1
|
Warren MT, Biggs CI, Bissoyi A, Gibson MI, Sosso GC. Data-driven discovery of potent small molecule ice recrystallisation inhibitors. Nat Commun 2024; 15:8082. [PMID: 39278938 PMCID: PMC11402961 DOI: 10.1038/s41467-024-52266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Controlling the formation and growth of ice is essential to successfully cryopreserve cells, tissues and biologics. Current efforts to identify materials capable of modulating ice growth are guided by iterative changes and human intuition, with a major focus on proteins and polymers. With limited data, the discovery pipeline is constrained by a poor understanding of the mechanisms and the underlying structure-activity relationships. In this work, this barrier is overcome by constructing machine learning models capable of predicting the ice recrystallisation inhibition activity of small molecules. We generate a new dataset via experimental measurements of ice growth, then harness predictive models combining state-of-the-art descriptors with domain-specific features derived from molecular simulations. The models accurately identify potent small molecule ice recrystallisation inhibitors within a commercial compound library. Identified hits can also mitigate cellular damage during transient warming events in cryopreserved red blood cells, demonstrating how data-driven approaches can be used to discover innovative cryoprotectants and enable next-generation cryopreservation solutions for the cold chain.
Collapse
Affiliation(s)
- Matthew T Warren
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Institute of Cancer Research, London, UK
| | | | - Akalabya Bissoyi
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, UK.
- Warwick Medical School, University of Warwick, Coventry, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
2
|
Guerreiro BM, Concórdio-Reis P, Pericão H, Martins F, Moppert X, Guézennec J, Lima JC, Silva JC, Freitas F. Elevated fucose content enhances the cryoprotective performance of anionic polysaccharides. Int J Biol Macromol 2024; 261:129577. [PMID: 38246459 DOI: 10.1016/j.ijbiomac.2024.129577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Biological cryopreservation often involves using a cryoprotective agent (CPA) to mitigate lethal physical stressors cells endure during freezing and thawing, but effective CPA concentrations are cytotoxic. Hence, natural polysaccharides have been studied as biocompatible alternatives. Here, a subset of 26 natural polysaccharides of various chemical composition was probed for their potential in enhancing the metabolic post-thaw viability (PTV) of cryopreserved Vero cells. The best performing cryoprotective polysaccharides contained significant fucose amounts, resulting in average PTV 2.8-fold (up to 3.1-fold) compared to 0.8-fold and 2.2-fold for all non-cryoprotective and cryoprotective polysaccharides, respectively, outperforming the optimized commercial CryoStor™ CS5 formulation (2.6-fold). Stoichiometrically, a balance between fucose (18-35.7 mol%), uronic acids (UA) (13.5-26 mol%) and high molecular weight (MW > 1 MDa) generated optimal PTV. Principal component analysis (PCA) revealed that fucose enhances cell survival by a charge-independent, MW-scaling mechanism (PC1), drastically different from the charge-dominated ice growth disruption of UA (PC2). Its neutral nature and unique properties distinguishable from other neutral monomers suggest fucose may play a passive role in conformational adaptability of polysaccharide to ice growth inhibition, or an active role in cell membrane stabilization through binding. Ultimately, fucose-rich anionic polysaccharides may indulge in polymer-ice and polymer-cell interactions that actively disrupt ice and minimize lethal volumetric fluctuations due to a balanced hydrophobic-hydrophilic character. Our research showed the critical role neutral fucose plays in enhancing cellular cryopreservation outcomes, disputing previous assumptions of polyanionicity being the sole governing predictor of cryoprotection.
Collapse
Affiliation(s)
- Bruno M Guerreiro
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Patrícia Concórdio-Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Helena Pericão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Filipa Martins
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Xavier Moppert
- Pacific Biotech SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia.
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d'Ouessant, 29280 Plouzané, France
| | - João C Lima
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Jorge C Silva
- CENIMAT/I3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Filomena Freitas
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
3
|
Park JK, Park SJ, Jeong B. Poly(l-alanine- co-l-threonine succinate) as a Biomimetic Cryoprotectant. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58092-58102. [PMID: 38060278 DOI: 10.1021/acsami.3c11260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
We synthesized a series of [(l-Ala)x-co-(l-Thr succinate)y] (PATs), which are analogous to natural antifreezing glycoprotein with the structure of [l-Ala-l-Ala-l-Thr disaccharide]n, by varying the composition and degree of succinylation while fixing their molecular weight (Mn) and Ala/Thr ratio at approximately 10-12 kDa and 2:1, respectively. We investigated their ice recrystallization inhibition (IRI), ice nucleation inhibition (INI), dynamic ice shaping (DIS), thermal hysteresis (TH), and protein cryopreservation activities. Both IRI and INI activities were greater for PATs with higher l-Ala content (PATs-3 and PATs-4) than those with lower l-Ala content (PATs-1 and PATs-2). DIS activity with faceted crystal growth was clearly observed in PATs-2 and PATs-4 with a high degree of succinylation. TH was small with <0.1 °C for all PATs and slightly greater for PATs with a high l-Ala content. Except for PATs-1, the protein (lactate dehydrogenase, LDH) stabilization activity was excellent for all PATs studied, maintaining LDH activity as high as that of fresh LDH even after 15 freeze-thaw cycles. To conclude, the cryo-active biomimetic PATs were synthesized by controlling the l-Ala content and degree of succinylation. Our results showed that PATs with an l-Ala content of 65-70% and degree of succinylation of 12-19% exhibited the cryo-activities of IRI, INI, and DIS, and particularly promising properties for the cryoprotection of LDH protein.
