Labelled cells exhibited magnetic responsiveness, which promoted localised retention and patterned cell seeding when exposed to magnet arrangements in vitro. Directed migration was observed in 2D culture when adherent cells were exposed to a magnetic field, and also when cells were seeded into a 3D gel. Finally, a model of cell injection into the rodent leg was used to test the enhanced localised retention of labelled stem cells when applying magnetic forces, using whole body imaging to confirm the potential use of magnetic particles in strategies seeking to better control cell distribution for in vivo cell delivery.
Collapse
|
17
|
Wen Z, Liu F, Chen Q, Xu Y, Li H, Sun S. Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. Biomater Sci 2019; 7:4414-4443. [DOI: 10.1039/c9bm00961b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A schematic illustration of BNDS biodegradation and release antigen delivery for assisting immunotherapy.
Collapse
Affiliation(s)
- Zhenfu Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Ganjingzi District
- P. R. China
| | | | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| |
Collapse
|
18
|
Formulation and in vitro evaluation of magnetoliposomes as a potential nanotool in colorectal cancer therapy. Colloids Surf B Biointerfaces 2018; 171:553-565. [PMID: 30096477 DOI: 10.1016/j.colsurfb.2018.07.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
Magnetoliposomes (MLPs) offer many new possibilities in cancer therapy and diagnosis, including the transport of antitumor drugs, hyperthermia treatment, detection using imaging techniques, and even cell migration. However, high biocompatibility and functionality after cell internalization are essential to their successful application. We synthesized maghemite nanoparticles (γ-Fe2O3) by oxidizing magnetite cores (Fe3O4) and coating them with phosphatidylcholine (PC) liposomes, obtained using the thin film hydration method, to generate MLPs. The MLPs were tested in vitro, using human tumor and non-tumor colon cell lines, for cytotoxicity, cell uptake and cellular distribution, and magnetically-induced cell mobility. In addition, blood cells biocompatibility studies were performed. The mean size of the MLPs, with a core of γ-Fe2O3 completely surrounded by PC liposomes, was 90 ± 20 nm, showing a soft magnetic character and a great biocompatibility in all the cell lines assayed including blood cells. Prussian blue staining showed a high MLP cell uptake with maximum internalization at 24 h. TEM analysis showed the MLPs surrounded by the cell membrane and in the cell periphery, suggesting internalization by endocytosis and/or macropinocytosis. Interestingly, the mitochondria presented MLP accumulations, particularly in tumor cells. Finally, MLPs within colon cancer cells were able to induce cell migration when a magnetic field was applied in vitro, indicating the functionality of our nanoformulation. A promising biomedical application of these MLPs is anticipated based on their physical, chemical and biological properties.
Collapse
|
19
|
Ruan H, Haber T, Liu Y, Brake J, Kim J, Berlin JM, Yang C. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. OPTICA 2017; 4:1337-1343. [PMID: 29623290 PMCID: PMC5881932 DOI: 10.1364/optica.4.001337] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Optical scattering has traditionally limited the ability to focus light inside scattering media such as biological tissue. Recently developed wavefront shaping techniques promise to overcome this limit by tailoring an optical wavefront to constructively interfere at a target location deep inside scattering media. To find such a wavefront solution, a "guide-star" mechanism is required to identify the target location. However, developing guidestars of practical usefulness is challenging, especially in biological tissue, which hinders the translation of wavefront shaping techniques. Here, we demonstrate a guidestar mechanism that relies on magnetic modulation of small particles. This guidestar method features an optical modulation efficiency of 29% and enables micrometer-scale focusing inside biological tissue with a peak intensity-to-background ratio (PBR) of 140; both numbers are one order of magnitude higher than those achieved with the ultrasound guidestar, a popular guidestar method. We also demonstrate that light can be focused on cells labeled with magnetic particles, and to different target locations by magnetically controlling the position of a particle. Since magnetic fields have a large penetration depth even through bone structures like the skull, this optical focusing method holds great promise for deep-tissue applications such as optogenetic modulation of neurons, targeted light-based therapy, and imaging.
