1
|
Beutick SE, Yu S, Orian L, Bickelhaupt FM, Hamlin TA. Retro-Cope elimination of cyclic alkynes: reactivity trends and rational design of next-generation bioorthogonal reagents. Chem Sci 2024:d4sc04211e. [PMID: 39239482 PMCID: PMC11369967 DOI: 10.1039/d4sc04211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
The retro-Cope elimination reaction between dimethylhydroxylamine (DMHA) and various cyclic alkynes has been quantum chemically explored using DFT at ZORA-BP86/TZ2P. The purpose of this study is to understand the role of the following three unique activation modes on the overall reactivity, that is (i) additional cycloalkyne predistortion via fused cycles, (ii) exocyclic heteroatom substitution on the cycloalkyne, and (iii) endocyclic heteroatom substitution on the cycloalkyne. Trends in reactivity are analyzed and explained by using the activation strain model (ASM) of chemical reactivity. Based on our newly formulated design principles, we constructed a priori a suite of novel bioorthogonal reagents that are highly reactive towards the retro-Cope elimination reaction with DMHA. Our findings offer valuable insights into the design principles for highly reactive bioorthogonal reagents in chemical synthesis.
Collapse
Affiliation(s)
- Steven E Beutick
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 Padova 35129 Italy
| | - Song Yu
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 Padova 35129 Italy
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
- Institute of Molecules and Materials, Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
- Department of Chemical Sciences, University of Johannesburg Auckland Park Johannesburg 2006 South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
| |
Collapse
|
2
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
3
|
Passow KT, Harki DA. 4-Isocyanoindole-2'-deoxyribonucleoside (4ICIN): An Isomorphic Indole Nucleoside Suitable for Inverse Electron Demand Diels-Alder Reactions. Tetrahedron Lett 2023; 132:154807. [PMID: 38009110 PMCID: PMC10673620 DOI: 10.1016/j.tetlet.2023.154807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Isomorphic nucleosides are powerful tool compounds for interrogating a variety of biological processes involving nucleosides and nucleic acids. We previously reported a fluorescent isomorphic indole nucleoside called 4CIN. A distinguishing molecular feature of 4CIN is the presence of a 4-cyano moiety on the indole that functions as the nucleobase. Given the known chemical reactivity of isonitriles with tetrazines through [4+1]-cycloaddition chemistry, we investigated whether conversion of 4CIN to the corresponding isonitrile would confer a useful chemical probe. Here we report the synthesis of 4-isocyanoindole-2'-deoxyribonucleoside (4ICIN) and the propensity of 4ICIN to undergo inverse electron demand Diels-Alder cycloaddition with a model tetrazine.
Collapse
Affiliation(s)
- Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, United States
| |
Collapse
|
4
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
5
|
Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022; 7:386. [PMID: 36460660 PMCID: PMC9716178 DOI: 10.1038/s41392-022-01250-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Bioorthogonal chemistry reactions occur in physiological conditions without interfering with normal physiological processes. Through metabolic engineering, bioorthogonal groups can be tagged onto cell membranes, which selectively attach to cargos with paired groups via bioorthogonal reactions. Due to its simplicity, high efficiency, and specificity, bioorthogonal chemistry has demonstrated great application potential in drug delivery. On the one hand, bioorthogonal reactions improve therapeutic agent delivery to target sites, overcoming off-target distribution. On the other hand, nanoparticles and biomolecules can be linked to cell membranes by bioorthogonal reactions, providing approaches to developing multi-functional drug delivery systems (DDSs). In this review, we first describe the principle of labeling cells or pathogenic microorganisms with bioorthogonal groups. We then highlight recent breakthroughs in developing active targeting DDSs to tumors, immune systems, or bacteria by bioorthogonal chemistry, as well as applications of bioorthogonal chemistry in developing functional bio-inspired DDSs (biomimetic DDSs, cell-based DDSs, bacteria-based and phage-based DDSs) and hydrogels. Finally, we discuss the difficulties and prospective direction of bioorthogonal chemistry in drug delivery. We expect this review will help us understand the latest advances in the development of active targeting and multi-functional DDSs using bioorthogonal chemistry and inspire innovative applications of bioorthogonal chemistry in developing smart DDSs for disease treatment.