Collapse
Affiliation(s)
- Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
4
|
Sun X, Guo R, Zhan T, Kou Y, Ma X, Song H, Song L, Li X, Zhang H, Xie F, Song Z, Yuan C, Wu Y. Self-assembly of tamarind seed polysaccharide via enzymatic depolymerization and degalactosylation enhanced ice recrystallization inhibition activity. Int J Biol Macromol 2023; 252:126352. [PMID: 37598826 DOI: 10.1016/j.ijbiomac.2023.126352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Polysaccharides are becoming potential candidates for developing food-grade cryoprotectants due to their extensive accessibility and health-promoting effects. However, unremarkable ice recrystallization inhibition (IRI) activity and high viscosity limit their practical applications in some systems. Our previous study found a galactoxyloglucan polysaccharide from tamarind seed (TSP) showing moderate IRI activity. Herein, the enhancement of the IRI performance of TSP via enzymatic depolymerization and degalactosylation-induced self-assembly was reported. TSP was depolymerized and subsequently removed ∼40 % Gal, which induced the formation of supramolecular rod-like fiber self-assembles and exhibited a severalfold enhancement of IRI. Ice shaping assay did not show obvious faceting of ice crystals, indicating that both depolymerized and self-assembled TSP showed very weak binding to ice. Molecular dynamics simulation confirmed the absence of molecular complementarity with ice. Further, it highlighted that degalactosylation did not cause significant changes in local hydration properties of TSP from the view of a single oligomer. The inconsistency between molecular simulation and macroscopic IRI effect proposed that the formation of unique supramolecular self-assemblies may be a key requirement for enhancing IRI activity. The findings of this study provided a new opportunity to enhance the applied potential of natural polysaccharides in food cryoprotection.
Collapse
Affiliation(s)
- Xianbao Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Guo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Taijie Zhan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuxing Kou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Ma
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hui Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fan Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Fu Y, Li Y, Everett DW, Weng S, Zhai Y, Wang M, Li T. Octenyl succinic anhydride-modified amyloid protein fibrils demonstrate enhanced ice recrystallization inhibition activity and dispersibility. Int J Biol Macromol 2023; 252:126439. [PMID: 37611688 DOI: 10.1016/j.ijbiomac.2023.126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Octenyl succinic anhydride (OSA) modification of amyloid proteins fibrils (APFs) was employed to improve dispersibility and ice recrystallization inhibition activity. OSA mainly reacted with the amino groups of APFs without significantly changing morphology. OSA-modified APFs (OAPFs) had lower pI, carried more negative charges, and were more hydrophobic. OSA-modification showed a pH-dependent effect on the dispersibility of fibrils. At pH 7.0, OSA-modification improved dispersibility and inhibited heat-induced gelation of fibrils at weakened electrostatic repulsion. OAPFs were more prone to aggregation with lower dispersity at acidic pH values and demonstrated stronger IRI activity than unmodified fibrils at pH 7.0. Our findings indicate OSA-modification favors the industrial application of APFs as an ice recrystallization inhibitor with enhanced dispersibility.
Collapse
Affiliation(s)
- Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuan Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - David W Everett
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; AgResearch, Palmerston North, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Shuni Weng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yun Zhai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengtin Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Kim YD, Jung WH, Ahn DJ, Lim DK. Self-Assembled Nanostructures of Homo-Oligopeptide as a Potent Ice Growth Inhibitor. NANO LETTERS 2023; 23:9500-9507. [PMID: 37843112 DOI: 10.1021/acs.nanolett.3c03059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This study reports the formation of self-assembled nanostructures with homo-oligopeptides consisting of amino acids (i.e., alanine, threonine, valine, and tyrosine), the resulting morphologies (i.e., spherical shape, layered structure, and wire structure) in aqueous solution, and their potential as ice growth inhibitors. Among the homo-oligopeptides investigated, an alanine homo-oligopeptide (n = 5) with a spherical nanostructure showed the highest ice recrystallization inhibition (IRI) activity without showing a burst ice growth property and with low ice nucleation activity. The presence of nanoscale self-assembled structures in the solution showed superior IRI activity compared to an amino acid monomer because of the higher binding affinity of structures on the growing ice crystal plane. Simulation results revealed that the presence of nanostructures induced a significant inhibition of ice growth and increased lifetime of hydrogen bonding compared with unassembled homo-oligopeptide. These results envision extraordinary performance for self-assembled nanostructures as a desirable and potent ice growth inhibitor.
Collapse
Affiliation(s)
- Yong Duk Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woo Hyuk Jung
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong June Ahn
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Yuan Y, Fomich M, Dia VP, Wang T. Succinylation of zein and gelatin hydrolysates improved their ice recrystallization inhibition activity. Food Chem 2023; 424:136431. [PMID: 37244191 DOI: 10.1016/j.foodchem.2023.136431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
The goal of this research was to enhance the ice recrystallization inhibition (IRI) activity of zein and gelatin hydrolysates (ZH and GH, respectively) by succinylation modification. ZH was prepared by Alcalase treatment for 3 h and then modified by succinic anhydride (SA); whereas GH was made by Alcalase hydrolysis for 0.25 h and succinylated by n-octylsuccinic anhydride (OSA). After 0.5 h of annealing at -8 °C at 40 mg/mL, modified hydrolysates decreased the average Feret's diameter of ice crystal from 50.2 μm (polyethylene glycol, negative control) to 28.8 μm (SA modified ZH) and 29.5 μm (OSA modified GH) in comparison to the unmodified hydrolysates, which had the crystal size of 47.2 μm (ZH) and 45.4 μm (GH). Also, the two succinylated samples had altered surface hydrophobicity, which potentially contributed to their enhanced IRI activity. Our results indicate that succinylation of food-derived protein hydrolysates can improve their IRI activity.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA
| | - Madison Fomich
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA
| | - Vermont P Dia
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Tong Wang
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| |
Collapse
|
8
|
Fu Y, Li Y, Weng S, Qi W, Su H, Li T. Amyloid protein fibrils show enhanced ice recrystallization inhibition activity when serve as pickering emulsion stabilizer. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
9
|
Fu Y, Li Y, Su H, Wu T, Li T. Inhibiting ice recrystallization by amyloid protein fibrils. Int J Biol Macromol 2023; 227:1132-1140. [PMID: 36470434 DOI: 10.1016/j.ijbiomac.2022.11.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Ice recrystallization is harmful to the quality of frozen foods and the cryopreservation of cells and biological tissues, requiring biocompatible materials with ice recrystallization inhibition (IRI) activity. Emerging studies have associated IRI activity with amphiphilic structures. We propose amphiphilic amyloid protein fibrils (APFs) may be IRI-active. APFs were prepared from whey protein isolate (WPI) in water (W-APFs) and in trifluoroethanol (TFE-APFs). W-APFs and TFE-APFs were more IRI-active than WPI over a concentration range of 2.5-10.0 mg/mL. Both APFs showed stronger IRI activity at pH 3.0 than at pH 5.0, 7.0, and 10.0, which was ascribed to the effect of water dispersibility and fibril length. The reduced IRI activity of the two APFs with increasing NaCl content was caused by fibril aggregation. Ice binding by APFs was absent or very weak. Ordered water was observed for the two APFs, which might be essential for IRI activity. Our findings may lead to the use of APFs as novel ice recrystallization inhibitors.
