1
|
Kim S, Jung S, Lee JJ, Kim C. A water-soluble colorimetric chemosensor for sequential probing of Cu 2+ and S 2- and its practical applications to test strips, reversible test, and water samples. J Inorg Biochem 2024; 256:112568. [PMID: 38678914 DOI: 10.1016/j.jinorgbio.2024.112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
A water-soluble colorimetric chemosensor NHOP ((E)-1-(2-(2-(2-hydroxy-5-nitrobenzylidene)hydrazineyl)-2-oxoethyl)pyridin-1-ium) chloride) was developed for the sequential probing of Cu2+ and S2-. NHOP underwent a color change from pale yellow to colorless in the presence of Cu2+ in pure water. The binding ratio between NHOP and Cu2+ was confirmed to be 1:1 by the Job plot and ESI-MS (electrospray ionization mass spectrometry). The detection limit of NHOP for Cu2+ was calculated as 0.15 μM, which was far below the EPA (Environmental Protection Agency) standard (20 μM). The NHOP-coated test strip was able to easily monitor Cu2+ in real-time. Meanwhile, the NHOP-Cu2+ complex reverted from colorless to pale yellow in the presence of S2- through the demetallation. The stoichiometric ratio between NHOP-Cu2+ and S2- was determined to be 1:1 by analyzing the Job plot and ESI-MS. The detection limit of NHOP-Cu2+ for S2- was calculated as 0.29 μM, which was very below the WHO (World Health Organization) guideline (14.7 μM). NHOP successfully achieved the quantification for Cu2+ and S2- in water samples. NHOP could work as a sequential probe for Cu2+ and S2- at the biological pH range (7.0-8.4). Moreover, NHOP could successively probe Cu2+ and S2- at least three cycles because of its reversible property. The detection mechanisms of NHOP for Cu2+ and NHOP-Cu2+ for S2- were demonstrated with Job plot, ESI-MS, and DFT (density functional theory) calculations. Therefore, NHOP could work as an efficient sequential probe for Cu2+ and S2- in environmental systems.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 139-743, Republic of Korea
| | - Sumin Jung
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 139-743, Republic of Korea.
| | - Jae Jun Lee
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 139-743, Republic of Korea
| | - Cheal Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 139-743, Republic of Korea.
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
Lalitha R, Velmathi S. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects. J Fluoresc 2024; 34:15-118. [PMID: 37212978 DOI: 10.1007/s10895-023-03231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023]
Abstract
Rhodamine-based chemosensors have sparked considerable interest in recent years due to their remarkable photophysical properties, which include high absorption coefficients, exceptional quantum yields, improved photostability, and significant red shifts. This article presents an overview of the diverse fluorometric, and colorimetric sensors produced from rhodamine, as well as their applications in a wide range of fields. The ability of rhodamine-based chemosensors to detect a wide range of metal ions, including Hg+2, Al3+, Cr3+, Cu2+, Fe3+, Fe2+, Cd2+, Sn4+, Zn2+, and Pb2+, is one of their major advantages. Other applications of these sensors include dual analytes, multianalytes, and relay recognition of dual analytes. Rhodamine-based probes can also detect noble metal ions such as Au3+, Ag+, and Pt2+. They have been used to detect pH, biological species, reactive oxygen and nitrogen species, anions, and nerve agents in addition to metal ions. The probes have been engineered to undergo colorimetric or fluorometric changes upon binding to specific analytes, rendering them highly selective and sensitive by ring-opening via different mechanisms such as Photoinduced Electron Transfer (PET), Chelation Enhanced Fluorescence (CHEF), Intramolecular Charge Transfer (ICT), and Fluorescence Resonance Energy Transfer (FRET). For improved sensing performance, light-harvesting dendritic systems based on rhodamine conjugates has also been explored for enhanced sensing performance. These dendritic arrangements permit the incorporation of numerous rhodamine units, resulting in an improvement in signal amplification and sensitivity. The probes have been utilised extensively for imaging biological samples, including imaging of living cells, and for environmental research. Moreover, they have been combined into logic gates for the construction of molecular computing systems. The usage of rhodamine-based chemosensors has created significant potential in a range of disciplines, including biological and environmental sensing as well as logic gate applications. This study focuses on the work published between 2012 and 2021 and emphasises the enormous research and development potential of these probes.
