1
|
Cernadas T, Pereira J, Melo BL, de Melo-Diogo D, Correia IJ, Alves P, Ferreira P. Renewable Photo-Cross-Linkable Polyester-Based Biomaterials: Synthesis, Characterization, and Cytocompatibility Assessment. Biomacromolecules 2024. [PMID: 39418667 DOI: 10.1021/acs.biomac.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The present work consist of the synthesis of photo-cross-linkable materials, based on unsaturated polyesters (UPs), synthesized from biobased monomers from renewable sources such as itaconic acid and 1,4-butanediol. The UPs were characterized to assess the influence of polycondensation reaction temperature and cross-linking time on their final properties. For this purpose, different UV irradiation exposure periods were tested. Homogeneous, uniform, and transparent films were obtained after 1, 3, and 5 min of UV exposure. These cross-linked films were then characterized. All materials presented high gel content, which was dependent on the reaction's temperature. The thermal behaviors of the UPs were shown to be similar. In vitro hydrolytic degradation tests showed that the materials can undergo degradation in phosphate-buffered saline (PBS) at pH 7.4 and 37 °C, ensuring their biodegradability over time. Finally, to assess the applicability of the polyesters as biomaterials, their cytocompatibility was determined by using human dermal fibroblasts.
Collapse
Affiliation(s)
- Teresa Cernadas
- Department of Chemical Engineering, University of Coimbra, CERES, Coimbra 3030-790, Portugal
- Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Research Centre for Natural Resources, Coimbra 3045-601, Portugal
| | - João Pereira
- Department of Chemical Engineering, University of Coimbra, CERES, Coimbra 3030-790, Portugal
| | - Bruna L Melo
- AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã 6201-001, Portugal
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Ilídio J Correia
- Department of Chemical Engineering, University of Coimbra, CERES, Coimbra 3030-790, Portugal
- AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã 6201-001, Portugal
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Patrícia Alves
- Department of Chemical Engineering, University of Coimbra, CERES, Coimbra 3030-790, Portugal
| | - Paula Ferreira
- Department of Chemical Engineering, University of Coimbra, CERES, Coimbra 3030-790, Portugal
- Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Research Centre for Natural Resources, Coimbra 3045-601, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços - S. Martinho do Bispo, Coimbra 3045-093, Portugal
| |
Collapse
|
2
|
dos Santos JB, Choueri RB, dos Santos FEM, Santos LADO, da Silva LF, Nobre CR, Cardoso MA, de Britto Mari R, Simões FR, Delvalls TA, Gusso-Choueri PK. Are Microfibers a Threat to Marine Invertebrates? A Sea Urchin Toxicity Assessment. TOXICS 2024; 12:753. [PMID: 39453173 PMCID: PMC11510891 DOI: 10.3390/toxics12100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The rise of "fast fashion" has driven up the production of low-cost, short-lived clothing, significantly increasing global textile fiber production and, consequently, exacerbating environmental pollution. This study investigated the ecotoxicological effects of different types of anthropogenic microfibers-cotton, polyester, and mixed fibers (50% cotton: 50% polyester)-on marine organisms, specifically sea urchin embryos. All tested fibers exhibited toxicity, with cotton fibers causing notable effects on embryonic development even at environmentally relevant concentrations. The research also simulated a scenario where microfibers were immersed in seawater for 30 days to assess changes in toxicity over time. The results showed that the toxicity of microfibers increased with both concentration and exposure duration, with polyester being the most toxic among the fibers tested. Although synthetic fibers have been the primary focus of previous research, this study highlights that natural fibers like cotton, which are often overlooked, can also be toxic due to the presence of harmful additives. These natural fibers, despite decomposing faster than synthetic ones, can persist in aquatic environments for extended periods. The findings underline the critical need for further research on both natural and synthetic microfibers to understand their environmental impact and potential threats to marine ecosystems and sea urchin populations.
Collapse
Affiliation(s)
- Jennifer Barbosa dos Santos
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| | - Rodrigo Brasil Choueri
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Francisco Eduardo Melo dos Santos
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| | - Laís Adrielle de Oliveira Santos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Letícia Fernanda da Silva
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Caio Rodrigues Nobre
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Milton Alexandre Cardoso
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Unifesp, Diadema 09972-270, São Paulo, Brazil
| | - Renata de Britto Mari
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Fábio Ruiz Simões
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Tomas Angel Delvalls
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
- Water Challenge S.L., Avda. Papa Negro, 63, 28043 Madrid, Spain
| | - Paloma Kachel Gusso-Choueri
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| |
Collapse
|
3
|
Sokołowska M, Molnar K, Puskas JE, El Fray M. Improving the Sustainability of Enzymatic Synthesis of Poly(butylene adipate)-Based Copolyesters: Polycondensation Reaction in Bulk vs Diphenyl Ether. ACS OMEGA 2024; 9:38385-38395. [PMID: 39310126 PMCID: PMC11411551 DOI: 10.1021/acsomega.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
In response to mounting global concerns such as CO2 emissions, environmental pollution, and the depletion of fossil resources, the field of polymer science is shifting its focus toward sustainability. This research investigates the synthesis of poly(butylene adipate)-co-(dilinoleic adipate) (PBA-DLA) copolymers using two distinct methods: bulk polycondensation and polycondensation in diphenyl ether. The objective is to assess the environmental impact, chemical structure, composition, and key properties of the resulting copolymers, with a particular emphasis on determining the viability of bulk synthesis as a more sustainable approach. Various analytical methods, including nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and size exclusion chromatography, were employed to confirm successful copolymerization and highlight differences in molecular weight and microstructure. Additionally, thermal and dynamic mechanical analyses were conducted to thoroughly characterize the copolymers' properties. This research provides significant findings into the sustainable production of PBA-DLA copolymers, offering a more environmentally friendly approach without compromising product quality or performance.