Collapse
Affiliation(s)
- Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuan Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huanhuan Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tao Wu
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Wang Z, Li M, Wu T. Ice recrystallization inhibition activity in bile salts. J Colloid Interface Sci 2023; 629:728-738. [PMID: 36193617 DOI: 10.1016/j.jcis.2022.09.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Ice recrystallization inhibitors are novel cryoprotective agents that can reduce the freezing damage of cells, tissues, and organs in cryopreservation. To date, potent ice recrystallization inhibition (IRI) activity has been found on antifreeze (glyco)proteins, polymers, nanomaterials, and a limited number of chemically synthesized small molecules. This paper reports a relatively potent IRI activity on a group of small biological molecules - bile salts. The IRI activity increased as the number of hydroxyl groups decreased in bile salts. Among sodium cholate (NaC), sodium deoxycholate (NaDC), sodium chenodeoxycholate (NaCC), and sodium lithocholate (NaLC), the least hydrophilic NaLC at a concentration of 25.0 mM entirely blocked the ice growth in phosphate-buffered saline (PBS) under test conditions. The IRI activity of bile salts was not related to viscosity or gelation. No IRI activity was found below the critical micelle concentration. The IRI activity was independent of liquid crystal formation. No ice shaping and thermal hysteresis were observed on any bile salts, but NaC and NaLC could increase the ice nucleation temperature. The findings add bile salts to the existing material list of ice recrystallization inhibitors.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Min Li
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Tao Wu
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA.
| |
Collapse
|
11
|
Abstract
Cryopreservation of cells and biologics underpins all biomedical research from routine sample storage to emerging cell-based therapies, as well as ensuring cell banks provide authenticated, stable and consistent cell products. This field began with the discovery and wide adoption of glycerol and dimethyl sulfoxide as cryoprotectants over 60 years ago, but these tools do not work for all cells and are not ideal for all workflows. In this Review, we highlight and critically review the approaches to discover, and apply, new chemical tools for cryopreservation. We summarize the key (and complex) damage pathways during cellular cryopreservation and how each can be addressed. Bio-inspired approaches, such as those based on extremophiles, are also discussed. We describe both small-molecule-based and macromolecular-based strategies, including ice binders, ice nucleators, ice nucleation inhibitors and emerging materials whose exact mechanism has yet to be understood. Finally, looking towards the future of the field, the application of bottom-up molecular modelling, library-based discovery approaches and materials science tools, which are set to transform cryopreservation strategies, are also included.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
12
|
Delesky EA, Srubar WV. Ice-binding proteins and bioinspired synthetic mimics in non-physiological environments. iScience 2022; 25:104286. [PMID: 35573196 PMCID: PMC9097698 DOI: 10.1016/j.isci.2022.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Elizabeth A. Delesky
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wil V. Srubar
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, ECOT 441 UCB 428, Boulder, CO 80309, USA
- Corresponding author
| |
Collapse
|
13
|
Jia G, Chen Y, Sun A, Orlien V. Control of ice crystal nucleation and growth during the food freezing process. Compr Rev Food Sci Food Saf 2022; 21:2433-2454. [DOI: 10.1111/1541-4337.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yimeng Chen
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - AiDong Sun
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Vibeke Orlien
- Department of Food Science Faculty of Science University of Copenhagen Frederiksberg C Denmark
| |
Collapse
|
14
|
Warren M, Galpin I, Bachtiger F, Gibson MI, Sosso GC. Ice Recrystallization Inhibition by Amino Acids: The Curious Case of Alpha- and Beta-Alanine. J Phys Chem Lett 2022; 13:2237-2244. [PMID: 35238571 PMCID: PMC9007522 DOI: 10.1021/acs.jpclett.1c04080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Extremophiles produce macromolecules which inhibit ice recrystallization, but there is increasing interest in discovering and developing small molecules that can modulate ice growth. Realizing their potential requires an understanding of how these molecules function at the atomistic level. Here, we report the discovery that the amino acid l-α-alanine demonstrates ice recrystallization inhibition (IRI) activity, functioning at 100 mM (∼10 mg/mL). We combined experimental assays with molecular simulations to investigate this IRI agent, drawing comparison to β-alanine, an isomer of l-α-alanine which displays no IRI activity. We found that the difference in the IRI activity of these molecules does not originate from their ice binding affinity, but from their capacity to (not) become overgrown, dictated by the degree of structural (in)compatibility within the growing ice lattice. These findings shed new light on the microscopic mechanisms of small molecule cryoprotectants, particularly in terms of their molecular structure and overgrowth by ice.
