1
|
Stratton RL, Pokhrel B, Smith B, Adeyemi A, Dhakal A, Shen H. DNA Catalysis: Design, Function, and Optimization. Molecules 2024; 29:5011. [PMID: 39519652 PMCID: PMC11547689 DOI: 10.3390/molecules29215011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Catalytic DNA has gained significant attention in recent decades as a highly efficient and tunable catalyst, thanks to its flexible structures, exceptional specificity, and ease of optimization. Despite being composed of just four monomers, DNA's complex conformational intricacies enable a wide range of nuanced functions, including scaffolding, electrocatalysis, enantioselectivity, and mechano-electro spin coupling. DNA catalysts, ranging from traditional DNAzymes to innovative DNAzyme hybrids, highlight the remarkable potential of DNA in catalysis. Recent advancements in spectroscopic techniques have deepened our mechanistic understanding of catalytic DNA, paving the way for rational structural optimization. This review will summarize the latest studies on the performance and optimization of traditional DNAzymes and provide an in-depth analysis of DNAzyme hybrid catalysts and their unique and promising properties.
Collapse
Affiliation(s)
- Rebecca L. Stratton
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bishal Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bryce Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Adeola Adeyemi
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Ananta Dhakal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Niogret G, Bouvier-Müller A, Figazzolo C, Joyce JM, Bonhomme F, England P, Mayboroda O, Pellarin R, Gasser G, Tucker JHR, Tanner JA, Savage GP, Hollenstein M. Interrogating Aptamer Chemical Space Through Modified Nucleotide Substitution Facilitated by Enzymatic DNA Synthesis. Chembiochem 2024; 25:e202300539. [PMID: 37837257 DOI: 10.1002/cbic.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Chemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties. This method lowers the synthetic burden often associated with post-SELEX approaches and allowed to identify one additional sequence that maintains binding to the PvLDH target protein, albeit with reduced specificity. In addition, while bioisosteres often improve the potency of small molecule drugs, this does not extend to chemically modified aptamers. Overall, this versatile method can be applied for the post-SELEX modification of other aptamers and functional nucleic acids.
Collapse
Affiliation(s)
- Germain Niogret
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Alix Bouvier-Müller
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Chiara Figazzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jack M Joyce
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique UMR CNRS 3523, 28, rue du Docteur Roux, CEDEX 15, 75724, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Olena Mayboroda
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
3
|
Kuprikova N, Ondruš M, Bednárová L, Riopedre-Fernandez M, Slavětínská L, Sýkorová V, Hocek M. Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Res 2023; 51:11428-11438. [PMID: 37870471 PMCID: PMC10681718 DOI: 10.1093/nar/gkad893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) derived from 5-substituted pyrimidines and 7-substituted 7-deazapurines bearing anionic substituents (carboxylate, sulfonate, phosphonate, and phosphate). The anion-linked dNTPs were used for enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase containing one, two, three, or four modified nucleotides. The polymerase was able to synthesize even long sequences of >100 modified nucleotides in a row by primer extension (PEX). We also successfully combined two anionic and two hydrophobic dNTPs bearing phenyl and indole moieties. In PCR, the combinations of one or two modified dNTPs gave exponential amplification, while most of the combinations of three or four modified dNTPs gave only linear amplification in asymmetric PCR. The hypermodified ONs were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies including hybridization, denaturation, CD spectroscopy and molecular modelling and dynamics suggest that the presence of anionic modifications in one strand decreases the stability of duplexes while still preserving the B-DNA conformation, whilst the DNA hypermodified in both strands adopts a different secondary structure.
Collapse
Affiliation(s)
- Natalia Kuprikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
4
|
Enzymatic Synthesis of Vancomycin-Modified DNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248927. [PMID: 36558056 PMCID: PMC9782525 DOI: 10.3390/molecules27248927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Many potent antibiotics fail to treat bacterial infections due to emergence of drug-resistant strains. This surge of antimicrobial resistance (AMR) calls in for the development of alternative strategies and methods for the development of drugs with restored bactericidal activities. In this context, we surmised that identifying aptamers using nucleotides connected to antibiotics will lead to chemically modified aptameric species capable of restoring the original binding activity of the drugs and hence produce active antibiotic species that could be used to combat AMR. Here, we report the synthesis of a modified nucleoside triphosphate equipped with a vancomycin moiety on the nucleobase. We demonstrate that this nucleotide analogue is suitable for polymerase-mediated synthesis of modified DNA and, importantly, highlight its compatibility with the SELEX methodology. These results pave the way for bacterial-SELEX for the identification of vancomycin-modified aptamers.