Collapse
Affiliation(s)
- Martyna Sokołowska
- Szczecin,
Faculty of Chemical Technology and Engineering, Department of Polymer
and Biomaterials Science, West Pomeranian
University of Technology, Al. Piastow 45, 70-311 Szczecin, Poland
| | - Kristof Molnar
- Department
of Food, Agricultural and Biological Engineering, College of Food,
Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, United States
- Laboratory
of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad ter 4, Budapest 1089, Hungary
| | - Judit E. Puskas
- Department
of Food, Agricultural and Biological Engineering, College of Food,
Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, United States
| | - Miroslawa El Fray
- Szczecin,
Faculty of Chemical Technology and Engineering, Department of Polymer
and Biomaterials Science, West Pomeranian
University of Technology, Al. Piastow 45, 70-311 Szczecin, Poland
| |
Collapse
|
4
|
Lu K, Shen X, Shi Y, He Z, Zhang D, Zhou M. Biodegradable polyester copolymers: synthesis based on the Biginelli reaction, characterization, and evaluation of their application properties. RSC Adv 2024; 14:17440-17447. [PMID: 38813120 PMCID: PMC11135155 DOI: 10.1039/d4ra02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
The Biginelli reaction, a three-component cyclocondensation reaction, is an important member of the multicomponent reaction (MCR) family. In this study, we conducted end-group modifications on a variety of biodegradable polyesters, including poly(1,4-butylene adipate) (PBA), poly(ε-caprolactone) (PCL), polylactic acid (PLA), and poly(p-dioxanone) (PPDO), based on the precursor polyethylene glycol (PEG). By combining two polymers through the Biginelli multi-component reaction, four new biodegradable polyester copolymers, namely DHPM-PBA, DHPM-PCL, DHPM-PLA, and DHPM-PPDO, were formed. These Biginelli reactions demonstrated exceptional completeness, validating the efficiency of the synthesis strategy. Although the introduction of various polyesters lead to different properties, such as crystallinity and cytotoxicity, the newly synthesized 3,4-dihydro-2(H)-pyrimidinone compounds (DHPMs) exhibit enhanced hydrophilicity and can self-assemble in water and N,N-dimethylformamide (DMF) solution to form micelles with a controllable size. Furthermore, DHPM-PPDO promotes cellular growth and has potential applications in wound healing and tissue engineering. In conclusion, this method demonstrates great universality and methodological significance and offers insights into the medical applications of polyethylene glycol.
Collapse
Affiliation(s)
- Kai Lu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Xinyi Shen
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yunhai Shi
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Zejian He
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou Zhejiang 311215 China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
5
|
Ge T, Wang M, He X, Yu Y, Liu X, Wen B, Liu P. Synthesis and Characterization of Poly(butylene glycol adipate-co-terephthalate/diphenylsilanediol adipate-co-terephthalate) Copolyester. Polymers (Basel) 2024; 16:1122. [PMID: 38675041 PMCID: PMC11054650 DOI: 10.3390/polym16081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The copolyester poly(butylene glycol adipate-co-terephthalate/diphenylsilanediol adipate-co-terephthalate) (PBDAT) was synthesized by the melt polycondensation method using terephthalic acid, adipic acid, 1,4-butanediol, and diphenylsilylene glycol as the raw materials. The molecular chain structure, thermal properties, thermal stability, mechanical properties, and degradation behaviors of the copolyesters were investigated. The results showed that the prepared PBDAT copolyesters exhibited good thermal stability and mechanical properties. With the increase in diphenylsilanediol (DPSD) content, the thermal stability of PBDAT and the melting temperature both increased. The tensile strength and elastic modulus of PBDAT also exhibited an increasing tend. When the DPSD content was 12.5% (PBDAT-12.5), the tensile strength, the elastic modulus, and elongation at break were 30.56 MPa, 238 MPa, and 219%, respectively. With the increase in diphenylsilanediol content, the hydrophilicity of PBDAT decreased, but PBDAT still shows good degradability and the thermal degradation T5% temperature was 355 °C. The thermal degradation of PBDAT was also improved.
Collapse
Affiliation(s)
- Tiejun Ge
- Department of Polymer Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.G.); (M.W.); (X.L.)
- Liaoning Polymer Materials Engineering and Technology Research Center, Shenyang 110142, China
| | - Meiyuan Wang
- Department of Polymer Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.G.); (M.W.); (X.L.)
- Liaoning Polymer Materials Engineering and Technology Research Center, Shenyang 110142, China
| | - Xiaofeng He
- Department of Polymer Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.G.); (M.W.); (X.L.)
- Liaoning Polymer Materials Engineering and Technology Research Center, Shenyang 110142, China
| | - Yang Yu
- Department of Polymer Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.G.); (M.W.); (X.L.)
- Liaoning Polymer Materials Engineering and Technology Research Center, Shenyang 110142, China
| | - Xiaofeng Liu
- Department of Polymer Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.G.); (M.W.); (X.L.)
- Liaoning Polymer Materials Engineering and Technology Research Center, Shenyang 110142, China
| | - Bo Wen
- Liaoning Dongsheng Plastic Industry Co., Ltd., Yingkou 115003, China
| | - Peihan Liu
- Liaoning Dongsheng Plastic Industry Co., Ltd., Yingkou 115003, China
| |
Collapse
|
6
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Weng Y, Dunn CB, Qiang Z, Ren J. Immobilization of Protease K with ZIF-8 for Enhanced Stability in Polylactic Acid Melt Processing and Catalytic Degradation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37971900 DOI: 10.1021/acsami.3c11979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polylactic acid (PLA) is a biodegradable alternative to petroleum-based polymers for improving environmental sustainability of our society. However, the limited degradation rate and environmental conditions for PLA-based products remain significant challenges for their broader use in various applications. While Proteinase K (Pro K) from Tritirachium album has been demonstrated to efficiently degrade PLA, its autocatalytic degradation function in composite films is underexplored. Here, this work reports a strategy that encapsulates Pro K with zeolitic imidazole framework-8 (ZIF-8) in situ, combining a PLA matrix to prepare Pro K@ZIF-8/PLA films through solvent casting. The method is scalable and commercially viable, and the pH and thermal stability of the Pro K enzyme are significantly enhanced after immobilization. The enzyme can retain 61.8% of its initial activity after annealing at 160 °C for 10 min, allowing for its use in the melt processing of filler-containing PLA films. As a result, Pro K@ZIF-8/PLA films in buffer solutions exhibit stable degradation rates, which can be extended to PLA decomposition in acidic environments. Moreover, the enzyme in Pro K@ZIF-8/PLA films prepared by thermoforming remains active sufficiently to degrade PLA with a weight loss of up to 15% in 2 weeks. These results further indicate that our strategy can be broadly applicable for melt processing and controlled degradation of PLA materials with immobilized enzymes, allowing for its transformative impact for promoting environmental sustainability.