Collapse
Affiliation(s)
- Wenzhe Yi
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ping Xiao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiaochen Liu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zitong Zhao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiangshi Sun
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jue Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Lei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Guanru Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Haiqiang Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Dangge Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000 China
| | - Yaping Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000 China
| |
Collapse
|
6
|
Del Rio Flores A, Barber CC, Narayanamoorthy M, Gu D, Shen Y, Zhang W. Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products. Annu Rev Chem Biomol Eng 2022; 13:1-24. [PMID: 35236086 PMCID: PMC9811556 DOI: 10.1146/annurev-chembioeng-092120-025140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
| | - Colin C Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA;
| | | | - Di Gu
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
7
|
Leech MC, Petti A, Tanbouza N, Mastrodonato A, Goodall ICA, Ollevier T, Dobbs AP, Lam K. Anodic Oxidation of Aminotetrazoles: A Mild and Safe Route to Isocyanides. Org Lett 2021; 23:9371-9375. [PMID: 34841877 DOI: 10.1021/acs.orglett.1c03475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new electrochemical method for the preparation of isocyanides from easily accessible aminotetrazole derivatives has been developed, which tolerates an unprecedented range of functional groups. The use of chemical, rather than electrochemical, oxidation to afford isocyanides was also demonstrated, which provides access to these compounds for those without electrosynthesis equipment. The practicality of scale-up using flow electrochemistry has been demonstrated, in addition to the possibility of using electrochemically generated isocyanides in further reactions.
Collapse
Affiliation(s)
- Matthew C Leech
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Alessia Petti
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Nour Tanbouza
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Andrea Mastrodonato
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Iain C A Goodall
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Thierry Ollevier
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Adrian P Dobbs
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Kevin Lam
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
8
|
Abstract
Bioorthogonal chemistry is a set of methods using the chemistry of non-native functional groups to explore and understand biology in living organisms. In this review, we summarize the most common reactions used in bioorthogonal methods, their relative advantages and disadvantages, and their frequency of occurrence in the published literature. We also briefly discuss some of the less common but potentially useful methods. We then analyze the bioorthogonal-related publications in the CAS Content Collection to determine how often different types of biomolecules such as proteins, carbohydrates, glycans, and lipids have been studied using bioorthogonal chemistry. The most prevalent biological and chemical methods for attaching bioorthogonal functional groups to these biomolecules are elaborated. We also analyze the publication volume related to different types of bioorthogonal applications in the CAS Content Collection. The use of bioorthogonal chemistry for imaging, identifying, and characterizing biomolecules and for delivering drugs to treat disease is discussed at length. Bioorthogonal chemistry for the surface attachment of proteins and in the use of modified carbohydrates is briefly noted. Finally, we summarize the state of the art in bioorthogonal chemistry and its current limitations and promise for its future productive use in chemistry and biology.
Collapse
Affiliation(s)
- Robert E Bird
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Steven A Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xiang Yu
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
9
|
Szatmári Á, Cserép GB, Molnár TÁ, Söveges B, Biró A, Várady G, Szabó E, Németh K, Kele P. A Genetically Encoded Isonitrile Lysine for Orthogonal Bioorthogonal Labeling Schemes. Molecules 2021; 26:4988. [PMID: 34443576 PMCID: PMC8402055 DOI: 10.3390/molecules26164988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 01/11/2023] Open
Abstract
Bioorthogonal click-reactions represent ideal means for labeling biomolecules selectively and specifically with suitable small synthetic dyes. Genetic code expansion (GCE) technology enables efficient site-selective installation of bioorthogonal handles onto proteins of interest (POIs). Incorporation of bioorthogonalized non-canonical amino acids is a minimally perturbing means of enabling the study of proteins in their native environment. The growing demand for the multiple modification of POIs has triggered the quest for developing orthogonal bioorthogonal reactions that allow simultaneous modification of biomolecules. The recently reported bioorthogonal [4 + 1] cycloaddition reaction of bulky tetrazines and sterically demanding isonitriles has prompted us to develop a non-canonical amino acid (ncAA) bearing a suitable isonitrile function. Herein we disclose the synthesis and genetic incorporation of this ncAA together with studies aiming at assessing the mutual orthogonality between its reaction with bulky tetrazines and the inverse electron demand Diels-Alder (IEDDA) reaction of bicyclononyne (BCN) and tetrazine. Results showed that the new ncAA, bulky-isonitrile-carbamate-lysine (BICK) is efficiently and specifically incorporated into proteins by genetic code expansion, and despite the slow [4 + 1] cycloaddition, enables the labeling of outer membrane receptors such as insulin receptor (IR) with a membrane-impermeable dye. Furthermore, double labeling of protein structures in live and fixed mammalian cells was achieved using the mutually orthogonal bioorthogonal IEDDA and [4 + 1] cycloaddition reaction pair, by introducing BICK through GCE and BCN through a HaloTag technique.