Collapse
Affiliation(s)
- Raguraman Lalitha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
4
|
Utreja D. Sulfonamide functionalized silica nano-composite: characterization and fluorescence "turn-on" detection of Fe 3+ ions in aqueous samples. Photochem Photobiol Sci 2023:10.1007/s43630-023-00421-5. [PMID: 37186235 DOI: 10.1007/s43630-023-00421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
We have synthesized novel sulfonamide-based nano-composite (SAN) for selective and sensitive detection of Fe3+ ions in aqueous samples. Morphological characterization of SAN was carried out with TGA, FT-IR, UV-Vis, ninhydrin assay, FE-SEM, pXRD, BET, EDX, and elemental analysis. The sensing nature, effect of pH, sensor concentration and response time analysis were accomplished with the help of emission spectral studies and SAN was assessed as "turn-on" emission detector for the biologically important Fe3+ ions. Here, the LOD and LOQ were computed to be 26.68 nM and 88.93 nM, respectively, and it was found to be much lower than the permissible limit of Fe3+ ions in drinking water. The accuracy of the sensor (SAN) was determined by testing the aqueous samples spiked with known concentrations of Fe3+ ions and results demonstrated 98.00-99.66% recovery, which made SAN a reliable, selective and sensitive chemosensor for the quantification of Fe3+ ions in fully aqueous media.
Collapse
Affiliation(s)
- Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
5
|
Thakur M, Ghosh K, Choudhury P, Ashik Khan A, Mondal S, Nath Ghosh N, Biswas K. Influence of ortho group in rhodamine B hydrazide based Schiff base for selective recognition of Cu 2+ and Fe 3+ ions: A mechanistic approach by DFT and colorimetric studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122271. [PMID: 36580752 DOI: 10.1016/j.saa.2022.122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Herein we have implemented a computational approach in designing sensor molecules for the selective recognition of Cu2+ and Fe3+ ions. Seven rhodamine B hydrazide-based Schiff base derivatives were designed and analysed their chemosensing properties against Cu2+ and Fe3+ ions in ethanol solution theoretically. The theoretical calculations revealed that the selective recognition of Cu2+ and Fe3+ ions takes place via spirolactam ring-opening and there is a pivotal role of ortho substituents and N-heteroatoms. The two best chemosensors were synthesised and used for the detection of Cu2+ and Fe3+ ions by colorimetric methods.
Collapse
Affiliation(s)
- Mintu Thakur
- Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur 733134, India
| | - Kingkar Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Prasun Choudhury
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Abdul Ashik Khan
- Department of Chemistry, Darjeeling Govt. College, Darjeeling 734101, India
| | - Sandip Mondal
- Department of Chemistry, Darjeeling Govt. College, Darjeeling 734101, India
| | | | - Kinkar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| |
Collapse
|
6
|
Recent trends in fluorescent-based copper (II) chemosensors and their biomaterial applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Xu X, Zhang Q, Ding H, Liu G, Pu S. A FRET-based ratiometric fluorescent probe for detecting Hg2+: Its application in cell imaging and molecular keypad lock. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
A FRET-based ratiometric fluorescent probe with large pseudo-stokes for the detection of mercury ion based on xanthene and naphthalimide fluorophores. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Nadimetla DN, Bhosale SV. Tetraphenylethylene AIEgen bearing thiophenylbipyridine receptor for selective detection of copper(ii) ion. NEW J CHEM 2021. [DOI: 10.1039/d1nj01001h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new tetraphenylethylene (TPE) AIEgen appended with a thiophenylbipyridine moiety exhibits sensitivity and selectivity towards copper ions via a PET “turn on–turn off” mechanism.