Collapse
Affiliation(s)
- Yiming Weng
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Carmen B Dunn
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
8
|
Sangroniz L, Safari M, Martínez de Ilarduya A, Sardon H, Cavallo D, Müller AJ. Disappearance of Melt Memory Effect with Comonomer Incorporation in Isodimorphic Random Copolyesters. Macromolecules 2023; 56:7879-7888. [PMID: 37841533 PMCID: PMC10569436 DOI: 10.1021/acs.macromol.3c01389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Melt memory effects in polymer crystallization have attracted much attention in the past few years. Although progress has been made in understanding how the chemical structure of polymers can affect melt memory, there are still some knowledge gaps. In this work, we study how incorporating a second comonomer unit that is partially included in the crystalline unit cell affects the melt memory effect of the major component in a random isodimorphic copolymer for the first time. This second comonomer unit depresses the melting temperature of the homopolymer, reduces the crystallinity, and distorts the crystalline unit cell. However, its effect on the stability of self-nuclei and the production of melt memory has not been studied so far. To this aim, we have selected poly[(butylene succinate)-ran-(ε-caprolactone)] random copolyesters PBS-ran-PCL that are isodimorphic, i.e., they exhibit a pseudoeutectic point. This point separates the formation of BS-rich crystals from CL-rich crystals as a function of composition. The results reveal that the melt memory effect of these isodimorphic copolymers is strongly reduced with the incorporation of even very small amounts of comonomer unit (i.e., 1 molar %). This indicates that the incorporation of a second comonomer unit in the polymer chain disrupts the intermolecular interactions present between the chain segments in the crystal lattice of the major component and reduces the capacity of the material to produce self-nuclei. This reduction is more drastic for copolymers in which the second comonomer unit is mostly rejected from the crystalline phase. Contrary to olefin-based copolymers, for copolyesters, the second comonomer unit eases the process to reach an isotropic melt state upon melting. This work reveals the impact of introducing comonomer units on the melt memory effect in isodimorphic random copolyesters.
Collapse
Affiliation(s)
- Leire Sangroniz
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Maryam Safari
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Wageningen 6708 WE, The Netherlands
| | - Antxon Martínez de Ilarduya
- Department
d’Enginyeria Química, Universitat
Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Dario Cavallo
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
9
|
Xia D, Li H, Li T, Ma H. Isoselective Polymerization of rac-Lactide by Magnesium Initiators Bearing Achiral Di(2-pyridyl)methyl Substituted Aminophenolate Ligands. Inorg Chem 2023. [PMID: 37377247 DOI: 10.1021/acs.inorgchem.3c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Reactions of achiral di(2-pyridyl)methyl substituted aminophenols L1-6H (2-{N-R3-N-[di(2-pyridyl)methyl]aminomethyl}-4-R1-6-R2-C6H2OH: R1 = R2 = tBu, R3 = nBu (L1H), R3 = nhexyl (L2H), R3 = cyclohexyl (L3H); R1 = R2 = cumyl, R3 = nBu (L4H), R3 = nhexyl (L5H), R3 = cyclohexyl (L6H)) with {Mg[N(SiMe3)2]2}2 ([L1-6H]:[Mg] = 1:1) afforded a series of magnesium silylamido complexes 1-6. In the solid state, the magnesium center of 3, 4, and 6 is penta-coordinated by the tetradentate aminophenloate ligand and one silylamido ligand to form a seriously distorted square-pyramidal geometry as confirmed by X-ray crystallography diffraction analysis. VT 1H NMR and ROESY experiments further indicate that these magnesium complexes are also five-coordinated in solutions where the coordination of either of the two pyridyl pendants to the magnesium center is maintained. Complexes 1-6 are highly active toward the ring-opening polymerization of rac-lactide (rac-LA) at r.t. both in toluene and in tetrahydrofuran, capable of polymerizing 500 equiv of monomer to high conversions just within minutes. Among them, complex 3 exhibited the highest iso-stereoselectivity, affording moderately isotactic polylactide in toluene (Pm = 0.75). It is found that the isoselectivities and activities of these magnesium complexes toward the polymerization of rac-LA are closely associated with the substituents at the ortho-position of the phenoxide unit and on the skeleton nitrogen atom of the ligand. On the basis of NMR spectroscopic studies, the formation of isotactic PLAs with dominant stereoblock sequences was witnessed by using these magnesium complexes as initiators, and the inequivalent coordination of two pyridyl pendant arms in these magnesium complexes might be the source of exerting isoselective control.
Collapse
Affiliation(s)
- Dong Xia
- Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Hehua Li
- Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Tang Li
- Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Haiyan Ma
- Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| |
Collapse
|
10
|
Bianchi E, Guidotti G, Soccio M, Siracusa V, Gazzano M, Salatelli E, Lotti N. Biobased and Compostable Multiblock Copolymer of Poly(l-lactic acid) Containing 2,5-Furandicarboxylic Acid for Sustainable Food Packaging: The Role of Parent Homopolymers in the Composting Kinetics and Mechanism. Biomacromolecules 2023; 24:2356-2368. [PMID: 37094251 DOI: 10.1021/acs.biomac.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In the last years, the exponential growth in the demand of petroleum-based plastic materials, besides the extreme exploitation of nonrenewable resources, lead to the mismanagement of their disposal and to serious ecological issues related to their dispersion in the environment. Among the possible practical solutions, the design of biobased and biodegradable polymers represents one of the most innovative challenges. In such a context, the eco-design of an aromatic-aliphatic multiblock copolymer based on poly(lactic acid) and containing 2,5-furandicarboxylic acid was carried out with the aim of improving the properties of poly(l-lactic acid) for sustainable packaging applications. The synthetic method followed a novel top-down approach, starting from industrial high-molecular-weight poly(l-lactic acid) (PLLA), which was reacted with 1,5-pentanediol to get hydroxyl-terminated PLLA and then chain-extended with hydroxyl-terminated poly(pentamethylene furanoate) (PPeF-OH). The final copolymer, called P(LLA50PeF50)-CE, was subjected to molecular, structural, and thermal characterization. Tensile and gas permeability tests were also carried out. According to the results obtained, PLLA thermal stability was improved, being the range of processing temperatures widened, and its stiffness and brittleness were decreased, making the new material suitable for the realization of films for flexible packaging. The oxygen permeability of PLLA was decreased by 40% and a similar improvement was measured also for carbon dioxide. P(LLA50PeF50)-CE was found to be completely biodegraded within 60 days of composting treatment. In terms of mechanism, the blocks of PPeF and PLLA were demonstrated to undergo surface erosion and bulk hydrolysis, respectively. In terms of kinetics, PPeF blocks degraded slower than PLLA ones.