Collapse
Affiliation(s)
- Ágnes Szatmári
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Gergely B. Cserép
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Tibor Á. Molnár
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Bianka Söveges
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Adrienn Biró
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - György Várady
- Molecular Cell Biology Research Group, Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.V.); (E.S.)
| | - Edit Szabó
- Molecular Cell Biology Research Group, Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.V.); (E.S.)
| | - Krisztina Németh
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| |
Collapse
|
10
|
Hu Y, Schomaker JM. Recent Developments and Strategies for Mutually Orthogonal Bioorthogonal Reactions. Chembiochem 2021; 22:3254-3262. [PMID: 34261195 DOI: 10.1002/cbic.202100164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade, several different metal-free bioorthogonal reactions have been developed to enable simultaneous double-click labeling with minimal-to-no competing cross-reactivities; such transformations are termed 'mutually orthogonal'. More recently, several examples of successful triple ligation strategies have also been described. In this minireview, we discuss selected aspects of the development of orthogonal bioorthogonal reactions over the past decade, including general strategies to drive future innovations to achieve simultaneous, mutually orthogonal click reactions in one pot.
Collapse
Affiliation(s)
- Yun Hu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
11
|
Bunn BM, Xu M, Webb CM, Viswanathan R. Biocatalysts from cyanobacterial hapalindole pathway afford antivirulent isonitriles against MRSA. J Biosci 2021. [DOI: 10.1007/s12038-021-00156-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Metabolic glycan labelling for cancer-targeted therapy. Nat Chem 2020; 12:1102-1114. [PMID: 33219365 DOI: 10.1038/s41557-020-00587-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
Metabolic glycoengineering with unnatural sugars provides a powerful tool to label cell membranes with chemical tags for subsequent targeted conjugation of molecular cargos via efficient chemistries. This technology has been widely explored for cancer labelling and targeting. However, as this metabolic labelling process can occur in both cancerous and normal cells, cancer-selective labelling needs to be achieved to develop cancer-targeted therapies. Unnatural sugars can be either rationally designed to enable preferential labelling of cancer cells, or specifically delivered to cancerous tissues. In this Review Article, we will discuss the progress to date in design and delivery of unnatural sugars for metabolic labelling of tumour cells and subsequent development of tumour-targeted therapy. Metabolic cell labelling for cancer immunotherapy will also be discussed. Finally, we will provide a perspective on future directions of metabolic labelling of cancer and immune cells for the development of potent, clinically translatable cancer therapies.
Collapse
|
14
|
Méndez Y, Vasco AV, Humpierre AR, Westermann B. Isonitriles: Versatile Handles for the Bioorthogonal Functionalization of Proteins. ACS OMEGA 2020; 5:25505-25510. [PMID: 33073077 PMCID: PMC7557220 DOI: 10.1021/acsomega.0c03728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/17/2020] [Indexed: 05/12/2023]
Abstract
The property of the isonitrile group to enable the simultaneous α-addition of a strong electrophile and a nucleophile has always attracted the attention of organic chemists. Its versatility is augmented when recognizing that its high structural compactness, the inertia to most of the naturally occurring functional groups, and relatively prolonged physiological and metabolical stability, convert it into the smallest bioorthogonal group. The discovery and optimization of the isonitrile-tetrazine [4+1] cycloaddition as an alternative tool for the development of ligation and decaging strategies and the recently reported reaction of isonitriles with chlorooximes bring new opportunities for the utilization of this functional group in biological systems. Although several approaches have been reported for the synthesis of isonitrile-modified carbohydrates and polysaccharides, its incorporation in proteins has been barely explored. Besides compiling the reported methods for the assembly of isonitrile-modified proteins, this Mini-Review aims at calling attention to the real potential of this modification for protein ligation, decaging, immobilization, imaging, and many other applications at a low structural and functional cost.