Collapse
Affiliation(s)
- Matthew
T. Warren
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Iain Galpin
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Fabienne Bachtiger
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Gabriele C. Sosso
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Investigating the Solubility and Activity of a Novel Class of Ice Recrystallization Inhibitors. Processes (Basel) 2021. [DOI: 10.3390/pr9101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
O-aryl-β-d-glucosides and N-alkyl-d-gluconamides are two classes of effective ice recrystallization inhibitors (IRIs), however their solubilities limit their use in cryopreservation applications. Herein, we have synthesized and assessed phosphonate analogues of small-molecule IRIs as a method to improve their chemical and physical properties. Four sodium phosphonate compounds 4–7 were synthesized and exhibited high solubilities greater than 200 mM. Their IRI activity was evaluated using the splat cooling assay and only the sodium phosphonate derivatives of α-methyl-d-glucoside (5-Na) and N-octyl-d-gluconamide (7-Na) exhibited an IC50 value less than 30 mM. It was found that the addition of a polar sodium phosphonate group to the alkyl gluconamide (1) and aryl glucoside (2) structure decreased its IRI activity, indicating the importance of a delicate hydrophobic/hydrophilic balance within these compounds. The evaluation of various cation-phosphonate pairs was studied and revealed the IRI activity of ammonium and its ability to modulate the IRI activity of its paired anion. A preliminary cytotoxicity study was also performed in a HepG2 cell line and phosphonate analogues were found to have relatively low cytotoxicity. As such, we present phosphonate small-molecule carbohydrates as a biocompatible novel class of IRIs with high solubilities and moderate-to-high IRI activities.
Collapse
|
16
|
Georgiou P, Marton HL, Baker AN, Congdon TR, Whale TF, Gibson MI. Polymer Self-Assembly Induced Enhancement of Ice Recrystallization Inhibition. J Am Chem Soc 2021; 143:7449-7461. [PMID: 33944551 PMCID: PMC8154521 DOI: 10.1021/jacs.1c01963] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Ice binding proteins modulate ice nucleation/growth and have huge (bio)technological potential. There are few synthetic materials that reproduce their function, and rational design is challenging due to the outstanding questions about the mechanisms of ice binding, including whether ice binding is essential to reproduce all their macroscopic properties. Here we report that nanoparticles obtained by polymerization-induced self-assembly (PISA) inhibit ice recrystallization (IRI) despite their constituent polymers having no apparent activity. Poly(ethylene glycol), poly(dimethylacrylamide), and poly(vinylpyrrolidone) coronas were all IRI-active when assembled into nanoparticles. Different core-forming blocks were also screened, revealing the core chemistry had no effect. These observations show ice binding domains are not essential for macroscopic IRI activity and suggest that the size, and crowding, of polymers may increase the IRI activity of "non-active" polymers. It was also discovered that poly(vinylpyrrolidone) particles had ice crystal shaping activity, indicating this polymer can engage ice crystal surfaces, even though on its own it does not show any appreciable ice recrystallization inhibition. Larger (vesicle) nanoparticles are shown to have higher ice recrystallization inhibition activity compared to smaller (sphere) particles, whereas ice nucleation activity was not found for any material. This shows that assembly into larger structures can increase IRI activity and that increasing the "size" of an IRI does not always lead to ice nucleation. This nanoparticle approach offers a platform toward ice-controlling soft materials and insight into how IRI activity scales with molecular size of additives.
Collapse
Affiliation(s)
- Panagiotis
G. Georgiou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Huba L. Marton
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Alexander N. Baker
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Thomas R. Congdon
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Thomas F. Whale
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| |
Collapse
|
17
|
Ampaw AA, Sibthorpe A, Ben RN. Use of Ice Recrystallization Inhibition Assays to Screen for Compounds That Inhibit Ice Recrystallization. Methods Mol Biol 2021; 2180:271-283. [PMID: 32797415 DOI: 10.1007/978-1-0716-0783-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ice recrystallization inhibition assays are used to screen for compounds that possess the ability to inhibit ice recrystallization. The most common of these assays are the splat cooling assay (SCA) and sucrose sandwich assay (SSA). These two assays possess similarities; however, they vary in their sample size, cooling rate, and the solution used to dissolve the analyte. In this chapter, both assay methods are described in detail, and we perform a direct comparison of the assays by evaluating the IRI activity of an antifreeze protein (AFP I). IRI activity is quantified by using ImageJ software to analyze ice crystals, and a quantitative value describing the efficiency of the inhibitor is generated. This analysis emphasizes the importance of choosing the right assay to measure IRI activity.
Collapse
Affiliation(s)
- Anna A Ampaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - August Sibthorpe
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen. Biomacromolecules 2020; 21:3017-3025. [PMID: 32659086 DOI: 10.1021/acs.biomac.0c00293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current slow-freezing methods are too inefficient for cryopreservation of three-dimensional (3D) tissue constructs. Additionally, conventional vitrification methods use liquid nitrogen, which is inconvenient and increases the chance of cross-contamination. Herein, we have developed polyampholytes with various degrees of hydrophobicity and showed that they could successfully vitrify cell constructs including spheroids and cell monolayers without using liquid nitrogen. The polyampholytes prevented ice crystallization during both cooling and warming, demonstrating their potential to prevent freezing-induced damage. Monolayers and spheroids vitrified in the presence of polyampholytes yielded high viabilities post-thawing with monolayers vitrified with PLL-DMGA exhibiting more than 90% viability. Moreover, spheroids vitrified in the presence of polyampholytes retained their fusibilities, thus revealing the propensity of these polyampholytes to stabilize 3D cell constructs. This study is expected to open new avenues for the development of off-the-shelf tissue engineering constructs that can be prepared and preserved until needed.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sho Hatakeyama
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Naka
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Hiroshi Ueda
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Daisuke Tanaka
- Genetic Resources Center, National Agriculture and Food Research Organization, 212, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Suong-Hyu Hyon
- The Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan
| |
Collapse
|
19
|
Li T, Zhong Q, Zhao B, Lenaghan S, Wang S, Wu T. Effect of surface charge density on the ice recrystallization inhibition activity of nanocelluloses. Carbohydr Polym 2020; 234:115863. [PMID: 32070502 DOI: 10.1016/j.carbpol.2020.115863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/26/2019] [Accepted: 01/11/2020] [Indexed: 12/26/2022]
Abstract
Recently nanocelluloses have been found to possess ice recrystallization inhibition (IRI) activity, which have several potential applications. The present study focuses on the relationship between the surface charge density (SCD) of nanocelluloses and IRI activity. Cellulose nanocrystals (CNCs) and 2, 2, 6, 6-tetramethylpiperidine-1-oxyl oxidized cellulose nanofibrils (TEMPO-CNFs) with similar degrees of polymerization (DP) or fibril lengths but with different SCDs were prepared and characterized for IRI activity. When the SCD of CNCs was progressively reduced, an initial increase of IRI activity was observed, followed by a decrease due to fibril aggregation. CNCs with a low SCD became IRI active at increased unfrozen water fractions and higher annealing temperatures. TEMPO-CNFs with a low SCD also had higher IRI activity. Additionally, lowering pH to protonate the carboxylate groups of TEMPO-CNFs enhanced the IRI activity. These research findings are important in producing nanocelluloses with enhanced IRI activity and understanding their structure-activity relationship.