Collapse
Affiliation(s)
- Enrico Bianchi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40131 Bologna, Italy
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40131 Bologna, Italy
| |
Collapse
|
11
|
Swetha TA, Bora A, Mohanrasu K, Balaji P, Raja R, Ponnuchamy K, Muthusamy G, Arun A. A comprehensive review on polylactic acid (PLA) - Synthesis, processing and application in food packaging. Int J Biol Macromol 2023; 234:123715. [PMID: 36801278 DOI: 10.1016/j.ijbiomac.2023.123715] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Plastics play an essential role in food packaging; their primary function is to preserve the nature of the food, ensure adequate shelf life and ensure food safety. Plastics are being produced on a global scale in excess of 320 million tonnes annually, with demand rising to reflect the material in wide range of applications. Nowadays, the packaging industry is a significant consumer of synthetic plastic made from fossil fuels. Petrochemical-based plastics are regarded as the preferred material for packaging. Nonetheless, using these plastics in large quantities results in a long-standing environment. Environmental pollution and the depletion of fossil fuels have prompted researchers and manufacturers to develop eco-friendly biodegradable polymers to replace petrochemical-based polymers. As a result, the production of eco-friendly food packaging material has sparked increased interest as a viable alternative to petrochemical-based polymers. Polylactic acid (PLA) is one of the compostable thermoplastic biopolymers that is biodegradable and renewable in nature. High-molecular-weight PLA can be used to produce fibres, flexible, non-wovens, hard and durable materials (100,000 Da or even higher).The chapter focuses on food packaging techniques, food industry waste, biopolymers, their classification, PLA synthesis, the importance of PLA properties for food packaging, and technologies used to process PLA in food packaging.
Collapse
Affiliation(s)
- T Angelin Swetha
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Abhispa Bora
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - K Mohanrasu
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - P Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamil Nadu, India
| | - Rathinam Raja
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai 600044, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - A Arun
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India.
| |
Collapse
|
12
|
Weng Y, Zou M, Liu X, Gu J, Liu Z, Fan Y, Zhang Y, Liao Y. Conversion of glucose to methyl glycolate in subcritical methanol. Chem Commun (Camb) 2023; 59:4340-4343. [PMID: 36945862 DOI: 10.1039/d3cc00303e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Methyl glycolate (MG) is an important biodegradable PGA plastic monomer. Herein, a green approach to synthesize MG by methanolysis of glucose is proposed, in which the subcritical methanol and phenol/quinone redox system were combined to promote the reversible C-C cleavage and oxidation during the cascade reaction of glucose to MG.
Collapse
Affiliation(s)
- Yujing Weng
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China.
| | - Min Zou
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China.
| | - Xuying Liu
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China.
| | - Junchao Gu
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China.
| | - Zhijie Liu
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China.
| | - Yunchang Fan
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China.
| | - Yulong Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China.
| | - Yuhe Liao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
13
|
Savitha KS, Senthil Kumar M, Jagadish RL. Systematic approach in enhancing the selectivity of titanium tetrabutoxide towards high molecular weight poly(butylene succinate) synthesis. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- K. S. Savitha
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| | - M. Senthil Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - R. L. Jagadish
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| |
Collapse
|
14
|
Savitha KS, Senthil Kumar M, Jagadish RL. Stannous Chloride Redefined: A Mild and an Efficient Catalyst System for Poly(butylene succinate) (PBS) Synthesis. ChemistrySelect 2023. [DOI: 10.1002/slct.202203395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- K. S. Savitha
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Tubinakere Mandya India
| | - M. Senthil Kumar
- Alumnus, Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - R. L. Jagadish
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Tubinakere Mandya India
| |
Collapse
|
15
|
Ti(OBu)
4
/B(OBu)
3
: Deciphering the mechanism for the formation of high molecular weight poly(butylene succinate). J Appl Polym Sci 2023. [DOI: 10.1002/app.53842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Zhou T, Meng XB, Du FS, Li ZC. Fully Bio-based Poly(ketal-ester)s by Ring-opening Polymerization of a Bicylcic Lactone from Glycerol and Levulinic Acid. Chem Asian J 2023; 18:e202201238. [PMID: 36756897 DOI: 10.1002/asia.202201238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
A fully renewable bio-based bicyclic lactone containing a five-membered cyclic ketal moiety, 7-methyl-3,8,10-trioxabicyclo[5.2.1]decan-4-one (TOD), was synthesized through a two-step acid-catalyzed process from glycerol and levulinic acid. The ring-opening polymerization (ROP) of TOD at 30°C with benzyl alcohol (BnOH) as the initiator and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the catalyst can afford high molar mass PTOD with a cis-2.4-disubstitued 2-methyl 1,3-dioxolane moiety in its repeating unit. PTOD is an amorphous polymer with a glass transition temperature (Tg ) of 13°C. It can be hydrolyzed into structurally defined small molecules under acidic or basic conditions by the selective cleavage of either the cyclic ketal or the ester linkage respectively. The TBD-catalyzed copolymerization of L-lactide (L-LA) and TOD at -20°C was investigated. It was confirmed that L-LA polymerized quickly with racemization to form PLA, followed by a slow incorporation of TOD into the formed PLA chains via transesterification. By varying the feed ratios of L-LA to TOD, a series of random copolymers (PLA-co-PTOD) with different TOD incorporation ratios and tunable Tg s were obtained. Under acidic conditions, PLA-co-PTOD degrades much faster than PLA via the selective cleavage of the cyclic ketal linkages. This work provides insights for the development of more sustainable and acid-accelerated degradable alternatives to aliphatic polyesters.