Collapse
Affiliation(s)
- Haowen Ruan
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Corresponding author:
| | - Tom Haber
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California 91010, USA
| | - Yan Liu
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Joshua Brake
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jinho Kim
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jacob M. Berlin
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California 91010, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
20
|
Su L, Zhang B, Huang Y, Fan Z, Zhao Y. Enhanced cellular uptake of iron oxide nanoparticles modified with 1,2-dimyristoyl-sn-glycero-3-phosphocholine. RSC Adv 2017. [DOI: 10.1039/c7ra06844a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
DMPC greatly enhanced the cellular uptake of SPIONs, resulting in remarkable amounts of accumulated nanoparticles in PC-12 cells.
Collapse
Affiliation(s)
- Lichao Su
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing
- School of Materials Science and Engineering
- Guilin University of Technology
- Guilin
- China
| | - Baolin Zhang
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing
- School of Materials Science and Engineering
- Guilin University of Technology
- Guilin
- China
| | - Yinping Huang
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing
- School of Materials Science and Engineering
- Guilin University of Technology
- Guilin
- China
| | - Ziliang Fan
- College of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Yingzheng Zhao
- College of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
21
|
Novel imaging tools for investigating the role of immune signalling in the brain. Brain Behav Immun 2016; 58:40-47. [PMID: 27129634 DOI: 10.1016/j.bbi.2016.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/05/2016] [Accepted: 04/25/2016] [Indexed: 12/29/2022] Open
Abstract
The importance of neuro-immune interactions in both physiological and pathophysiological states cannot be overstated. As our appreciation for the neuroimmune nature of the brain and spinal cord grows, so does our need to extend the spatial and temporal resolution of our molecular analysis techniques. Current imaging technologies applied to investigate the actions of the neuroimmune system in both health and disease states have been adapted from the fields of immunology and neuroscience. While these classical techniques have provided immense insight into the function of the CNS, they are however, inherently limited. Thus, the development of innovative methods which overcome these limitations are crucial for imaging and quantifying acute and chronic neuroimmune responses. Therefore, this review aims to convey emerging novel and complementary imaging technologies in a form accessible to medical scientists engaging in neuroimmune research.
Collapse
|
22
|
Luchini A, Irace C, Santamaria R, Montesarchio D, Heenan RK, Szekely N, Flori A, Menichetti L, Paduano L. Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications. NANOSCALE 2016; 8:10078-86. [PMID: 26751053 DOI: 10.1039/c5nr08486e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.
Collapse
Affiliation(s)
- Alessandra Luchini
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang F, Lin YA, Kannan S, Kannan RM. Targeting specific cells in the brain with nanomedicines for CNS therapies. J Control Release 2015; 240:212-226. [PMID: 26686078 DOI: 10.1016/j.jconrel.2015.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Treatment of Central Nervous System (CNS) disorders still remains a major clinical challenge. The Blood-Brain Barrier (BBB), known as the major hindrance, greatly limits therapeutics penetration into the brain. Moreover, even though some therapeutics can cross BBB based on their intrinsic properties or via the use of proper nanoscale delivery vehicles, their therapeutic efficacy is still often limited without the specific uptake of drugs by the cancer or disease-associated cells. As more studies have started to elucidate the pathological roles of major cells in the CNS (for example, microglia, neurons, and astrocytes) for different disorders, nanomedicines that can enable targeting of specific cells in these diseases may provide great potential to boost efficacy. In this review, we aim to briefly cover the pathological roles of endothelial cells, microglia, tumor-associated microglia/macrophage, neurons, astrocytes, and glioma in CNS disorders and to highlight the recent advances in nanomedicines that can target specific disease-associated cells. Furthermore, we summarized some strategies employed in nanomedicine to achieve specific cell targeting or to enhance the drug neuroprotective effects in the CNS. The specific targeting at the cellular level by nanotherapy can be a more precise and effective means not only to enhance the drug availability but also to reduce side effects.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.,Department of Material Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yi-An Lin
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, MD, 21287 USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|