Collapse
Affiliation(s)
- Teng Li
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Scott Lenaghan
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA; Center for Agricultural Synthetic Biology, 2640 Morgan Circle Drive, Knoxville, TN 37996, USA
| | - Siqun Wang
- The Center for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996, USA
| | - Tao Wu
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
20
|
Fan Q, Gao Y, Zhu C, Liu J, Zhao L, Mao J, Wu S, Xue H, Francisco JS, Zeng XC, Wang J. Unraveling Molecular Mechanism on Dilute Surfactant Solution Controlled Ice Recrystallization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1691-1698. [PMID: 32008324 DOI: 10.1021/acs.langmuir.9b03417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ice recrystallization (IR) is ubiquitous, playing an important role in many areas of science, such as cryobiology, food science, and atmospheric physics. However, controllable ice recrystallization remains a challenging task largely due to an incomplete understanding of the physical mechanism associated with ice recrystallization. Herein, we explore the molecular mechanism underlying the controlling of ice recrystallization by using different small amphiphilic molecules (surfactants) through joint experimental measurements and molecular dynamics simulation. Our experiment shows that in nonionic/zwitterionic surfactant solutions, the mean size of the recrystallized ice grains increases monotonically with the concentration of surfactants, whereas in the ionic surfactant solutions, the mean size of the recrystallized ice grains tends to increase first and then decrease with increasing the concentration, yielding a peak typically at ∼5 μM. Further sequential ice affinity purification experiments and molecular dynamics simulations show that the surfactants actually do not bind to ice directly. Rather, the different spatial distributions of counter ions and molecular surfactants in the interfacial regions (ice-water interface and water-air interface) and bulk region can markedly affect the mean size of the recrystallized ice grain.
Collapse
Affiliation(s)
- Qingrui Fan
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yurui Gao
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Chongqin Zhu
- Department of Earth & Environmental Science , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jie Liu
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Junqiang Mao
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuwang Wu
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Han Xue
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Joseph S Francisco
- Department of Earth & Environmental Science , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Xiao Cheng Zeng
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
21
|
Stubbs C, Bailey TL, Murray K, Gibson MI. Polyampholytes as Emerging Macromolecular Cryoprotectants. Biomacromolecules 2020; 21:7-17. [PMID: 31418266 PMCID: PMC6960013 DOI: 10.1021/acs.biomac.9b01053] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Indexed: 11/29/2022]
Abstract
Cellular cryopreservation is a platform technology which underpins cell biology, biochemistry, biomaterials, diagnostics, and the cold chain for emerging cell-based therapies. This technique relies on effective methods for banking and shipping to avoid the need for continuous cell culture. The most common method to achieve cryopreservation is to use large volumes of organic solvent cryoprotective agents which can promote either a vitreous (ice free) phase or dehydrate and protect the cells. These methods are very successful but are not perfect: not all cell types can be cryopreserved and recovered, and the cells do not always retain their phenotype and function post-thaw. This Perspective will introduce polyampholytes as emerging macromolecular cryoprotective agents and demonstrate they have the potential to impact a range of fields from cell-based therapies to basic cell biology and may be able to improve, or replace, current solvent-based cryoprotective agents. Polyampholytes have been shown to be remarkable (mammalian cell) cryopreservation enhancers, but their mechanism of action is unclear, which may include membrane protection, solvent replacement, or a yet unknown protective mechanism, but it seems the modulation of ice growth (recrystallization) may only play a minor role in their function, unlike other macromolecular cryoprotectants. This Perspective will discuss their synthesis and summarize the state-of-the-art, including hypotheses of how they function, to introduce this exciting area of biomacromolecular science.
Collapse
Affiliation(s)
- Christopher Stubbs
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Trisha L. Bailey
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Kathryn Murray
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
22
|
Xue B, Zhao L, Qin X, Qin M, Lai J, Huang W, Lei H, Wang J, Wang W, Li Y, Cao Y. Bioinspired Ice Growth Inhibitors Based on Self-Assembling Peptides. ACS Macro Lett 2019; 8:1383-1390. [PMID: 35651174 DOI: 10.1021/acsmacrolett.9b00610] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antifreeze proteins (AFPs) are widely found in organisms living in subzero environments. Their strong ability to inhibit ice growth and recrystallization have inspired considerable bioinspired efforts to engineer artificial ice growth inhibitors for cryopreservation. However, it remains challenging to engineer biocompatible and cost-effective synthetic ice growth inhibitors to meet the increasing needs of cryoprotectants in biomedical research and industry. Here we report the design of artificial ice growth inhibitors based on self-assembling peptides. We demonstrate the importance of threonine residues as well as their spatial arrangement for effective ice binding. The engineered self-assembling ice growth inhibiting peptides show moderate ice inhibiting activity including suppression of ice growth rates and retardation of recrystallization of ice crystals. The applications of these peptides in cryopreservation of enzymes and cells were also demonstrated.