Collapse
Affiliation(s)
- Yanira Méndez
- Department
of Bioorganic Chemistry, Leibniz-Institute
of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Aldrin V. Vasco
- Department
of Bioorganic Chemistry, Leibniz-Institute
of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Ana R. Humpierre
- Department
of Bioorganic Chemistry, Leibniz-Institute
of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Center
for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba
| | - Bernhard Westermann
- Department
of Bioorganic Chemistry, Leibniz-Institute
of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Institute
of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
| |
Collapse
|
15
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
16
|
Zhang R, Zheng J, Zhang T. In vivo selective imaging of metabolic glycosylation with a tetrazine-modified upconversion nanoprobe. RSC Adv 2020; 10:15990-15996. [PMID: 35493688 PMCID: PMC9052955 DOI: 10.1039/d0ra01832e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
A novel nanoprobe (UCNP-T) for the specific labeling and real-time imaging of glycans on the cell membrane via ratiometric UCL imaging was developed.
Collapse
Affiliation(s)
- Ruijing Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Judun Zheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| |
Collapse
|
17
|
Chen Y, Wu KL, Tang J, Loredo A, Clements J, Pei J, Peng Z, Gupta R, Fang X, Xiao H. Addition of Isocyanide-Containing Amino Acids to the Genetic Code for Protein Labeling and Activation. ACS Chem Biol 2019; 14:2793-2799. [PMID: 31682403 DOI: 10.1021/acschembio.9b00678] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Site-specific introduction of bioorthogonal handles into biomolecules provides powerful tools for studying and manipulating the structures and functions of proteins. Recent advances in bioorthogonal chemistry demonstrate that tetrazine-based bioorthogonal cycloaddition is a particularly useful methodology due to its high reactivity, biological selectivity, and turn-on property for fluorescence imaging. Despite its broad applications in protein labeling and imaging, utilization of tetrazine-based bioorthogonal cycloaddition has been limited to date by the requirement of a hydrophobic strained alkene reactive moiety. Circumventing this structural requirement, we report the site-specific incorporation of noncanonical amino acids (ncAAs) with a small isocyanide (or isonitrile) group into proteins in both bacterial and mammalian cells. We showed that under physiological conditions and in the absence of a catalyst these isocyanide-containing ncAAs could react selectively with tetrazine molecules via [4 + 1]-cycloaddition, thus providing a versatile bioorthogonal handle for site-specific protein labeling and protein decaging. Significantly, these bioorthogonal reactions between isocyanides and tetrazines also provide a unique mechanism for the activation of tetrazine-quenched fluorophores. The addition of these isocyanide-containing ncAAs to the list of 20 commonly used, naturally occurring amino acids expands our repertoire of reagents for bioorthogonal chemistry, therefore enabling new biological applications ranging from protein labeling and imaging studies to the chemical activation of proteins.
Collapse
Affiliation(s)
- Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Kuan-Lin Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jordan Clements
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jingqi Pei
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zane Peng
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ruchi Gupta
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Xinlei Fang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Huang YB, Cai W, Del Rio Flores A, Twigg FF, Zhang W. Facile Discovery and Quantification of Isonitrile Natural Products via Tetrazine-Based Click Reactions. Anal Chem 2019; 92:599-602. [PMID: 31815449 DOI: 10.1021/acs.analchem.9b05147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A facile method for the quick discovery and quantification of isonitrile compounds from microbial cultures was established based on the isonitrile-tetrazine click reaction. This method was successfully applied to the rediscovery of diisonitrile antibotic SF2768 from an unknown strain Streptomyces tsukubensis. Finally, an in situ reduction further enabled bioorthogonal ligation of primary and secondary isonitriles for the first time.