Collapse
|
5
|
Kuznetsova AA, Tyugashev TE, Alekseeva IV, Timofeyeva NA, Fedorova OS, Kuznetsov NA. Insight into the mechanism of DNA synthesis by human terminal deoxynucleotidyltransferase. Life Sci Alliance 2022; 5:e202201428. [PMID: 35914812 PMCID: PMC9348634 DOI: 10.26508/lsa.202201428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Terminal deoxynucleotidyltransferase (TdT) is a member of the DNA polymerase X family that is responsible for random addition of nucleotides to single-stranded DNA. We present investigation into the role of metal ions and specific interactions of dNTP with active-site amino acid residues in the mechanisms underlying the recognition of nucleoside triphosphates by human TdT under pre-steady-state conditions. In the elongation mode, the ratios of translocation and dissociation rate constants, as well as the catalytic rate constant were dependent on the nature of the nucleobase. Preferences of TdT in dNTP incorporation were researched by molecular dynamics simulations of complexes of TdT with a primer and dNTP or with the elongated primer. Purine nucleotides lost the "summarised" H-bonding network after the attachment of the nucleotide to the primer, whereas pyrimidine nucleotides increased the number and relative lifetime of H-bonds in the post-catalytic complex. The effect of divalent metal ions on the primer elongation revealed that Me<sup>2+</sup> cofactor can significantly change parameters of the primer elongation by strongly affecting the rate of nucleotide attachment and the polymerisation mode.
Collapse
Affiliation(s)
- Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Timofey E Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina V Alekseeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda A Timofeyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Vacacela J, Schaap‐Johansen A, Manikova P, Marcatili P, Prado M, Sun Y, Ashley J. The Protein‐Templated Synthesis of Enzyme‐Generated Aptamers. Angew Chem Int Ed Engl 2022; 61:e202201061. [PMID: 35167174 PMCID: PMC9314878 DOI: 10.1002/anie.202201061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 01/15/2023]
Abstract
Inspired by the chemical synthesis of molecularly imprinted polymers, we demonstrated for the first time, the protein‐target mediated synthesis of enzyme‐generated aptamers (EGAs). We prepared pre‐polymerisation mixtures containing different ratios of nucleotides, an initiator sequence and protein template and incubated each mixture with terminal deoxynucleotidyl transferase (TdT). Upon purification and rebinding of the EGAs against the target, we observed an enhancement in binding of templated‐EGAs towards the target compared to a non‐templated control. These results demonstrate the presence of two primary mechanisms for the formation of EGAs, namely, the binding of random sequences to the target as observed in systematic evolution of ligands by exponential enrichment (SELEX) and the dynamic competition between TdT enzyme and the target protein for binding of EGAs during synthesis. The latter mechanism serves to increase the stringency of EGA‐based screening and represents a new way to develop aptamers that relies on rational design.
Collapse
Affiliation(s)
- Julio Vacacela
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Anna‐Lisa Schaap‐Johansen
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Patricia Manikova
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Paolo Marcatili
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Marta Prado
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
| | - Yi Sun
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Jon Ashley
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
7
|
Vacacela J, Schaap‐Johansen A, Manikova P, Marcatili P, Prado M, Sun Y, Ashley J. The Protein‐Templated Synthesis of Enzyme‐Generated Aptamers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julio Vacacela
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Anna‐Lisa Schaap‐Johansen
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Patricia Manikova
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Paolo Marcatili
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Marta Prado
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
| | - Yi Sun
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Jon Ashley
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
8
|
Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021; 26:5925. [PMID: 34641475 PMCID: PMC8512084 DOI: 10.3390/molecules26195925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.
Collapse
Affiliation(s)
| | | | - Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| |
Collapse
|
9
|
Dutson C, Allen E, Thompson MJ, Hedley JH, Murton HE, Williams DM. Synthesis of Polyanionic C5-Modified 2'-Deoxyuridine and 2'-Deoxycytidine-5'-Triphosphates and Their Properties as Substrates for DNA Polymerases. Molecules 2021; 26:molecules26082250. [PMID: 33924626 PMCID: PMC8069024 DOI: 10.3390/molecules26082250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Modified 2′-deoxyribonucleotide triphosphates (dNTPs) have widespread applications in both existing and emerging biomolecular technologies. For such applications it is an essential requirement that the modified dNTPs be substrates for DNA polymerases. To date very few examples of C5-modified dNTPs bearing negatively charged functionality have been described, despite the fact that such nucleotides might potentially be valuable in diagnostic applications using Si-nanowire-based detection systems. Herein we have synthesised C5-modified dUTP and dCTP nucleotides each of which are labelled with an dianionic reporter group. The reporter group is tethered to the nucleobase via a polyethylene glycol (PEG)-based linkers of varying length. The substrate properties of these modified dNTPs with a variety of DNA polymerases have been investigated to study the effects of varying the length and mode of attachment of the PEG linker to the nucleobase. In general, nucleotides containing the PEG linker tethered to the nucleobase via an amide rather than an ether linkage proved to be the best substrates, whilst nucleotides containing PEG linkers from PEG6 to PEG24 could all be incorporated by one or more DNA polymerase. The polymerases most able to incorporate these modified nucleotides included Klentaq, Vent(exo-) and therminator, with incorporation by Klenow(exo-) generally being very poor.