Collapse
Affiliation(s)
- Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xuehua Qin
- College of Life Sciences and Health, Northeastern University, Shenyang 110169, People’s Republic of China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jiancheng Lai
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Wenmao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Ying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, People’s Republic of China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
23
|
Biggs CI, Stubbs C, Graham B, Fayter AER, Hasan M, Gibson MI. Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"? Macromol Biosci 2019; 19:e1900082. [PMID: 31087781 PMCID: PMC6828557 DOI: 10.1002/mabi.201900082] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Indexed: 01/16/2023]
Abstract
Antifreeze proteins and ice-binding proteins have been discovered in a diverse range of extremophiles and have the ability to modulate the growth and formation of ice crystals. Considering the importance of cryoscience across transport, biomedicine, and climate science, there is significant interest in developing synthetic macromolecular mimics of antifreeze proteins, in particular to reproduce their property of ice recrystallization inhibition (IRI). This activity is a continuum rather than an "on/off" property and there may be multiple molecular mechanisms which give rise to differences in this observable property; the limiting concentrations for ice growth vary by more than a thousand between an antifreeze glycoprotein and poly(vinyl alcohol), for example. The aim of this article is to provide a concise comparison of a range of natural and synthetic materials that are known to have IRI, thus providing a guide to see if a new synthetic mimic is active or not, including emerging materials which are comparatively weak compared to antifreeze proteins, but may have technological importance. The link between activity and the mechanisms involving either ice binding or amphiphilicity is discussed and known materials assigned into classes based on this.
Collapse
Affiliation(s)
- Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Ben Graham
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Alice E R Fayter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, , University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
24
|
Spreading fully at the ice-water interface is required for high ice recrystallization inhibition activity. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9428-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Li T, Zhao Y, Zhong Q, Wu T. Inhibiting Ice Recrystallization by Nanocelluloses. Biomacromolecules 2019; 20:1667-1674. [DOI: 10.1021/acs.biomac.9b00027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Teng Li
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
| | - Ying Zhao
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
- Glycomics and
Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People’s Republic of China
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
| | - Tao Wu
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
26
|
Stubbs C, Congdon TR, Gibson MI. Photo-polymerisation and study of the ice recrystallisation inhibition of hydrophobically modified poly(vinyl pyrrolidone) co-polymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Raju R, Merl T, Adam MK, Staykov E, Ben RN, Bryant G, Wilkinson BL. n-Octyl (Thio)glycosides as Potential Cryoprotectants: Glass Transition Behaviour, Membrane Permeability, and Ice Recrystallization Inhibition Studies. Aust J Chem 2019. [DOI: 10.1071/ch19159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of eight n-octyl (thio)glycosides (1α, β–4α, β) with d-glucose or d-galactose-configured head groups and varying anomeric configuration were synthesized and evaluated for glass transition behaviour, membrane permeability, and ice recrystallization inhibition (IRI) activity. Of these, n-octyl β-d-glucopyranoside (2β) exhibited a high glass transition temperatures (Tg), both as a neat sample and 20 wt-% aqueous solution. Membrane permeability studies of this compound revealed cellular uptake to concentrations relevant to the inhibition of intracellular ice formation, thus presenting a promising lead candidate for further biophysical and cryopreservation studies. Compounds were also evaluated as ice recrystallization inhibitors; however, no detectable activity was observed for the newly tested compounds.
Collapse
|
28
|
Designing the next generation of cryoprotectants - From proteins to small molecules. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Nagao M, Sengupta J, Diaz-Dussan D, Adam M, Wu M, Acker J, Ben R, Ishihara K, Zeng H, Miura Y, Narain R. Synthesis of Highly Biocompatible and Temperature-Responsive Physical Gels for Cryopreservation and 3D Cell Culture. ACS APPLIED BIO MATERIALS 2018; 1:356-366. [DOI: 10.1021/acsabm.8b00096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | | | - Madeleine Adam
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - Jason Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, Alberta T6G 2R8, Canada
| | - Robert Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kazuhiko Ishihara
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | | | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
30
|
Influence of gelation on ice recrystallization inhibition activity of κ-carrageenan in sucrose solution. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2016.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Biggs CI, Bailey TL, Ben Graham, Stubbs C, Fayter A, Gibson MI. Polymer mimics of biomacromolecular antifreezes. Nat Commun 2017; 8:1546. [PMID: 29142216 PMCID: PMC5688100 DOI: 10.1038/s41467-017-01421-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/15/2017] [Indexed: 11/08/2022] Open
Abstract
Antifreeze proteins from polar fish species are remarkable biomacromolecules which prevent the growth of ice crystals. Ice crystal growth is a major problem in cell/tissue cryopreservation for transplantation, transfusion and basic biomedical research, as well as technological applications such as icing of aircraft wings. This review will introduce the rapidly emerging field of synthetic macromolecular (polymer) mimics of antifreeze proteins. Particular focus is placed on designing polymers which have no structural similarities to antifreeze proteins but reproduce the same macroscopic properties, potentially by different molecular-level mechanisms. The application of these polymers to the cryopreservation of donor cells is also introduced.
Collapse
Affiliation(s)
- Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Trisha L Bailey
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Ben Graham
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Alice Fayter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
32
|
Photoswitchable carbohydrate-based fluorosurfactants as tuneable ice recrystallization inhibitors. Carbohydr Res 2017; 439:1-8. [DOI: 10.1016/j.carres.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/09/2023]
|
33
|
Capicciotti C, Mancini RS, Turner TR, Koyama T, Alteen MG, Doshi M, Inada T, Acker JP, Ben RN. O-Aryl-Glycoside Ice Recrystallization Inhibitors as Novel Cryoprotectants: A Structure-Function Study. ACS OMEGA 2016; 1:656-662. [PMID: 30023486 PMCID: PMC6044640 DOI: 10.1021/acsomega.6b00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/14/2016] [Indexed: 05/19/2023]
Abstract
Low-molecular-weight ice recrystallization inhibitors (IRIs) are ideal cryoprotectants that control the growth of ice and mitigate cell damage during freezing. Herein, we describe a detailed study correlating the ice recrystallization inhibition activity and the cryopreservation ability with the structure of O-aryl-glycosides. Many effective IRIs are efficient cryoadditives for the freezing of red blood cells (RBCs). One effective cryoadditive did not inhibit ice recrystallization but instead inhibited ice nucleation, demonstrating the significance of inhibiting both processes and illustrating the importance of this emerging class of cryoprotectants.