Collapse
Affiliation(s)
- Tong Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xian-Bin Meng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
17
|
Savitha KS, Senthil Kumar M, Jagadish RL. Ti(
OBu
)
4
in combination with Sn(
Oct
)
2
: An efficient catalyst system for high molecular weight poly(butylene succinate) synthesis. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- K. S. Savitha
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| | - M. Senthil Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - R. L. Jagadish
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| |
Collapse
|
18
|
Xu PY, Liu TY, Huang D, Zhen ZC, Lu B, Li X, Zheng WZ, Zhang ZY, Wang GX, Ji JH. Enhanced degradability of novel PBATCL copolyester: study on the performance in different environment and exploration of mechanism. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Haque ME, Khan MW, Hasan MM, Chowdhury MNK. Synthesis, characterization and performance of nanocopper impregnated sawdust-reinforced nanocomposite. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Wang G, Dong Y, Hao X, Zhang L, Chi X. Bio-based poly(decylene terephthalate-co-decylene furandicarboxylate)s derived from 2,5-furandicarboxylic acid (FDCA): Synthesis and properties. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Hirschmann M, Andriani F, Fuoco T. Functional and Degradable Copolyesters by Ring-Opening Copolymerization of Epoxides and Anhydrides. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Weinland DH, van der Maas K, Wang Y, Bottega Pergher B, van Putten RJ, Wang B, Gruter GJM. Overcoming the low reactivity of biobased, secondary diols in polyester synthesis. Nat Commun 2022; 13:7370. [PMID: 36450717 PMCID: PMC9712608 DOI: 10.1038/s41467-022-34840-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Shifting away from fossil- to biobased feedstocks is an important step towards a more sustainable materials sector. Isosorbide is a rigid, glucose-derived secondary diol, which has been shown to impart favourable material properties, but its low reactivity has hampered its use in polyester synthesis. Here we report a simple, yet innovative, synthesis strategy to overcome the inherently low reactivity of secondary diols in polyester synthesis. It enables the synthesis of fully biobased polyesters from secondary diols, such as poly(isosorbide succinate), with very high molecular weights (Mn up to 42.8 kg/mol). The addition of an aryl alcohol to diol and diacid monomers was found to lead to the in-situ formation of reactive aryl esters during esterification, which facilitated chain growth during polycondensation to obtain high molecular weight polyesters. This synthesis method is broadly applicable for aliphatic polyesters based on isosorbide and isomannide and could be an important step towards the more general commercial adaption of fully biobased, rigid polyesters.
Collapse
Affiliation(s)
- Daniel H. Weinland
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Kevin van der Maas
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Yue Wang
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Bruno Bottega Pergher
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Robert-Jan van Putten
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands ,grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| | - Bing Wang
- grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| | - Gert-Jan M. Gruter
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands ,grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Comparative hydrodynamic characterisation of two hydroxylated polymers based on α-pinene- or oleic acid-derived monomers for potential use as archaeological consolidants. Sci Rep 2022; 12:18411. [PMID: 36319651 PMCID: PMC9626589 DOI: 10.1038/s41598-022-21027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
The Oseberg Viking ship burial is one of the most extensive collections of Viking wooden artefacts ever excavated in Norway. In the early twentieth century, many of these artefacts were treated with alum in order to preserve them, inadvertently leading to their current degraded state. It is therefore crucial to develop new bioinspired polymers which could be used to conserve these artefacts and prevent further disintegration. Two hydroxylated polymers were synthesised (TPA6 and TPA7), using α-pinene- and oleic acid-derived monomers functionalised with an acrylate moiety. Characterisation using biomolecular hydrodynamics (analytical ultracentrifugation and high precision viscometry) has shown that these polymers have properties which would potentially make them good wood consolidants. Conformation analyses with the viscosity increment (ν) universal hydrodynamic parameter and ELLIPS1 software showed that both polymers had extended conformations, facilitating in situ networking when applied to wood. SEDFIT-MSTAR analyses of sedimentation equilibrium data indicates a weight average molar mass Mw of (3.9 ± 0.8) kDa and (4.2 ± 0.2) kDa for TPA6 and TPA7 respectively. Analyses with SEDFIT (sedimentation velocity) and MultiSig however revealed that TPA7 had a much greater homogeneity and a lower proportion of aggregation. These studies suggest that both these polymers-particularly TPA7-have characteristics suitable for wood consolidation, such as an optimal molar mass, conformation and a hydroxylated nature, making them interesting leads for further research.
Collapse
|
24
|
Rodríguez-deLeón E, Bah M, Báez JE, Hernández-Sierra MT, Moreno KJ, Nuñez-Vilchis A, Bonilla-Cruz J, Shea KJ. Sustainable xanthophylls-containing poly(ε-caprolactone)s: synthesis, characterization, and use in green lubricants. RSC Adv 2022; 12:30851-30859. [PMID: 36349044 PMCID: PMC9609694 DOI: 10.1039/d2ra04502h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Three xanthophylls [(3R,3'R,6'R)-lutein (1), (3R,3'S)-zeaxanthin (2), and (3R,3'S)-astaxanthin (3)] were used for the first time as initiators in the ring-opening polymerization (ROP) of ε-caprolactone (CL) catalyzed by tin(ii) 2-ethylhexanoate [Sn(Oct)2] for the synthesis of novel sustainable xanthophyll-containing poly(ε-caprolactone)s (xanthophylls-PCL). The obtained polyesters were characterized by 1H and 13C NMR, FT-IR, DSC, SEC, and MALDI-TOF MS, and their use as additives in green lubricants was evaluated using a sliding friction test under boundary conditions. Xanthophylls-PCL were obtained with good conversions and with molecular weights determined by SEC to be between 2500 and 10 500 Da. The thermal properties of xanthophyll-polyesters showed a crystalline domain, detected by DSC. Lastly, the green lubricant activity of these polymers was evaluated and the results showed that xanthophylls-PCL could be employed as additives for biodegradable lubricant applications since they have better tribological behavior than current additives, which demonstrates their potential as future commercial materials with interesting eco-friendly properties for diverse applications.
Collapse
Affiliation(s)
- Eloy Rodríguez-deLeón
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - Moustapha Bah
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - José E Báez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato (UG), Campus Guanajuato Noria Alta S/N Guanajuato 36050 Mexico
| | - María T Hernández-Sierra
- Department of Mechanical Engineering, National Technology Institute of Mexico at Celaya Celaya 38010 Guanajuato Mexico
| | - Karla J Moreno
- Department of Mechanical Engineering, National Technology Institute of Mexico at Celaya Celaya 38010 Guanajuato Mexico
| | - Alejandro Nuñez-Vilchis
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - José Bonilla-Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Monterrey) Av. Alianza Norte 202, PIIT, Autopista Monterrey-Aeropuerto Km 10 Apodaca 66628 N.L. Mexico
| | - Kenneth J Shea
- Deparment of Chemistry, University of California, Irvine, (UCI) Irvine 92697-2025 California USA
| |
Collapse
|
25
|
Isosorbide and 2,5-Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental Degradation. Polymers (Basel) 2022; 14:polym14183868. [PMID: 36146011 PMCID: PMC9502350 DOI: 10.3390/polym14183868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023] Open
Abstract
Poly(2,5-furandicarboxylate)s incorporating aliphatic moieties represent a promising family of polyesters, typically entirely based on renewable resources and with tailored properties, notably degradability. This study aims to go beyond by developing poly(isosorbide 2,5-furandicarboxylate-co-dodecanedioate) copolyesters derived from isosorbide (Is), 2,5-furandicarboxylic acid (FDCA), and 1,12-dodecanedioic acid (DDA), and studying their degradation under environmental conditions, often overlooked, namely seawater conditions. These novel polyesters have been characterized in-depth using ATR-FTIR, 1H, and 13C NMR and XRD spectroscopies and thermal analysis (TGA and DSC). They showed enhanced thermal stability (up to 330 °C), and the glass transition temperature increased with the content of FDCA from ca. 9 to 60 °C. Regarding their (bio)degradation, the enzymatic conditions lead to the highest weight loss compared to simulated seawater conditions, with values matching 27% vs. 3% weight loss after 63 days of incubation, respectively. Copolymerization of biobased FDCA, Is, and DDA represents an optimal approach for shaping the thermal/(bio)degradation behaviors of these novel polyesters.