Collapse
Affiliation(s)
- Claire Dutson
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Esther Allen
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Mark J. Thompson
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Joseph H. Hedley
- QuantuMDx Group, Lugano Building, 57 Melbourne Street, Newcastle upon Tyne NE1 2JQ, UK; (J.H.H.); (H.E.M.)
| | - Heather E. Murton
- QuantuMDx Group, Lugano Building, 57 Melbourne Street, Newcastle upon Tyne NE1 2JQ, UK; (J.H.H.); (H.E.M.)
| | - David M. Williams
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
- Correspondence: ; Tel.: +44-114-222-9502
| |
Collapse
|
10
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
11
|
Ondruš M, Sýkorová V, Bednárová L, Pohl R, Hocek M. Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res 2020; 48:11982-11993. [PMID: 33152081 PMCID: PMC7708046 DOI: 10.1093/nar/gkaa999] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
A set of modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.
Collapse
Affiliation(s)
- Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
12
|
Koplūnaitė M, Butkutė K, Meškys R, Tauraitė D. Synthesis of pyrimidine nucleoside and amino acid conjugates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Enzymatic reactions in the production of biomethane from organic waste. Enzyme Microb Technol 2019; 132:109410. [PMID: 31731967 DOI: 10.1016/j.enzmictec.2019.109410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/06/2019] [Accepted: 08/15/2019] [Indexed: 11/23/2022]
Abstract
Enzymatic reactions refer to organic reactions catalyzed by enzymes. This review aims to enrich the documentation relative to enzymatic reactions occurring during the anaerobic degradation of residual organic substances with emphasis on the structures of organic compounds and reaction mechanisms. This allows to understand the displacement of electrons between electron-rich and electron-poor entities to form new bonds in products. The detailed mechanisms of enzymatic reactions relative to the production of biomethane have not yet been reviewed in the scientific literature. Hence, this review is novel and timely since it discusses the chemical behavior or reactivity of different functional groups, thereby allowing to better understand the enzymatic catalysis in the transformations of residual proteins, carbohydrates, and lipids into biomethane and fertilizers. Such understanding allows to improve the overall biomethanation efficiency in industrial applications.
Collapse
|
14
|
Jakubovska J, Tauraite D, Birštonas L, Meškys R. N4-acyl-2'-deoxycytidine-5'-triphosphates for the enzymatic synthesis of modified DNA. Nucleic Acids Res 2019; 46:5911-5923. [PMID: 29846697 PMCID: PMC6158702 DOI: 10.1093/nar/gky435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
A huge diversity of modified nucleobases is used as a tool for studying DNA and RNA. Due to practical reasons, the most suitable positions for modifications are C5 of pyrimidines and C7 of purines. Unfortunately, by using these two positions only, one cannot expand a repertoire of modified nucleotides to a maximum. Here, we demonstrate the synthesis and enzymatic incorporation of novel N4-acylated 2′-deoxycytidine nucleotides (dCAcyl). We find that a variety of family A and B DNA polymerases efficiently use dCAcylTPs as substrates. In addition to the formation of complementary CAcyl•G pair, a strong base-pairing between N4-acyl-cytosine and adenine takes place when Taq, Klenow fragment (exo–), Bsm and KOD XL DNA polymerases are used for the primer extension reactions. In contrast, a proofreading phi29 DNA polymerase successfully utilizes dCAcylTPs but is prone to form CAcyl•A base pair under the same conditions. Moreover, we show that terminal deoxynucleotidyl transferase is able to incorporate as many as several hundred N4-acylated-deoxycytidine nucleotides. These data reveal novel N4-acylated deoxycytidine nucleotides as beneficial substrates for the enzymatic synthesis of modified DNA, which can be further applied for specific labelling of DNA fragments, selection of aptamers or photoimmobilization.
Collapse
Affiliation(s)
- Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Tauraite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Lukas Birštonas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
15
|
Sarac I, Hollenstein M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Chembiochem 2019; 20:860-871. [PMID: 30451377 DOI: 10.1002/cbic.201800658] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/26/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.