Collapse
Affiliation(s)
- Chantelle
J. Capicciotti
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Ross S. Mancini
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Tracey R. Turner
- Canadian
Blood Services, Centre for Innovation, 8249-114 Street NW, Edmonton, Alberta T6G 2R8, Canada
| | - Toshie Koyama
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Matthew G. Alteen
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Malay Doshi
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Takaaki Inada
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Jason P. Acker
- Canadian
Blood Services, Centre for Innovation, 8249-114 Street NW, Edmonton, Alberta T6G 2R8, Canada
| | - Robert N. Ben
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- E-mail: .
Phone: 1-613-562-5800
| |
Collapse
|
34
|
Briard JG, Fernandez M, De Luna P, Woo TK, Ben RN. QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors. Sci Rep 2016; 6:26403. [PMID: 27216585 PMCID: PMC4877635 DOI: 10.1038/srep26403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/03/2016] [Indexed: 11/16/2022] Open
Abstract
Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.
Collapse
Affiliation(s)
- Jennie G Briard
- Department of Chemistry and Biomolecular Sciences University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Michael Fernandez
- Department of Chemistry and Biomolecular Sciences University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Phil De Luna
- Department of Chemistry and Biomolecular Sciences University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Tom K Woo
- Department of Chemistry and Biomolecular Sciences University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
35
|
Rajan R, Hayashi F, Nagashima T, Matsumura K. Toward a Molecular Understanding of the Mechanism of Cryopreservation by Polyampholytes: Cell Membrane Interactions and Hydrophobicity. Biomacromolecules 2016; 17:1882-93. [DOI: 10.1021/acs.biomac.6b00343] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Robin Rajan
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Fumiaki Hayashi
- NMR
Facility Support Unit, NMR Facility, Division of Structural and Synthetic
Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Toshio Nagashima
- NMR
Facility, Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Kazuaki Matsumura
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
36
|
Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci Rep 2016; 6:23619. [PMID: 27021850 PMCID: PMC4810524 DOI: 10.1038/srep23619] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/09/2016] [Indexed: 11/28/2022] Open
Abstract
During cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol. RBC units frozen under these conditions must be subjected to a time-consuming deglycerolization process after thawing in order to remove the glycerol to <1% prior to transfusion thus limiting the use of frozen RBC units in emergency situations. We have identified several low molecular mass ice recrystallization inhibitors (IRIs) that are effective cryoprotectants for human RBCs, resulting in 70–80% intact RBCs using only 15% glycerol and slow freezing rates. These compounds are capable of reducing the average ice crystal size of extracellular ice relative to a 15% glycerol control validating the positive correlation between a reduction in ice crystal size and increased post-thaw recovery of RBCs. The most potent IRI from this study is also capable of protecting frozen RBCs against the large temperature fluctuations associated with transient warming.
Collapse
|
37
|
Adam MK, Poisson JS, Hu Y, Prasannakumar G, Pottage MJ, Ben RN, Wilkinson BL. Carbohydrate-based surfactants as photocontrollable inhibitors of ice recrystallization. RSC Adv 2016. [DOI: 10.1039/c6ra07030b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report the synthesis and photocontrollable ice recrystallization inhibition (IRI) activity of a panel of carbohydrate-based surfactants.
Collapse
Affiliation(s)
| | | | - Yingxue Hu
- School of Chemistry
- Monash University
- Australia
| | | | | | - Robert N. Ben
- Department of Chemistry
- University of Ottawa
- Canada KN1 6N5
| | - Brendan L. Wilkinson
- School of Chemistry
- Monash University
- Australia
- School of Science and Technology
- University of New England
| |
Collapse
|
38
|
Zeng J, Yin Y, Zhang L, Hu W, Zhang C, Chen W. A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process. Macromol Biosci 2015; 16:363-70. [DOI: 10.1002/mabi.201500277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/01/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Zeng
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Li Zhang
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Wanghui Hu
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Chaocan Zhang
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Wanyu Chen
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| |
Collapse
|
39
|
Mitchell DE, Congdon T, Rodger A, Gibson MI. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules. Sci Rep 2015; 5:15716. [PMID: 26499135 PMCID: PMC4620503 DOI: 10.1038/srep15716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/02/2015] [Indexed: 11/09/2022] Open
Abstract
Antifreeze (glyco)proteins are found in polar fish species and act to slow the rate of growth of ice crystals; a property known as ice recrystallization inhibition. The ability to slow ice growth is of huge technological importance especially in the cryopreservation of donor cells and tissue, but native antifreeze proteins are often not suitable, nor easily available. Therefore, the search for new materials that mimic this function is important, but currently limited by the low-throughout assays associated with the antifreeze properties. Here 30 nm gold nanoparticles are demonstrated to be useful colorimetric probes for ice recrystallization inhibition, giving a visible optical response and is compatible with 96 well plates for high-throughout studies. This method is faster, requires less infrastructure, and has easier interpretation than the currently used 'splat' methods. Using this method, a series of serum proteins were identified to have weak, but specific ice recrystallization inhibition activity, which was removed upon denaturation. It is hoped that high-throughput tools such as this will accelerate the discovery of new antifreeze mimics.
Collapse
Affiliation(s)
- Daniel E. Mitchell
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- MOAC DTC, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Thomas Congdon
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Alison Rodger
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
40
|
Mitchell D, Gibson MI. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides. Biomacromolecules 2015; 16:3411-6. [PMID: 26407233 PMCID: PMC4646349 DOI: 10.1021/acs.biomac.5b01118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/22/2015] [Indexed: 01/20/2023]
Abstract
Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs.