Collapse
|
26
|
Yagura K, Enomoto Y, Iwata T. Synthesis of fully divanillic acid-based aromatic polyamides and their thermal and mechanical properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
Bio-based poly(ester amide): mechanical, thermal and biodegradable behaviors. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Ponjavic M, Jevtic S, Nikolic MS. Multiblock copolymers containing poly(butylene succinate) and poly(ε-caprolactone) blocks: Effect of block ratio and length on physical properties and biodegradability. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Bougarech A, Zaidi S, Sousa AF, Abid S, Silvestre AJD, Abid M. Bisfuranic copolyesters bearing nitrated units: synthesis, thermal properties and degradation essays. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Marxsen SF, Song D, Zhang X, Flores I, Fernández J, Sarasua JR, Müller AJ, Alamo RG. Crystallization Rate Minima of Poly(ethylene brassylate) at Temperatures Transitioning between Quantized Crystal Thicknesses. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie F. Marxsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida 32310, United States
| | - Daokun Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida 32310, United States
| | - Xiaoshi Zhang
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida 32310, United States
| | - Irma Flores
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Jorge Fernández
- POLIMERBIO SL, Paseo Miramón 170, Planta 3, Lab. B05, 20014 Donostia-San Sebastián, Spain
| | - José Ramón Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country UPV/EHU, Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Rufina G. Alamo
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida 32310, United States
| |
Collapse
|
31
|
Aryloxy ‘biometal’ complexes as efficient catalysts for the synthesis of poly(butylene adipate terephthalate). MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
The Use of Branching Agents in the Synthesis of PBAT. Polymers (Basel) 2022; 14:polym14091720. [PMID: 35566889 PMCID: PMC9100140 DOI: 10.3390/polym14091720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Biodegradable polyesters represent an advanced alternative to polyolefin plastics in various applications. Polybutylene adipate terephthalate (PBAT) can compete with polyolefins in terms of their mechanical characteristics and melt processing conditions. The properties of PBAT depend on the molecular weight, dispersity, and architecture of the copolymer. Long-chain branching (LCB) of the PBAT backbone is an efficient method for the improvement of the copolymer characteristics. In the present work, we studied branching agents (BAs) 1–7 of different structures in the two-stage polycondensation of 1,4-butanediol, dimethyl terephthalate, and adipic acid and investigated the composition and melt rheology of the copolymers. According to the results of the research, 1,1,1-tris(hydroxymethyl)ethane 2 and 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoic acid 5 outperformed glycerol 1 as BAs in terms of shear thinning behavior and viscoelasticity.
Collapse
|
33
|
Payne JM, Kamran M, Davidson MG, Jones MD. Versatile Chemical Recycling Strategies: Value-Added Chemicals from Polyester and Polycarbonate Waste. CHEMSUSCHEM 2022; 15:e202200255. [PMID: 35114081 PMCID: PMC9306953 DOI: 10.1002/cssc.202200255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 06/14/2023]
Abstract
ZnII -complexes bearing half-salan ligands were exploited in the mild and selective chemical upcycling of various commercial polyesters and polycarbonates. Remarkably, we report the first example of discrete metal-mediated poly(bisphenol A carbonate) (BPA-PC) methanolysis being appreciably active at room temperature. Indeed, Zn(2)2 and Zn(2)Et achieved complete BPA-PC consumption within 12-18 mins in 2-Me-THF, noting high bisphenol A (BPA) yields (SBPA =85-91 %) within 2-4 h. Further kinetic analysis found such catalysts to possess kapp values of 0.28±0.040 and 0.47±0.049 min-1 respectively at 4 wt%, the highest reported to date. A completely circular upcycling approach to plastic waste was demonstrated through the production of several renewable poly(ester-amide)s (PEAs), based on a terephthalamide monomer derived from bottle-grade poly(ethylene terephthalate) (PET), which exhibited excellent thermal properties.
Collapse
Affiliation(s)
- Jack M. Payne
- Centre for Sustainable and Circular TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Muhammad Kamran
- Centre for Sustainable and Circular TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Matthew G. Davidson
- Centre for Sustainable and Circular TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Matthew D. Jones
- Centre for Sustainable and Circular TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| |
Collapse
|
34
|
Kerr RWF, Williams CK. Zr(IV) Catalyst for the Ring-Opening Copolymerization of Anhydrides (A) with Epoxides (B), Oxetane (B), and Tetrahydrofurans (C) to Make ABB- and/or ABC-Poly(ester- alt-ethers). J Am Chem Soc 2022; 144:6882-6893. [PMID: 35388696 PMCID: PMC9084548 DOI: 10.1021/jacs.2c01225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ester-alt-ethers) can combine beneficial ether linkage flexibility and polarity with ester linkage hydrolysability, furnishing fully degradable polymers. Despite their promising properties, this class of polymers remains underexplored, in part due to difficulties in polymer synthesis. Here, a catalyzed copolymerization using commercially available monomers, butylene oxide (BO)/oxetane (OX), tetrahydrofuran (THF), and phthalic anhydride (PA), accesses a series of well-defined poly(ester-alt-ethers). A Zr(IV) catalyst is reported that yields polymer repeat units comprising a ring-opened PA (A), followed by two ring-opened cyclic ethers (B/C) (-ABB- or -ABC-). It operates with high polymerization control, good rate, and successfully enchains epoxides, oxetane, and/or tetrahydrofurans, providing a straightforward means to moderate the distance between ester linkages. Kinetic analysis of PA/BO copolymerization, with/without THF, reveals an overall second-order rate law: first order in both catalyst and butylene oxide concentrations but zero order in phthalic anhydride and, where it is present, zero order in THF. Poly(ester-alt-ethers) have lower glass-transition temperatures (-16 °C < Tg < 12 °C) than the analogous alternating polyesters, consistent with the greater backbone flexibility. They also show faster ester hydrolysis rates compared with the analogous AB polymers. The Zr(IV) catalyst furnishes poly(ester-alt-ethers) from a range of commercially available epoxides and anhydride; it presents a straightforward method to moderate degradable polymers' properties.