Collapse
Affiliation(s)
- Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
16
|
Röthlisberger P, Levi-Acobas F, Sarac I, Marlière P, Herdewijn P, Hollenstein M. Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide. J Inorg Biochem 2018; 191:154-163. [PMID: 30529723 DOI: 10.1016/j.jinorgbio.2018.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/13/2023]
Abstract
The identification of synthetic nucleotides that sustain the formation of orthogonal, unnatural base pairs is an important goal in synthetic biology. Such artificial synthons have been used for the generation of semi-synthetic organisms as well as functional nucleic acids with enhanced binding properties. The enzymatic formation of artificial metal-base pairs is a vastly underexplored and alluring alternative to existing systems. Here, we report the synthesis and biochemical characterization of 1‑(2-deoxy‑β‑d‑ribofuranosyl) imidazole‑4‑carboxylate nucleoside triphosphate (dImCTP) which is equipped with a carboxylic acid moiety on the imidazole moiety in order to increase the coordination environment to [2 + 2] and [2 + 1]. A clear metal dependence was observed for the single incorporation of the modified nucleotide into DNA by the DNA polymerase from Thermus aquaticus (Taq). The presence of AgI in primer extension reactions conducted with combinations of 1‑(2‑deoxy‑β‑d‑ribofuranosyl) imidazole nucleoside triphosphate (dImTP) and dImCTP supported the unusual [2 + 1] coordination pattern. The efficiency of the tailing reactions mediated by the terminal deoxynucleotidyl transferase (TdT) was markedly improved when using dImCTP instead of dImTP. Even though products with multiple modified nucleotides were not observed, the appendage of additional metal binding ligands on the imidazole nucleobase appears to be a valid approach to improve the biochemical properties of modified triphosphates in the context of an expansion of the genetic alphabet with metal base pairs.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbrueres, 91030 Evry, France
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat, 3000 Leuven, Belgium
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
17
|
A versatile method for the UVA-induced cross-linking of acetophenone- or benzophenone-functionalized DNA. Sci Rep 2018; 8:16484. [PMID: 30405165 PMCID: PMC6220319 DOI: 10.1038/s41598-018-34892-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Bioconjugation, biosensing, bioimaging, bionanomaterials, etc., are only a few examples of application of functionalized DNA. Since base-modified nucleic acids contribute not only to a broad range of biotechnological fields but also to the understanding of various cellular processes, it is crucial to design novel modifications with unique properties. Here, we demonstrate the utilization of N4-cytidine modified oligonucleotides, which contain reactive acetophenone (AP) or benzophenone (BP) groups, for the UV-induced cross-linking. We find that terminal deoxynucleotidyl transferase-mediated 3'-tailing using AP/BP-containing modified nucleotides generates photoactive DNA, suitable for a straightforward covalent cross-linking with both interacting proteins and a variety of well-known solid polymeric supports. Moreover, we show that AP/BP-functionalization of nucleic acid molecules induces an efficient cross-linking upon exposure to UVA light. Our findings reveal that 3'-tailed single-stranded DNA bearing AP/BP-moieties is easily photoimmobilized onto untreated polystyrene, polypropylene, polylactate, polydimethylsiloxane, sol-gel and borosilicate glass substrates. Furthermore, we demonstrate that such immobilized DNA probes can be further used for successful hybridization of complementary DNA targets. Our results establish novel N4-cytosine nucleobase modifications as photoreactive labels and suggest an effortless approach for photoimmobilization of nucleic acids.
Collapse
|
18
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
19
|
Kim KR, Röthlisberger P, Kang SJ, Nam K, Lee S, Hollenstein M, Ahn DR. Shaping Rolling Circle Amplification Products into DNA Nanoparticles by Incorporation of Modified Nucleotides and Their Application to In Vitro and In Vivo Delivery of a Photosensitizer. Molecules 2018; 23:molecules23071833. [PMID: 30041480 PMCID: PMC6099487 DOI: 10.3390/molecules23071833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Rolling circle amplification (RCA) is a robust way to generate DNA constructs, which are promising materials for biomedical applications including drug delivery because of their high biocompatibility. To be employed as a drug delivery platform, however, the DNA materials produced by RCA need to be shaped into nanoparticles that display both high cellular uptake efficiency and nuclease resistance. Here, we showed that the DNA nanoparticles (DNPs) can be prepared with RCA and modified nucleotides that have side-chains appended on the nucleobase are capable of interacting with the DNA strands of the resulting RCA products. The incorporation of the modified nucleotides improved cellular uptake efficiency and nuclease resistance of the DNPs. We also demonstrated that these DNPs could be employed as carriers for the delivery of a photosensitizer into cancer cells to achieve photodynamic therapy upon irradiation at both the in vitro and in vivo levels.