Collapse
Affiliation(s)
- Daniel
E. Mitchell
- Department of Chemistry, MOAC DTC, University of
Warwick, Gibbet Hill
Road, Coventry, CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry, MOAC DTC, University of
Warwick, Gibbet Hill
Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
41
|
Capicciotti CJ, Kurach JDR, Turner TR, Mancini RS, Acker JP, Ben RN. Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations. Sci Rep 2015; 5:9692. [PMID: 25851700 PMCID: PMC4389209 DOI: 10.1038/srep09692] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/11/2015] [Indexed: 01/25/2023] Open
Abstract
In North America, red blood cells (RBCs) are cryopreserved in a clinical setting using high glycerol concentrations (40% w/v) with slow cooling rates (~1°C/min) prior to storage at -80°C, while European protocols use reduced glycerol concentrations with rapid freezing rates. After thawing and prior to transfusion, glycerol must be removed to avoid intravascular hemolysis. This is a time consuming process requiring specialized equipment. Small molecule ice recrystallization inhibitors (IRIs) such as β-PMP-Glc and β-pBrPh-Glc have the ability to prevent ice recrystallization, a process that contributes to cellular injury and decreased cell viability after cryopreservation. Herein, we report that addition of 110 mM β-PMP-Glc or 30 mM β-pBrPh-Glc to a 15% glycerol solution increases post-thaw RBC integrity by 30-50% using slow cooling rates and emphasize the potential of small molecule IRIs for the preservation of cells.
Collapse
Affiliation(s)
- Chantelle J Capicciotti
- Department of Chemistry, D'Iorio Hall, 10 Marie Curie, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Jayme D R Kurach
- Canadian Blood Services, Centre for Innovation, 8249 - 114 Street NW, Edmonton, AB, Canada, T6G 2R8
| | - Tracey R Turner
- Canadian Blood Services, Centre for Innovation, 8249 - 114 Street NW, Edmonton, AB, Canada, T6G 2R8
| | - Ross S Mancini
- Department of Chemistry, D'Iorio Hall, 10 Marie Curie, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Jason P Acker
- Canadian Blood Services, Centre for Innovation, 8249 - 114 Street NW, Edmonton, AB, Canada, T6G 2R8
| | - Robert N Ben
- Department of Chemistry, D'Iorio Hall, 10 Marie Curie, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
42
|
Capicciotti CJ, Poisson JS, Boddy CN, Ben RN. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Cryobiology 2015; 70:79-89. [PMID: 25595636 DOI: 10.1016/j.cryobiol.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 01/11/2023]
Abstract
Most antifreeze proteins (AFPs) exhibit two types of "antifreeze activity" - thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity. The mechanism of TH activity has been studied in depth and is the result of an adsorption of AFPs to the surface of ice with an ice-binding face (IBF). In contrast, the mechanism of ice recrystallization and its inhibition is considerably less understood. In this paper, we examine several different antifreeze proteins, glycoproteins and mutants of the Lolium perenne AFP (LpAFP) to understand how IRI activity is modulated independently of TH activity. This study also examines the ability of the various AF(G)Ps to protect HepG2 cells from cryoinjury. Post-thaw cell viabilities are correlated to TH, IRI activity as well as dynamic ice shaping ability and single ice crystal growth progressions. While these results demonstrate that AF(G)Ps are ineffective as cryoprotectants, they emphasize how ice crystal habit and most importantly, ice growth progression affect HepG2 cell survival during cryopreservation.
Collapse
Affiliation(s)
| | - Jessica S Poisson
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Robert N Ben
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
43
|
Tonelli D, Capicciotti CJ, Doshi M, Ben RN. Inhibiting gas hydrate formation using small molecule ice recrystallization inhibitors. RSC Adv 2015. [DOI: 10.1039/c4ra14746d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbohydrate-based inhibitors of ice recrystallization also inhibit the formation of methane gas hydrates.
Collapse
Affiliation(s)
- Devin Tonelli
- Department of Chemistry
- University of Ottawa
- Ottawa
- Canada
| | | | - Malay Doshi
- Department of Chemistry
- University of Ottawa
- Ottawa
- Canada
| | - Robert N. Ben
- Department of Chemistry
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
44
|
Mitchell DE, Lilliman M, Spain SG, Gibson MI. Quantitative study on the antifreeze protein mimetic ice growth inhibition properties of poly(ampholytes) derived from vinyl-based polymers. Biomater Sci 2014; 2:1787-1795. [PMID: 32481956 DOI: 10.1039/c4bm00153b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antifreeze (glyco) proteins (AF(G)Ps) from the blood of polar fish species are extremely potent ice recrystallization inhibitors (IRI), but are difficult to synthesise or extract from natural sources. Despite this challenge, materials which display IRI are appealing due to their ability to enhance cellular cryopreservation, for applications including regenerative and transplantation medicine. Here, poly(ampholytes), which contain a mixture of cationic and anionic side chains are quantitatively evaluated for their IRI activity. Poly(aminoethyl methacrylate), obtained by RAFT polymerization, is functionalised with succinic anhydride to generate the poly(ampholytes). The charge balance of the side chains is shown to be crucial, with only 50 : 50 mixtures having strong IRI activity, which also scales with molecular weight. This is the first example of a non-hydroxylated synthetic polymer with quantifiable IRI activity and raises questions about the mechanism of IRI, as the polymers have no obvious ice-binding motif. The ampholytic structure is shown to be transferable to carbohydrate-centred polymers with activity retained, but poly(betaines) are shown to be inactive.
Collapse
Affiliation(s)
- Daniel E Mitchell
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | | | |
Collapse
|
45
|
Balcerzak AK, Capicciotti CJ, Briard JG, Ben RN. Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules. RSC Adv 2014. [DOI: 10.1039/c4ra06893a] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ice recrystallization occurs during cryopreservation and is correlated with reduced cell viability after thawing.
Collapse
Affiliation(s)
| | | | | | - Robert N. Ben
- Department of Chemistry
- University of Ottawa
- Ottawa, Canada
| |
Collapse
|
46
|
Congdon T, Notman R, Gibson MI. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromolecules 2013; 14:1578-86. [PMID: 23534826 DOI: 10.1021/bm400217j] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure-activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is "switched on" when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important.
Collapse
Affiliation(s)
- Thomas Congdon
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, United Kingdom, CV4 7AL
| | | | | |
Collapse
|
47
|
Trant JF, Biggs RA, Capicciotti CJ, Ben RN. Developing highly active small molecule ice recrystallization inhibitors based upon C-linked antifreeze glycoprotein analogues. RSC Adv 2013. [DOI: 10.1039/c3ra43835j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|