Collapse
|
10
|
Alday J, Mazzeo A, Suarez S. Selective detection of gasotransmitters using fluorescent probes based on transition metal complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Wei G, Yan Z, Tian J, Zhao G, Guang S, Xu H. Efficient Polymer Pendant Approach toward High Stable Organic Fluorophore for Sensing Ultratrace Hg 2+ with Improved Biological Compatibility and Cell Permeability. Anal Chem 2020; 92:3293-3301. [PMID: 31973517 DOI: 10.1021/acs.analchem.9b05174] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient and efficient method to eliminate the aggregation effect of organic photoelectric sensing materials and to improve biological compatibility and cell permeability as well was developed by hanging organic fluorophores on a polymer chain, for example, fluorescein fluorophores had been controllably hung on polyacrylamide main chains with a 1:2 stoichiometric ratio by a simple copolymerization strategy. The results showed that introduction of water-soluble bioactive polyacrylamide main chains into fluorescein fluorophores via covalent bonds could effectively improve their optical stability by deteriorating π-π stack and charge-transfer interactions among different fluorophores. More importantly, the resultant materials possessed low toxicity and excellent cell permeability ten times larger than their precursor fluorescein fluorophore, which made it express an especially turn-on fluorescent response to ultratrace Hg2+ both in aqueous and living cells by forming stable 5-member-ring complexes with Hg2+ with a correlation coefficient of 0.997 and a low detection limit of 4.0 × 10-10 mol·L-1. This work provides promising insight into constructing some practical sensing materials for environmentally-friendly biological analyses.
Collapse
Affiliation(s)
- Gang Wei
- State Key Laboratory for Modification of Chemical Fibers, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China
| | - Jiachan Tian
- Research Center for Analysis and Measurement & College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Gang Zhao
- State Key Laboratory for Modification of Chemical Fibers, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Shanyi Guang
- Research Center for Analysis and Measurement & College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| |
Collapse
|
12
|
Chatterjee S, Li XS, Liang F, Yang YW. Design of Multifunctional Fluorescent Hybrid Materials Based on SiO 2 Materials and Core-Shell Fe 3 O 4 @SiO 2 Nanoparticles for Metal Ion Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904569. [PMID: 31573771 DOI: 10.1002/smll.201904569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Indexed: 05/12/2023]
Abstract
Hybrid fluorescent materials constructed from organic chelating fluorescent probes and inorganic solid supports by covalent interactions are a special type of hybrid sensing platform that has gained much interest in the context of metal ion sensing applications owing to their excellent advantages, recyclability, and solubility/dispersibility in particular, as compared with single organic fluorescent molecules. In recent decades, SiO2 materials and core-shell Fe3 O4 @SiO2 nanoparticles have become important inorganic solid materials and have been used as inorganic solid supports to hybridize with organic fluorescent receptors, resulting in multifunctional fluorescent hybrid systems for potential applications in sensing and related research fields. Therefore, recent progress in various fluorescent-group-functionalized SiO2 materials is reviewed, with a focus on mesoporous silica nanoparticles and core-shell Fe3 O4 @SiO2 nanoparticles, as interesting fluorescent organic-inorganic hybrid materials for sensing applications toward essential and toxic metal ions. Selective examples of other types of silica/silicon materials, such as periodic mesoporous organosilicas, solid SiO2 nanoparticles, fibrous silica spheres, silica nanowires, silica nanotubes, and silica hollow microspheres, are also mentioned. Finally, relevant perspectives of metal-ion-sensing-oriented silica-fluorescent probe hybrid materials are provided.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiang-Shuai Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Ying-Wei Yang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
13
|
Liu D, Zhao Y, Shi J, Zhu H, Zhang T, Qi P, Chen J, Yang G, He H. A highly selective and sensitive 1,8-naphthalimide-based fluorescent sensor for Zn 2+ imaging in living cells. Bioorg Med Chem Lett 2019; 29:2646-2649. [PMID: 31362923 DOI: 10.1016/j.bmcl.2019.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
A new 4-amino-1,8-naphthalimide-based fluorescent sensor, with iminoacetic acid and iminoethoxyacetic acid as receptor, was developed. It was applied successfully to detect Zn2+ in aqueous solution and living cells. Under physiological pH conditions, it demonstrates high selectivity and sensitivity for sensing Zn2+ with about 7-fold enhancement in aqueous solution, with a characteristic emission band of 4-amino-1,8-naphthalimide with a green color centered at 550 nm.