Collapse
Affiliation(s)
- Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Pascal Röthlisberger
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Seong Jae Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Kihwan Nam
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Sangyoup Lee
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| |
Collapse
|
20
|
Flamme M, Clarke E, Gasser G, Hollenstein M. Applications of Ruthenium Complexes Covalently Linked to Nucleic Acid Derivatives. Molecules 2018; 23:E1515. [PMID: 29932443 PMCID: PMC6099586 DOI: 10.3390/molecules23071515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Oligonucleotides are biopolymers that can be easily modified at various locations. Thereby, the attachment of metal complexes to nucleic acid derivatives has emerged as a common pathway to improve the understanding of biological processes or to steer oligonucleotides towards novel applications such as electron transfer or the construction of nanomaterials. Among the different metal complexes coupled to oligonucleotides, ruthenium complexes, have been extensively studied due to their remarkable properties. The resulting DNA-ruthenium bioconjugates have already demonstrated their potency in numerous applications. Consequently, this review focuses on the recent synthetic methods developed for the preparation of ruthenium complexes covalently linked to oligonucleotides. In addition, the usefulness of such conjugates will be highlighted and their applications from nanotechnologies to therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Emma Clarke
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
21
|
Röthlisberger P, Levi-Acobas F, Sarac I, Marlière P, Herdewijn P, Hollenstein M. On the enzymatic incorporation of an imidazole nucleotide into DNA. Org Biomol Chem 2018; 15:4449-4455. [PMID: 28485736 DOI: 10.1039/c7ob00858a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of the genetic alphabet with an additional, artificial base pair is of high relevance for numerous applications in synthetic biology. The enzymatic construction of metal base pairs is an alluring strategy that would ensure orthogonality to canonical nucleic acids. So far, very little is known on the enzymatic fabrication of metal base pairs. Here, we report on the synthesis and the enzymatic incorporation of an imidazole nucleotide into DNA. The imidazole nucleotide dIm is known to form highly stable dIm-Ag+-dIm artificial base pairs that cause minimal structural perturbation of DNA duplexes and was considered to be an ideal candidate for the enzymatic construction of metal base pairs. We demonstrate that dImTP is incorporated with high efficiency and selectivity opposite a templating dIm nucleotide by the Kf exo-. The presence of Mn2+, and to a smaller extent Ag+, enhances the efficiency of this polymerization reaction, however, without being strictly required. In addition, multiple incorporation events could be observed, albeit with modest efficiency. We demonstrate that the dIm-Mn+-dIm cannot be constructed by DNA polymerases and suggest that parameters other than stability of a metal base pair and its impact on the structure of DNA duplexes govern the enzymatic formation of artificial metal base pairs.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
22
|
Röthlisberger P, Levi-Acobas F, Sarac I, Baron B, England P, Marlière P, Herdewijn P, Hollenstein M. Facile immobilization of DNA using an enzymatic his-tag mimic. Chem Commun (Camb) 2018; 53:13031-13034. [PMID: 29164188 DOI: 10.1039/c7cc07207d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methods for immobilization of DNA on solid supports are in high demand. Herein, we present a generally applicable enzymatic method for the immobilization of DNA without any prior chemical derivatization. This strategy relies on the homopolymerization of the modified triphosphate dImTP by the TdT. The resulting enzymatic his-tag mimic ensures binding of DNA on Ni-NTA agarose. The usefulness of this method is highlighted by the immobilization of functional nucleic acids without impairing their specific activities.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Steinmeyer J, Wagenknecht HA. Synthesis of DNA Modified with Boronic Acid: Compatibility to Copper(I)-Catalyzed Azide–Alkyne Cycloaddition. Bioconjug Chem 2018; 29:431-436. [DOI: 10.1021/acs.bioconjchem.7b00765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeannine Steinmeyer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
24
|
Röthlisberger P, Gasse C, Hollenstein M. Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. Int J Mol Sci 2017; 18:E2430. [PMID: 29144411 PMCID: PMC5713398 DOI: 10.3390/ijms18112430] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022] Open
Abstract
Recent progresses in organic chemistry and molecular biology have allowed the emergence of numerous new applications of nucleic acids that markedly deviate from their natural functions. Particularly, DNA and RNA molecules-coined aptamers-can be brought to bind to specific targets with high affinity and selectivity. While aptamers are mainly applied as biosensors, diagnostic agents, tools in proteomics and biotechnology, and as targeted therapeutics, these chemical antibodies slowly begin to be used in other fields. Herein, we review recent progress on the use of aptamers in the construction of smart DNA origami objects and MRI and PET imaging agents. We also describe advances in the use of aptamers in the field of neurosciences (with a particular emphasis on the treatment of neurodegenerative diseases) and as drug delivery systems. Lastly, the use of chemical modifications, modified nucleoside triphosphate particularly, to enhance the binding and stability of aptamers is highlighted.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Cécile Gasse
- Institute of Systems & Synthetic Biology, Xenome Team, 5 rue Henri Desbruères Genopole Campus 1, University of Evry, F-91030 Evry, France.