Collapse
Affiliation(s)
- Ryan W F Kerr
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | | |
Collapse
|
35
|
Quattrosoldi S, Guidotti G, Soccio M, Siracusa V, Lotti N. Bio-based and one-day compostable poly(diethylene 2,5-furanoate) for sustainable flexible food packaging: Effect of ether-oxygen atom insertion on the final properties. CHEMOSPHERE 2022; 291:132996. [PMID: 34808204 DOI: 10.1016/j.chemosphere.2021.132996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the effect of ether oxygen atom introduction in a furan ring-containing polymer has been evaluated. Solvent-free polycondensation process permitted the preparation of high molecular weight poly(diethylene 2,5-furandicarboxylate) (PDEF), by reacting the dimethyl ester of 2,5-furandicarboxylic acid with diethylene glycol. After molecular and thermal characterization, PDEF mechanical response and gas barrier properties to O2 and CO2, measured at different temperatures and humidity, were studied and compared with those of poly(butylene 2,5-furandicarboxylate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) previously determined. Both PDEF and PPeF films were amorphous, differently from PBF one. Glass transition temperature of PDEF (24 °C) is between those of PBF (39 °C) and PPeF (13 °C). As concerns mechanical response, PDEF is more flexible (elastic modulus [E] = 673 MPa) than PBF (E = 1290 MPa) but stiffer than PPeF (E = 9 MPa). Moreover, PDEF is the most thermally stable (temperature of maximum degradation rate being 418 for PDEF, 407 for PBF and 414 °C for PPeF) and hydrophilic (water contact angle being 74° for PDEF, 90° for PBF and 93° for PPeF), with gas barrier performances very similar to those of PPeF (O2 and CO2 transmission rate being 0.0022 and 0.0018 for PDEF and, 0.0016 and 0.0014 cm3 cm/m2 d atm for PPeF). Lab scale composting experiments indicated that PDEF and PPeF were compostable, the former degrading faster, in just one day. The results obtained are explained on the basis of the high electronegativity of ether oxygen atom with respect to the carbon one, and the consequent increase of dipoles along the macromolecule.
Collapse
Affiliation(s)
- Silvia Quattrosoldi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy.
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy; Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Fei X, Wang J, Zhang X, Jia Z, Jiang Y, Liu X. Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers (Basel) 2022; 14:E625. [PMID: 35160613 PMCID: PMC8838965 DOI: 10.3390/polym14030625] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The big challenge today is the upgrading of sustainable materials to replace miscellaneous ones from petroleum resources. Thus, a generic bio-based building block lays the foundation of the huge bio-market to green economy. 2,5-Furandicarboxylic acid (FDCA), a rigid diacid derived from lignocellulose or fructose, represents a great potential as a contender to terephthalic acid (TPA). Recently, studies on the synthesis, modification, and functionalization of bio-based polyesters based on FDCA have attracted widespread attention. To apply furanic polyesters on engineering plastics, packaging materials, electronics, etc., researchers have extended the properties of basic FDCA-based homo-polyesters by directional copolymerization and composite preparation. This review covers the synthesis and performance of polyesters and composites based on FDCA with emphasis bedded on the thermomechanical, crystallization, barrier properties, and biodegradability. Finally, a summary of what has been achieved and the issues waiting to be addressed of FDCA-based polyester materials are suggested.
Collapse
Affiliation(s)
- Xuan Fei
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
- University of Chinese Academy of Sciences, No.19 A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Zhen Jia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Yanhua Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| |
Collapse
|
37
|
Hocken A, Beyer FL, Lee JS, Grim BJ, Mithaiwala H, Green MD. Covalently integrated silica nanoparticles in poly(ethylene glycol)-based acrylate resins: thermomechanical, swelling, and morphological behavior. SOFT MATTER 2022; 18:1019-1033. [PMID: 35018933 DOI: 10.1039/d1sm01377g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocomposites integrate functional nanofillers into viscoelastic matrices for electronics, lightweight structural materials, and tissue engineering. Herein, the effect of methacrylate-functionalized (MA-SiO2) and vinyl-functionalized (V-SiO2) silica nanoparticles on the thermal, mechanical, physical, and morphological characteristics of poly(ethylene glycol) (PEG) nanocomposites was investigated. The gel fraction of V-SiO2 composites decreases upon addition of 3.8 wt% but increases with further addition (>7.4 wt%) until it reaches a plateau at 10.7 wt%. The MA-SiO2 induced no significant changes in gel fraction and both V-SiO2 and MA-SiO2 nanoparticles had a negligible impact on the nanocomposite glass transition temperature and water absorption. The Young's modulus and ultimate compressive stress increased with increasing nanoparticle concentration for both nanoparticles. Due to the higher crosslink density, MA-SiO2 composites reached a maximum mechanical stress at a concentration of 7.4 wt%, while V-SiO2 composites reached a maximum at a concentration of 10.7 wt%. Scanning electron microscopy, transmission electron microscopy, and small-angle X-ray scattering revealed a bimodal size distribution for V-SiO2 and a monomodal size distribution for MA-SiO2. Although aggregates were observed for both nanoparticle surface treatments, V-SiO2 dispersion was poor while MA-SiO2 were generally well-dispersed. These findings lay the framework for silica nanofillers in PEG-based nanocomposites for advanced manufacturing applications.