Collapse
Affiliation(s)
- Daying Liu
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China; Department of Chemistry, Department of Biochemistry and Molecular Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, China.
| | - Ye Zhao
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Jun Shi
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Hualing Zhu
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Tingting Zhang
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Pengpeng Qi
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Jiatong Chen
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, China
| | - Guangming Yang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, China
| | - Huarui He
- Heowns Biochem Technologies LLC, Tianjin, China.
| |
Collapse
|
14
|
Zhu Z, Sun Z, Guo Z, Zhang X, Wu ZC. A high-sensitive ratiometric luminescent thermometer based on dual-emission of carbon dots/Rhodamine B nanocomposite. J Colloid Interface Sci 2019; 552:572-582. [DOI: 10.1016/j.jcis.2019.05.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 01/28/2023]
|
15
|
1, 8-Naphthalimide-based fluorescent sensor with highly selective and sensitive detection of Zn2+ in aqueous solution and living cells. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Wang Y, Ding H, Wang S, Fan C, Tu Y, Liu G, Pu S. Hg
2+
‐selective ratiometric and colorimetric probe based on dansyl–rhodamine and its staining function in cell imaging. LUMINESCENCE 2019; 34:911-917. [DOI: 10.1002/bio.3690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Yuesong Wang
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang China
| | - Shuai Wang
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang China
| | - Yayi Tu
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang China
| |
Collapse
|
17
|
So H, Chae JB, Kim C. A thiol-containing colorimetric chemosensor for relay recognition of Cu2+ and S2− in aqueous media with a low detection limit. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Novel multi-responsive fluorescence switch for Hg2+ and UV/vis lights based on diarylethene-rhodamine derivative. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
1,8-Naphthalimide-based fluorescent sensor with high selectivity and sensitivity for Zn2+ and its imaging in living cells. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhong L, Yun K. Fluorometric 'switch-on' detection of heparin based on a system composed of rhodamine-labeled chitosan oligosaccharide lactate, and graphene oxide. Methods Appl Fluoresc 2018; 6:035011. [PMID: 29765011 DOI: 10.1088/2050-6120/aac51c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel fluorescence 'Switch on' for the detection of heparin based on the RhB-COL/GO system was achieved. A strong fluorescence dye, Rhodamine B, was modified by chitosan oligosaccharide lactate (COL), which plays a major role in the formation of a positively charged RhB-COL complex. RhB-COL was soluble and stable in solution, which was characterized by using Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. GO sheets quenched the fluorescence intensity of RhB-COL due to electron transfer from RhB to the GO surface. The decrease in fluorescence intensity of RhB-COL with increasing GO concentration was recorded using a Cary Eclipse fluorescence spectrophotometer. On the other hand, the addition of heparin replaced GO to bind with the RhB-COL surface via an electrostatic and noncovalent bond due to the abundant negative charge, which resulted in recovery of the fluorescence intensity. This RhB-COL/GO system possessed high selectivity and good sensitivity for the detection of heparin compared to other biomolecules, such as glycine, D-glucose, hyaluronic acid, L-glutamic acid, and ascorbic acid. The linear response toward heparin was measured over the range, 0-1.8 U · ml-1, with a low detection limit of 0.04 U · ml-1. The satisfactory sensing performance of RhB-COL/GO for heparin supports new 'switch-on' sensor applications in heparin-related biomedical detection.