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
25
|
Diafa S, Evéquoz D, Leumann CJ, Hollenstein M. Enzymatic Synthesis of 7',5'-Bicyclo-DNA Oligonucleotides. Chem Asian J 2017; 12:1347-1352. [PMID: 28371464 DOI: 10.1002/asia.201700374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/30/2017] [Indexed: 01/06/2023]
Abstract
The selection of artificial genetic polymers with tailor-made properties for their application in synthetic biology requires the exploration of new nucleosidic scaffolds that can be used in selection experiments. Herein, we describe the synthesis of a bicyclo-DNA triphosphate (i.e., 7',5'-bc-TTP) and show its potential to serve for the generation of new xenonucleic acids (XNAs) based on this scaffold. 7',5'-bc-TTP is a good substrate for Therminator DNA polymerase, and up to seven modified units can be incorporated into a growing DNA chain. In addition, this scaffold sustains XNA-dependent DNA synthesis and potentially also XNA-dependent XNA synthesis. However, DNA-dependent XNA synthesis on longer templates is hampered by competitive misincorporation of deoxyadenosine triphosphate (dATP) caused by the slow rate of incorporation of 7',5'-bc-TTP.
Collapse
Affiliation(s)
- Stella Diafa
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
26
|
Röthlisberger P, Levi-Acobas F, Hollenstein M. New synthetic route to ethynyl-dUTP: A means to avoid formation of acetyl and chloro vinyl base-modified triphosphates that could poison SELEX experiments. Bioorg Med Chem Lett 2017; 27:897-900. [PMID: 28089700 DOI: 10.1016/j.bmcl.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/10/2023]
Abstract
5-Ethynyl-2'-deoxyuridine is a common base-modified nucleoside analogue that has served in various applications including selection experiments for potent aptamers and in biosensing. The synthesis of the corresponding triphosphates involves a mild acidic deprotection step. Herein, we show that this deprotection leads to the formation of other nucleoside analogs which are easily converted to triphosphates. The modified nucleoside triphosphates are excellent substrates for numerous DNA polymerases under both primer extension and PCR conditions and could thus poison selection experiments by blocking sites that need to be further modified. The formation of these nucleoside analogs can be circumvented by application of a new synthetic route that is described herein.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
27
|
Eremeeva E, Abramov M, Marlière P, Herdewijn P. The 5-chlorouracil:7-deazaadenine base pair as an alternative to the dT:dA base pair. Org Biomol Chem 2017; 15:168-176. [DOI: 10.1039/c6ob02274j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5-Cl-dU:7-deaza-dA base pair can be a substitute for the dT:dA base pair in an enzymatic replication process of 2 kb DNA.
Collapse
Affiliation(s)
- E. Eremeeva
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| | - M. Abramov
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| | | | - P. Herdewijn
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| |
Collapse
|
28
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Hollenstein M, Damha MJ. Rolling Circle Amplification with Chemically Modified Nucleoside Triphosphates. ACTA ACUST UNITED AC 2016; 67:7.26.1-7.26.15. [PMID: 27911492 DOI: 10.1002/cpnc.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Modified nucleoside triphosphates (dN*TPs) represent facile and versatile precursors for the introduction of chemical diversity into nucleic acids. While dN*TPs have been utilized in a plethora of practical applications, very little attention has been devoted to the assessment of their compatibility with isothermal amplification strategies. In this context, rolling circle amplification (RCA) is a wide-spread enzymatic replication method in which small single-stranded DNA (ssDNA) circles serve as templates in primer extension reactions yielding very long, ssDNA products. RCA is a pivotal tool for the generation of biosensor and diagnostic devices and is currently evaluated for its usefulness to create novel drug delivery systems. This unit describes the experimental procedures for the synthesis of modified RCA products using dN*TPs bearing chemical alterations at any possible location of the nucleosidic scaffold. Two ligation methods are presented for the generation of the DNA nanocircles that serve as templates for RCA, followed by a description of the RCA method itself and an assessment of the nuclease resistance of the ensuing products. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Structural Biology and Chemistry, Pasteur Institute, Paris, France
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Kobayashi T, Takezawa Y, Sakamoto A, Shionoya M. Enzymatic synthesis of ligand-bearing DNAs for metal-mediated base pairing utilising a template-independent polymerase. Chem Commun (Camb) 2016; 52:3762-5. [PMID: 26810253 DOI: 10.1039/c5cc10039a] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed a novel method to synthesise artificial ligand-bearing DNAs utilising a template-independent DNA polymerase. Hydroxypyridone ligand-bearing nucleotides () were successively appended to DNA primers by the enzyme. The resulting strands, tailed with nucleotides, formed Cu(II)-mediated metallo-DNA duplexes through the formation of metal-mediated artificial base pairs (H-Cu(II)-H).