Collapse
Affiliation(s)
- Alexis Hocken
- Department of Chemical Engineering; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA.
| | - Frederick L Beyer
- U.S. DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Jae Sang Lee
- Department of Chemical Engineering; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA.
| | - Bradley J Grim
- Department of Chemical Engineering; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA.
| | - Husain Mithaiwala
- Department of Chemical Engineering; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA.
| | - Matthew D Green
- Department of Chemical Engineering; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
38
|
Organic bases and protic acids as binary catalysts for ring-opening alternating copolymerization of epoxides and cycle anhydrides. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Kim JH, Kim MS, Kim HJ, Kim JR, Ahn CH. Novel Potentially Biobased Copolyesters Comprising 1,3-Butanediol, 1,4-Cyclohexanedimethanol and Dimethyl Terephthalate; Effect of Different Catalysts on Polymerization Behavior. Macromol Res 2022. [DOI: 10.1007/s13233-022-0008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Gaddam SK, Arukula R. Renewable soft segment-induced anionic waterborne polyurethane dispersions with enriched bio-content. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
K S S, Ravji Paghadar B, Kumar SP, R L J. Polybutylene Succinate, A potential bio-degradable polymer: Synthesis, copolymerization And Bio-degradation. Polym Chem 2022. [DOI: 10.1039/d2py00204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(butylene succinate) is one of the emerging bio-degradable polymer, which has huge potential to be employed in a wide range of applications. Further, it is also recognized as one of...
Collapse
|
42
|
|
43
|
Ragno D, Di Carmine G, Vannini M, Bortolini O, Perrone D, Buoso S, Bertoldo M, Massi A. Organocatalytic Synthesis of Poly(hydroxymethylfuroate) via Ring-Opening Polymerization of 5-Hydroxymethylfurfural-Based Cyclic Oligoesters. Polym Chem 2022. [DOI: 10.1039/d1py01687c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of hydroxymethylfuroate macrocyclic oligoesters c(HMF)n promoted by an N-heterocyclic carbene (NHC) organocatalyst is herein presented together with the subsequent organocatalytic, entropically-driven ring-opening polymerization (ED-ROP) leading to the fully...
Collapse
|
44
|
Abstract
Designed polyurethanes with degradable ester units all throughout the polymer backbone and quaternized ammonium units in the hard segment (tensile strength ∼30 MPa, elongation at break ∼1400%) show degradation in 35 days in industrial compost.
Collapse
Affiliation(s)
- Pin Hu
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Anil Kumar
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Reza Gharibi
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
45
|
Natural Polymers-Based Materials: A Contribution to a Greener Future. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010094. [PMID: 35011326 PMCID: PMC8747056 DOI: 10.3390/molecules27010094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/19/2023]
Abstract
Natural polymers have emerged as promising candidates for the sustainable development of materials in areas ranging from food packaging and biomedicine to energy storage and electronics. In tandem, there is a growing interest in the design of advanced materials devised from naturally abundant and renewable feedstocks, in alignment with the principles of Green Chemistry and the 2030 Agenda for Sustainable Development. This review aims to highlight some examples of the research efforts conducted at the Research Team BioPol4fun, Innovation in BioPolymer-based Functional Materials and Bioactive Compounds, from the Portuguese Associate Laboratory CICECO–Aveiro Institute of Materials at the University of Aveiro, regarding the exploitation of natural polymers (and derivatives thereof) for the development of distinct sustainable biobased materials. In particular, focus will be given to the use of polysaccharides (cellulose, chitosan, pullulan, hyaluronic acid, fucoidan, alginate, and agar) and proteins (lysozyme and gelatin) for the assembly of composites, coatings, films, membranes, patches, nanosystems, and microneedles using environmentally friendly strategies, and to address their main domains of application.
Collapse
|
46
|
Aiche SS, Derdar H, Cherifi Z, Belbachir M, Meghabar R. Activation and Characterization of Algerian Kaolinite, New and Green Catalyst for Synthesis of Polystyrene and Poly(1,3-dioxolane). CHEMISTRY & CHEMICAL TECHNOLOGY 2021. [DOI: 10.23939/chcht15.04.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present work we have explored a new catalyst prepared with Algerian clay and a new method to synthesise polystyrene and poly(1,3-dioxolane). This technique consists of using Algerian modified clay (Kaolinite-H+) as a green catalyst. Kaolinite-H+ is a proton exchanged clay which is prepared through a simple exchange process. Synthesis experiments are performed in bulk. The polymerization of styrene in bulk leads to the yield of 83 % at room temperature with the reaction time of 3 h. Molecular weight of the obtained polystyrene is calculated by 1H NMR and is about 2196 g/mol. Polymerization of (1,3-dioxolane) is carried out at room temperature with the reaction time of 3 h and polymerization yield of 91 %. The calculated molecular weight of the obtained poly(1,3-dioxolane) is about 573 g/mol. The structure of the obtained polymers is confirmed by FT-IR and 1H NMR. The modified clay (Kaolinite-H+) is characterized by FT-IR, XRD and SEM analysis.
Collapse
|
47
|
Pandey S, Dumont MJ, Orsat V, Rodrigue D. Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters’ properties for packaging applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Payne J, Jones MD. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. CHEMSUSCHEM 2021; 14:4041-4070. [PMID: 33826253 PMCID: PMC8518041 DOI: 10.1002/cssc.202100400] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Whilst plastics have played an instrumental role in human development, growing environmental concerns have led to increasing public scrutiny and demands for outright bans. This has stimulated considerable research into renewable alternatives, and more recently, the development of alternative waste management strategies. Herein, the aim was to highlight recent developments in the catalytic chemical recycling of two commercial polyesters, namely poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET). The concept of chemical recycling is first introduced, and associated opportunities/challenges are discussed within the context of the governing depolymerisation thermodynamics. Chemical recycling methods for PLA and PET are then discussed, with a particular focus on upcycling and the use of metal-based catalysts. Finally, the attention shifts to the emergence of new materials with the potential to modernise the plastics economy. Emerging opportunities and challenges are discussed within the context of industrial feasibility.
Collapse
Affiliation(s)
- Jack Payne
- Centre for Sustainable and Circular TechnologiesUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Matthew D. Jones
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| |
Collapse
|
49
|
Bazin A, Avérous L, Pollet E. Lipase-catalyzed synthesis of furan-based aliphatic-aromatic biobased copolyesters: Impact of the solvent. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Monnery BD, Karanastasis A, Adriaensens P, Pitet LM. Mechanically versatile isosorbide‐based thermoplastic copolyether‐esters with a poly(ethylene glycol) soft segment. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bryn D. Monnery
- Advanced Functional Polymers Group Hasselt University Hasselt Belgium
| | | | - Peter Adriaensens
- Applied and Analytical Chemistry Group Hasselt University Hasselt Belgium
- Institute for Materials Research (IMO) Hasselt University Hasselt Belgium
| | - Louis M. Pitet
- Advanced Functional Polymers Group Hasselt University Hasselt Belgium
- Institute for Materials Research (IMO) Hasselt University Hasselt Belgium
| |
Collapse
|