Collapse
Affiliation(s)
- Linlin Zhong
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | | |
Collapse
|
21
|
Guang YS, Ren X, Zhao S, Yan QZ, Zhao G, Xu YH. A novel 4-phenyl amino thiourea derivative designed for real-time ratiometric-colorimetric detection of toxic Pb 2. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:555-560. [PMID: 29336720 DOI: 10.1080/10934529.2018.1425022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this study was to develop a ratiometric and colorimetric organic sensor for Pb2+ detection in environmental samples. A new probe 4-phenyl amino thiourea (PAT) was designed and synthesized using hydrazine hydrate and phenyl isothiocyanate as raw materials. After its structure was characterized and confirmed, its UV-vis spectral property was investigated in detail. PAT possesses a specifically real-time, ratiometric and colorimetric response to Pb2+ in dimethyl formamide (DMF)/H2O (v/v = 9:1, pH = 7.0) within 18.0 s. There was little interference in the presence of some other common metal ions, such as Fe3+, Cd2+, Zn2+, Mg2+, Cr3+, Ca2+, Ba2+, Sn2+, Na+, Mn2+, Hg2+, and Pb2+. Under the optimized conditions (DMF/H2O with v/v of 9:1, cPAT = 1.0 × 10-3 mol·L-1, pH = 7.0), the present sensor PAT was successfully applied for Pb2+ determination in environmental water samples with satisfied recoveries (83.0%-106.0%) and analytical precision (≤7.2%). The recognition mechanism was confirmed to form a stable 1:1 six-member ring complex between the target dye and Pb2+ with a coordination constant of 4.96 × 104.
Collapse
Affiliation(s)
- Yi S Guang
- a School of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China
| | - Xia Ren
- a School of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China
- b College of Materials Sciences and Engineering, Donghua University , Shanghai , China
| | - Shuang Zhao
- b College of Materials Sciences and Engineering, Donghua University , Shanghai , China
| | - Quan Z Yan
- a School of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China
- c School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu , China
| | - Gang Zhao
- a School of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China
- b College of Materials Sciences and Engineering, Donghua University , Shanghai , China
| | - Yao H Xu
- a School of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China
- b College of Materials Sciences and Engineering, Donghua University , Shanghai , China
| |
Collapse
|
22
|
Fluorescein-based fluorescent sensor with high selectivity for mercury and its imaging in living cells. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Sivaraman G, Iniya M, Anand T, Kotla NG, Sunnapu O, Singaravadivel S, Gulyani A, Chellappa D. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.020] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Wang S, Ding H, Wang Y, Fan C, Tu Y, Liu G, Pu S. An ‘‘off–on–off’’ sensor for sequential detection of Cu2+ and hydrogen sulfide based on a naphthalimide–rhodamine B derivative and its application in dual-channel cell imaging. RSC Adv 2018; 8:33121-33128. [PMID: 35548160 PMCID: PMC9086380 DOI: 10.1039/c8ra05963b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/11/2018] [Indexed: 12/03/2022] Open
Abstract
A novel colorimetric and fluorometric sensor with unique dual-channel emission to sequentially detect Cu2+ and hydrogen sulfide (H2S) was synthesized from naphthalimide–rhodamine B through the PET and FRET mechanism. The sensor showed a selective “off–on” fluorescence response with a 120-fold increase toward Cu2+, and its limits of detection were 0.26 μM and 0.17 μM for UV-vis and fluorescence measurements, respectively. In addition, 1–Cu2+ was an efficient “on–off” sensor to detect H2S with detection limits of 0.40 μM (UV-vis measurement) and 0.23 μM (fluorescence measurement), respectively. Furthermore, the sensor can also be used for biological imaging of intracellular staining in living cells. Therefore, the sensor should be highly promising for the detection of low level Cu2+ and H2S with great potential in many practical applications. A novel colorimetric and fluorometric sensor with unique dual-channel emission to sequentially detect Cu2+ and hydrogen sulfide (H2S) was synthesized from naphthalimide–rhodamine B through the PET and FRET mechanism.![]()
Collapse
Affiliation(s)
- Shuai Wang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Yuesong Wang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Yayi Tu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| |
Collapse
|
25
|
Kumar N, Mandal SK. Design and application of a fluorogenic receptor for selective sensing of cations, small neutral molecules, and anions. NEW J CHEM 2018. [DOI: 10.1039/c8nj03998d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An unprecedented single multi-analyte fluorogenic receptor, a sodium salt of N-(methyl-2-thiophenyl)-tyrosine (NaHTyrthio), is reported for the selective sensing of cations (Cu2+), small neutral molecules (nitrobenzene and aniline) and anions (F−) by variable spectral responses.