Collapse
Affiliation(s)
- Teruki Kobayashi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Akira Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
31
|
DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization. Molecules 2016; 21:molecules21091082. [PMID: 27563857 PMCID: PMC6274049 DOI: 10.3390/molecules21091082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 11/17/2022] Open
Abstract
Construction and physico-chemical behavior of DNA three way junction (3WJ) functionalized by protein-like residues (imidazole, alcohol and carboxylic acid) at unpaired positions at the core is described. One 5'-C(S)-propargyl-thymidine nucleotide was specifically incorporated on each strand to react through a post synthetic CuACC reaction with either protected imidazolyl-, hydroxyl- or carboxyl-azide. Structural impacts of 5'-C(S)-functionalization were investigated to evaluate how 3WJ flexibility/stability is affected.
Collapse
|
32
|
Hollenstein M. Generation of long, fully modified, and serum-resistant oligonucleotides by rolling circle amplification. Org Biomol Chem 2016; 13:9820-4. [PMID: 26273951 DOI: 10.1039/c5ob01540e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rolling Circle Amplification (RCA) is an isothermal enzymatic method generating single-stranded DNA products consisting of concatemers containing multiple copies of the reverse complement of the circular template precursor. Little is known on the compatibility of modified nucleoside triphosphates (dN*TPs) with RCA, which would enable the synthesis of long, fully modified ssDNA sequences. Here, dNTPs modified at any position of the scaffold were shown to be compatible with rolling circle amplification, yielding long (>1 kb), and fully modified single-stranded DNA products. This methodology was applied for the generation of long, cytosine-rich synthetic mimics of telomeric DNA. The resulting modified oligonucleotides displayed an improved resistance to fetal bovine serum.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
33
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Hollenstein M. DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules 2015; 20:20777-804. [PMID: 26610449 PMCID: PMC6332124 DOI: 10.3390/molecules201119730] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
35
|
Generation of Aptamers with an Expanded Chemical Repertoire. Molecules 2015; 20:16643-71. [PMID: 26389865 PMCID: PMC6332006 DOI: 10.3390/molecules200916643] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
The enzymatic co-polymerization of modified nucleoside triphosphates (dN*TPs and N*TPs) is a versatile method for the expansion and exploration of expanded chemical space in SELEX and related combinatorial methods of in vitro selection. This strategy can be exploited to generate aptamers with improved or hitherto unknown properties. In this review, we discuss the nature of the functionalities appended to nucleoside triphosphates and their impact on selection experiments. The properties of the resulting modified aptamers will be described, particularly those integrated in the fields of biomolecular diagnostics, therapeutics, and in the expansion of genetic systems (XNAs).
Collapse
|
36
|
Morihiro K, Hoshino H, Hasegawa O, Kasahara Y, Nakajima K, Kuwahara M, Tsunoda SI, Obika S. Polymerase incorporation of a 2'-deoxynucleoside-5'-triphosphate bearing a 4-hydroxy-2-mercaptobenzimidazole nucleobase analogue. Bioorg Med Chem Lett 2015; 25:2888-91. [PMID: 26048797 DOI: 10.1016/j.bmcl.2015.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023]
Abstract
Here, we describe the enzymatic construction of a new larger base pair formed between adenine (A) and a 4-hydroxy-2-mercaptobenzimidazole (SB) nucleobase analogue. We investigated the enzymatic incorporation of 2'-deoxynucleoside-5'-triphosphate bearing a SB nucleobase analogue (dSBTP) into oligonucleotides (ONs) by DNA polymerases. dSBTP could be effectively incorporated at the site opposite a dA in a DNA template by several B family DNA polymerases. These findings provide new insights into various aspects of biotechnology, including the design of non-natural base pairs.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hidekazu Hoshino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Osamu Hasegawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuuya Kasahara
- National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Nakajima
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Shin-ichi Tsunoda
- National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Obika
- National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
37
|
Abstract
Catalysis is a fundamental chemical concept, and many kinds of catalysts have considerable practical value. Developing entirely new catalysts is an exciting challenge. Rational design and screening have provided many new small-molecule catalysts, and directed evolution has been used to optimize or redefine the function of many protein enzymes. However, these approaches have inherent limitations that prompt the pursuit of different kinds of catalysts using other experimental methods. Nature evolved RNA enzymes, or ribozymes, for key catalytic roles that in modern biology are limited to phosphodiester cleavage/ligation and amide bond formation. Artificial DNA enzymes, or deoxyribozymes, have great promise for a broad range of catalytic activities. They can be identified from unbiased (random) sequence populations as long as the appropriate in vitro selection strategies can be implemented for their identification. Notably, in vitro selection is different in key conceptual and