Collapse
Affiliation(s)
- Yao-Bing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing 210037 , China.,Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Frederick F Twigg
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
19
|
Schäfer RJB, Monaco MR, Li M, Tirla A, Rivera-Fuentes P, Wennemers H. The Bioorthogonal Isonitrile–Chlorooxime Ligation. J Am Chem Soc 2019; 141:18644-18648. [DOI: 10.1021/jacs.9b07632] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca J. B. Schäfer
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Mattia R. Monaco
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Mao Li
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Alina Tirla
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| |
Collapse
|
20
|
Xu M, Deb T, Tu J, Franzini RM. Tuning Isonitrile/Tetrazine Chemistry for Accelerated Deprotection and Formation of Stable Conjugates. J Org Chem 2019; 84:15520-15529. [DOI: 10.1021/acs.joc.9b02522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
21
|
Agatemor C, Buettner MJ, Ariss R, Muthiah K, Saeui CT, Yarema KJ. Exploiting metabolic glycoengineering to advance healthcare. Nat Rev Chem 2019; 3:605-620. [PMID: 31777760 DOI: 10.1038/s41570-019-0126-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic glycoengineering (MGE) is a technique for manipulating cellular metabolism to modulate glycosylation. MGE is used to increase the levels of natural glycans and, more importantly, to install non-natural monosaccharides into glycoconjugates. In this Review, we summarize the chemistry underlying MGE that has been developed over the past three decades and highlight several recent advances that have set the stage for clinical translation. In anticipation of near-term application to human healthcare, we describe emerging efforts to deploy MGE in diverse applications, ranging from the glycoengineering of biotherapeutic proteins and the diagnosis and treatment of complex diseases such as cancer to the development of new immunotherapies.
Collapse
Affiliation(s)
- Christian Agatemor
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Keerthana Muthiah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
22
|
Tu J, Svatunek D, Parvez S, Liu ACG, Levandowski BJ, Eckvahl HJ, Peterson RT, Houk KN, Franzini RM. Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. Angew Chem Int Ed Engl 2019; 58:9043-9048. [PMID: 31062496 PMCID: PMC6615965 DOI: 10.1002/anie.201903877] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Indexed: 12/11/2022]
Abstract
The isocyano group is a structurally compact bioorthogonal functional group that reacts with tetrazines under physiological conditions. Now it is shown that bulky tetrazine substituents accelerate this cycloaddition. Computational studies suggest that dispersion forces between the isocyano group and the tetrazine substituents in the transition state contribute to the atypical structure-activity relationship. Stable asymmetric tetrazines that react with isonitriles at rate constants as high as 57 L mol-1 s-1 were accessible by combining bulky and electron-withdrawing substituents. Sterically encumbered tetrazines react selectively with isonitriles in the presence of strained alkenes/alkynes, which allows for the orthogonal labeling of three proteins. The established principles will open new opportunities for developing tetrazine reactants with improved characteristics for diverse labeling and release applications with isonitriles.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 (USA)
| | - Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Saba Parvez
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 (USA)
| | - Albert C. G. Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Brian J. Levandowski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Hannah J. Eckvahl
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 (USA)
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 (USA)
| |
Collapse
|
23
|
Tu J, Svatunek D, Parvez S, Liu AC, Levandowski BJ, Eckvahl HJ, Peterson RT, Houk KN, Franzini RM. Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Julian Tu
- Department of Medicinal ChemistryUniversity of Utah 30 S 2000 E Salt Lake City UT 84112 USA
| | - Dennis Svatunek
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Saba Parvez
- Department of Pharmacology and ToxicologyUniversity of Utah 30 S 2000 E Salt Lake City UT 84112 USA
| | - Albert C. Liu
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Brian J. Levandowski
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Hannah J. Eckvahl
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Randall T. Peterson
- Department of Pharmacology and ToxicologyUniversity of Utah 30 S 2000 E Salt Lake City UT 84112 USA
| | - Kendall N. Houk
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Raphael M. Franzini
- Department of Medicinal ChemistryUniversity of Utah 30 S 2000 E Salt Lake City UT 84112 USA
| |
Collapse
|
24
|
Abstract