Collapse
Affiliation(s)
- Navnita Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| | - Sanjay K. Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| |
Collapse
|
26
|
Kowser Z, Rayhan U, Rahman S, Georghiou PE, Yamato T. A fluorescence “turn-on” sensor for multiple analytes: OAc− and F− triggered fluorogenic detection of Zn2+ in a co-operative fashion. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
|
28
|
Christopher Leslee DB, Karuppannan S, Vengaian KM, Gandhi S, Subramanian S. Carbazole–azine based fluorescence ‘
off–on
’ sensor for selective detection of Cu
2+
and its live cell imaging. LUMINESCENCE 2017. [DOI: 10.1002/bio.3332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Sekar Karuppannan
- Department of Chemistry Anna University – University College of Engineering Dindigul India
| | | | - Sivaraman Gandhi
- Institute for Stem Cell Biology and Regenerative Medicine Bangalore India
| | | |
Collapse
|
29
|
Guang S, Tian J, Wei G, Yan Z, Pan H, Feng J, Xu H. A modified fluorescein derivative with improved water-solubility for turn-on fluorescent determination of Hg 2+ in aqueous and living cells. Talanta 2017; 170:89-96. [PMID: 28501218 DOI: 10.1016/j.talanta.2017.03.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
To improve the water-solubility of heavy-metal sensing materials, a modified fluorescein-based derivative, acryloyl fluorescein hydrazine (ACFH), was designed and developed by incorporating a non-hydrogen-bonding group into the conjugated molecule for weakening intermolecular hydrogen-bonding interactions. In neutral water environments, ACFH presented a fluorescence-enhancement performance at λmax=512nm in the presence of Hg2+, which could be visualized by naked-eyes. Under the optimized conditions, the linear range of Hg2+ detection was 1.0-100×10-9molL-1 with a correlation coefficient of 0.9992 and a detection limit of 0.86×10-9molL-1. The recognition mechanism was confirmed to be a stable and irreversible 1:1 five-member ring complex between ACFH and Hg2+ with a coordination constant of 3.36×109. ACFH would possess a potential application in detecting Hg2+ for biological assay with low cytotoxicity.
Collapse
Affiliation(s)
- Shanyi Guang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jiachan Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Gang Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; College of Materials Science and Technology & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China.
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hongfei Pan
- Department of Immunology & Oncology department, Immunology Innovation Base of Education of Guizhou Province, Zunyi Medical College & The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China.
| | - Jihong Feng
- Department of Immunology & Oncology department, Immunology Innovation Base of Education of Guizhou Province, Zunyi Medical College & The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China.
| | - Hongyao Xu
- College of Materials Science and Technology & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China.
| |
Collapse
|
30
|
Hou L, Kong X, Wang Y, Chao J, Li C, Dong C, Wang Y, Shuang S. An anthraquinone-based highly selective colorimetric and fluorometric sensor for sequential detection of Cu2+ and S2− with intracellular application. J Mater Chem B 2017; 5:8957-8966. [DOI: 10.1039/c7tb01596h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An anthraquinone-based highly selective colorimetric and fluorometric probe for sequential detection of Cu2+ and S2− with intracellular application is reported.
Collapse
Affiliation(s)
- Lingjie Hou
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiangyu Kong
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yishou Wang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Jianbin Chao
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Chenzhong Li
- Nanobioengineering/Bioelectronics Lab
- Department of Biomedical Engineering
- Florida International University
- Miami
- USA
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yu Wang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
31
|
Hu Y, Zhao F, Hu S, Dong Y, Li D, Su Z. A novel turn-on colorimetric and fluorescent sensor for Fe3+ and its application in living cells. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
A highly selective and sensitive “Turn-On” fluorescence chemosensor for the Cu 2+ ion in aqueous ethanolic medium and its application in live cell imaging. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Ozdemir M. A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Kumar M, Kumawat LK, Gupta VK, Sharma A. Novel Furochromenone based Dual Channel Sensors for Selective Detection of Cu2+with Potential Applications in Sample Monitoring, Membrane Sensing and Photo-printing. ChemistrySelect 2016. [DOI: 10.1002/slct.201500023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manoj Kumar
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| | - Lokesh Kumar Kumawat
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| | - Vinod Kumar Gupta
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
- Department of Applied Chemistry; University of Johannesburg; Doorrnfontein Campus Johannesburg South-Africa
| | - Anuj Sharma
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| |
Collapse
|
35
|
Zhang Z, Ji H, Zhang S, Peng D, Fu Q, Wang M, He L, Yue L. Plasma polyacrylic acid and hollow TiO2 spheres modified with rhodamine B for sensitive electrochemical sensing Cu(ii). NEW J CHEM 2016. [DOI: 10.1039/c5nj02483h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodamine B-modified nanocomposite-based electrochemical sensor was fabricated for selectively and sensitively detecting Cu(ii) in environmental fields.