practical ways from rational design, screening, and directed evolution. This Account describes the development by in vitro selection of DNA catalysts for many different kinds of covalent modification reactions of peptide and protein substrates, inspired in part by our earlier work with DNA-catalyzed RNA ligation reactions. In one set of studies, we have sought DNA-catalyzed peptide backbone cleavage, with the long-term goal of artificial DNA-based proteases. We originally anticipated that amide hydrolysis should be readily achieved, but in vitro selection instead surprisingly led to deoxyribozymes for DNA phosphodiester hydrolysis; this was unexpected because uncatalyzed amide bond hydrolysis is 10(5)-fold faster. After developing a suitable selection approach that actively avoids DNA hydrolysis, we were able to identify deoxyribozymes for hydrolysis of esters and aromatic amides (anilides). Aliphatic amide cleavage remains an ongoing focus, including via inclusion of chemically modified DNA nucleotides in the catalyst, which we have recently found to enable this cleavage reaction. In numerous other efforts, we have investigated DNA-catalyzed peptide side chain modification reactions. Key successes include nucleopeptide formation (attachment of oligonucleotides to peptide side chains) and phosphatase and kinase activities (removal and attachment of phosphoryl groups to side chains). Through all of these efforts, we have learned the importance of careful selection design, including the frequent need to develop specific "capture" reactions that enable the selection process to provide only those DNA sequences that have the desired catalytic functions. We have established strategies for identifying deoxyribozymes that accept discrete peptide and protein substrates, and we have obtained data to inform the key choice of random region length at the outset of selection experiments. Finally, we have demonstrated the viability of modular deoxyribozymes that include a small-molecule-binding aptamer domain, although the value of such modularity is found to be minimal, with implications for many selection endeavors. Advances such as those summarized in this Account reveal that DNA has considerable catalytic abilities for biochemically relevant reactions, specifically including covalent protein modifications. Moreover, DNA has substantially different, and in many ways better, characteristics than do small molecules or proteins for a catalyst that is obtained "from scratch" without demanding any existing information on catalyst structure or mechanism. Therefore, prospects are very strong for continued development and eventual practical applications of deoxyribozymes for peptide and protein modification.
Collapse
Affiliation(s)
- Scott K. Silverman
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Hollenstein M, Leumann CJ. Synthesis and biochemical characterization of tricyclothymidine triphosphate (tc-TTP). Chembiochem 2014; 15:1901-4. [PMID: 25044722 DOI: 10.1002/cbic.201402116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 01/03/2023]
Abstract
Tricyclo-DNA (tc-DNA) is a conformationally restricted oligonucleotide analogue that exhibits promising properties as a robust antisense agent. Here we report on the synthesis and biochemical characterization of tc-TTP, the triphosphate of a tc-DNA nucleoside containing the base thymine. Tc-TTP turned out to be a substrate for the Vent (exo(-) ) DNA polymerase, a polymerase that allows for multiple incorporations of tc-T nucleotides under primer extension reaction conditions. However, the substrate acceptance is rather low, as also observed for other sugar-modified analogues. Tc-TTP and tc-nucleotide-containing templates do not sustain enzymatic polymerization under physiological conditions; this indicates that tc-DNA-based antisense agents will not enter natural metabolic pathways that lead to long-term toxicity.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland).
| | | |
Collapse
|
39
|
Hollenstein M, Smith CC, Räz M. Nucleoside triphosphates--from synthesis to biochemical characterization. J Vis Exp 2014:51385. [PMID: 24747811 PMCID: PMC4162383 DOI: 10.3791/51385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The traditional strategy for the introduction of chemical functionalities is the use of solid-phase synthesis by appending suitably modified phosphoramidite precursors to the nascent chain. However, the conditions used during the synthesis and the restriction to rather short sequences hamper the applicability of this methodology. On the other hand, modified nucleoside triphosphates are activated building blocks that have been employed for the mild introduction of numerous functional groups into nucleic acids, a strategy that paves the way for the use of modified nucleic acids in a wide-ranging palette of practical applications such as functional tagging and generation of ribozymes and DNAzymes. One of the major challenges resides in the intricacy of the methodology leading to the isolation and characterization of these nucleoside analogues. In this video article, we present a detailed protocol for the synthesis of these modified analogues using phosphorous(III)-based reagents. In addition, the procedure for their biochemical characterization is divulged, with a special emphasis on primer extension reactions and TdT tailing polymerization. This detailed protocol will be of use for the crafting of modified dNTPs and their further use in chemical biology.
Collapse
Affiliation(s)
| | | | - Michael Räz
- Department of Chemistry and Biochemistry, University of Bern
| |
Collapse
|