Bioorthogonal reactions that proceed readily under physiological conditions without interference from biomolecules have found widespread application in the life sciences. Complementary to the bioorthogonal reactions that ligate two molecules, reactions that release a molecule or cleave a linker are increasingly attracting interest. Such dissociative bioorthogonal reactions have a broad spectrum of uses, for example, in controlling bio-macromolecule activity, in drug delivery, and in diagnostic assays. This review article summarizes the developed bioorthogonal reactions linked to a release step, outlines representative areas of the applications of such reactions, and discusses aspects that require further improvement.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
25
|
Kozma E, Demeter O, Kele P. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels-Alder Reactions. Chembiochem 2017; 18:486-501. [PMID: 28070925 PMCID: PMC5363342 DOI: 10.1002/cbic.201600607] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Bio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks. At the end, we discuss challenges that need to be addressed for further developments in order to overcome recent limitations and to enable researchers to answer biomolecular questions in more detail.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| | - Orsolya Demeter
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| | - Péter Kele
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| |
Collapse
|
26
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
27
|
Saliba RC, Pohl NL. Designing sugar mimetics: non-natural pyranosides as innovative chemical tools. Curr Opin Chem Biol 2016; 34:127-134. [PMID: 27621102 DOI: 10.1016/j.cbpa.2016.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
The importance of oligosaccharides in myriad biological processes is becoming increasingly clear. However, these carbohydrate-mediated processes are often challenging to dissect due to the often poor affinity, stability and selectivity of the oligosaccharides involved. To circumvent these issues, non-natural carbohydrates-carbohydrate mimics-are being designed as innovative tools to modify biomolecules of interest or to understand biological pathways using fluorescence microscopy, X-ray or nuclear magnetic resonance spectroscopy (NMR). This review focuses on key examples of recently developed non-natural sugars to answer specific biological needs.
Collapse
Affiliation(s)
- Regis C Saliba
- Department of Chemistry, Indiana University, Bloomington, IN 47401, United States.
| | - Nicola Lb Pohl
- Department of Chemistry, Indiana University, Bloomington, IN 47401, United States.
| |
Collapse
|
28
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
29
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
30
|
Späte AK, Dold JEGA, Batroff E, Schart VF, Wieland DE, Baudendistel OR, Wittmann V. Exploring the Potential of Norbornene-Modified Mannosamine Derivatives for Metabolic Glycoengineering. Chembiochem 2016; 17:1374-83. [DOI: 10.1002/cbic.201600197] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Anne-Katrin Späte
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Jeremias E. G. A. Dold
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Ellen Batroff
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Verena F. Schart
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Daniel E. Wieland
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Oliver R. Baudendistel
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Valentin Wittmann
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| |
Collapse
|
31
|
Bode ML, Gravestock D, Rousseau AL. Synthesis, Reactions and Uses of Isocyanides in Organic Synthesis. An Update. ORG PREP PROCED INT 2016. [DOI: 10.1080/00304948.2016.1138072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Benito-Alifonso D, Tremell S, Sadler JC, Berry M, Galan MC. Imidazolium-tagged glycan probes for non-covalent labeling of live cells. Chem Commun (Camb) 2016; 52:4906-9. [DOI: 10.1039/c5cc10040b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use imidazolium tagged-mannosamine derivative for the non-covalent, rapid and site-specific labeling of sialic acid containing glycoproteins using commercial N-nitrilotriacetate fluorescent reagents in a range of live cells is reported.
Collapse
Affiliation(s)
| | | | | | - Monica Berry
- School of Physics
- University of Bristol
- NSQI
- Bristol BS8 1F
- UK
| | | |
Collapse
|
33
|
Cheng B, Xie R, Dong L, Chen X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. Chembiochem 2015; 17:11-27. [PMID: 26573222 DOI: 10.1002/cbic.201500344] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/14/2022]
Abstract
Cell-surface sialic acids are essential in mediating a variety of physiological and pathological processes. Sialic acid chemistry and biology remain challenging to investigate, demanding new tools for probing sialylation in living systems. The metabolic glycan labeling (MGL) strategy has emerged as an invaluable chemical biology tool that enables metabolic installation of useful functionalities into cell-surface sialoglycans by "hijacking" the sialic acid biosynthetic pathway. Here we review the principles of MGL and its applications in study and manipulation of sialic acid function, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Bo Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ran Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lu Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Patterson DM, Prescher JA. Orthogonal bioorthogonal chemistries. Curr Opin Chem Biol 2015; 28:141-9. [DOI: 10.1016/j.cbpa.2015.07.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/20/2015] [Accepted: 07/17/2015] [Indexed: 01/20/2023]
|
35
|
Späte AK, Schart VF, Schöllkopf S, Niederwieser A, Wittmann V. Terminal Alkenes as Versatile Chemical Reporter Groups for Metabolic Oligosaccharide Engineering. Chemistry 2014; 20:16502-8. [DOI: 10.1002/chem.201404716] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Indexed: 11/07/2022]
|
36
|
Späte AK, Schart VF, Häfner J, Niederwieser A, Mayer TU, Wittmann V. Expanding the scope of cyclopropene reporters for the detection of metabolically engineered glycoproteins by Diels-Alder reactions. Beilstein J Org Chem 2014; 10:2235-42. [PMID: 25298790 PMCID: PMC4187077 DOI: 10.3762/bjoc.10.232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Monitoring glycoconjugates has been tremendously facilitated by the development of metabolic oligosaccharide engineering. Recently, the inverse-electron-demand Diels-Alder reaction between methylcyclopropene tags and tetrazines has become a popular ligation reaction due to the small size and high reactivity of cyclopropene tags. Attaching the cyclopropene tag to mannosamine via a carbamate linkage has made the reaction even more efficient. Here, we expand the application of cyclopropene tags to N-acylgalactosamine and N-acylglucosamine derivatives enabling the visualization of mucin-type O-glycoproteins and O-GlcNAcylated proteins through Diels-Alder chemistry. Whereas the previously reported cyclopropene-labeled N-acylmannosamine derivative leads to significantly higher fluorescence staining of cell-surface glycoconjugates, the glucosamine derivative gave higher labeling efficiency with protein preparations containing also intracellular proteins.
Collapse
Affiliation(s)
- Anne-Katrin Späte
- University of Konstanz, Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Verena F Schart
- University of Konstanz, Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julia Häfner
- University of Konstanz, Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andrea Niederwieser
- University of Konstanz, Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Thomas U Mayer
- University of Konstanz, Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Valentin Wittmann
- University of Konstanz, Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
37
|
Shih HW, Kamber DN, Prescher JA. Building better bioorthogonal reactions. Curr Opin Chem Biol 2014; 21:103-11. [DOI: 10.1016/j.cbpa.2014.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022]
|
38
|
Lang K, Chin JW. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 2014; 114:4764-806. [PMID: 24655057 DOI: 10.1021/cr400355w] [Citation(s) in RCA: 819] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathrin Lang
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
39
|
Patterson DM, Nazarova LA, Prescher JA. Finding the right (bioorthogonal) chemistry. ACS Chem Biol 2014; 9:592-605. [PMID: 24437719 DOI: 10.1021/cb400828a] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistries can be used to tag diverse classes of biomolecules in cells and other complex environments. With over 20 unique transformations now available, though, selecting an appropriate reaction for a given experiment is challenging. In this article, we compare and contrast the most common classes of bioorthogonal chemistries and provide a framework for matching the reactions with downstream applications. We also discuss ongoing efforts to identify novel biocompatible reactions and methods to control their reactivity. The continued expansion of the bioorthogonal toolkit will provide new insights into biomolecule networks and functions and thus refine our understanding of living systems.
Collapse
Affiliation(s)
- David M. Patterson
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Lidia A. Nazarova
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jennifer A. Prescher
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
40
|
Patterson DM, Jones KA, Prescher JA. Improved cyclopropene reporters for probing protein glycosylation. MOLECULAR BIOSYSTEMS 2014; 10:1693-7. [DOI: 10.1039/c4mb00092g] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Späte AK, Bußkamp H, Niederwieser A, Schart VF, Marx A, Wittmann V. Rapid Labeling of Metabolically Engineered Cell-Surface Glycoconjugates with a Carbamate-Linked Cyclopropene Reporter. Bioconjug Chem 2013; 25:147-54. [DOI: 10.1021/bc4004487] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anne-Katrin Späte
- University of Konstanz, Department of Chemistry and Konstanz Research School
Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Holger Bußkamp
- University of Konstanz, Department of Chemistry and Konstanz Research School
Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andrea Niederwieser
- University of Konstanz, Department of Chemistry and Konstanz Research School
Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Verena F. Schart
- University of Konstanz, Department of Chemistry and Konstanz Research School
Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andreas Marx
- University of Konstanz, Department of Chemistry and Konstanz Research School
Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| | - Valentin Wittmann
- University of Konstanz, Department of Chemistry and Konstanz Research School
Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|