Collapse
Affiliation(s)
- Zhihong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- P. R. China
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Hongfei Ji
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Shuai Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- P. R. China
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Donglai Peng
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Qixuan Fu
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Minghua Wang
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Linghao He
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Lingyu Yue
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- P. R. China
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
36
|
A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta 2015; 144:80-9. [DOI: 10.1016/j.talanta.2015.05.053] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
|
37
|
One diethylamine coumarin derivative with nitro substituted chalcone structure as chemosensor for cyanide and copper ions. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Yu H, Lee JY, Angupillai S, Wang S, Feng S, Matsumoto S, Son YA. A new dual fluorogenic and chromogenic "turn-on" chemosensor for Cu²⁺/F⁻ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:48-55. [PMID: 26125982 DOI: 10.1016/j.saa.2015.06.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Turn "off-on" chemosensor 2-(-2-((3',6'-bis(diethylamino)-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)imino)ethylidene)-N-phenylhydrazine-1-carbothioamide (RBS) was designed and synthesized. Using the naked eye, RBS showed favorable observation characteristics with both Cu(2+) and F(-) ions. The various modes of sensitivity shown by RBS toward the Cu(2+) and F(-) ions were investigated by spectral techniques, including UV-Vis, fluorescence and (1)H NMR spectroscopy. The Job's plot indicated the formation of 1:1 complex between RBS and Cu(2+)/F(-). The binding constant of the RBS-guest(-) complexes were found to be 1.3×10(4) and 6.2×10(3)M(-1) for the RBS-Cu(2+) and RBS-F(-), respectively.
Collapse
Affiliation(s)
- Hyungwook Yu
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Jae-Young Lee
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Satheshkumar Angupillai
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Sheng Wang
- School of Chemistry Science & Technology, Zhanjiang Normal University, Development Center for New Material Engineering & Technology in Universities of Guangdong, Zhanjiang 524048, PR China.
| | - Shuhang Feng
- School of Chemistry Science & Technology, Zhanjiang Normal University, Development Center for New Material Engineering & Technology in Universities of Guangdong, Zhanjiang 524048, PR China
| | - Shinya Matsumoto
- Graduate School of Environment and Information Sciences Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Young-A Son
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea.
| |
Collapse
|
39
|
Zhao L, Sui D, Wang Y. Fluorescence chemosensors based on functionalized SBA-15 for detection of Pb2+ in aqueous media. RSC Adv 2015. [DOI: 10.1039/c5ra00696a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A highly ordered mesoporous silica material (SBA-15) functionalized with 5-(4-carboxy-phenylazo)-8-hydroxyquinoline (CPA-8-HQL) for use as a fluorescence chemosensor for Pb2+ detection has been reported in this study.
Collapse
Affiliation(s)
- Liyan Zhao
- Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Dan Sui
- Management Office of Laboratory and Equipment (Center of Analysis and Testing)
- Northeast Forestry University
- Harbin 150040
- China
| | - Yan Wang
- Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
40
|
Saleem M, Lee KH. Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 2015. [DOI: 10.1039/c5ra11388a] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review, we cover the recent developments in fluorogenic and chromogenic sensors for Cu2+, Fe2+/Fe3+, Zn2+and Hg2+.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| | - Ki Hwan Lee
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| |
Collapse
|
41
|
Sun Z, Guo D, Li H, Zhang L, Yang B, Yan S. Multifunctional Fe3O4@SiO2nanoparticles for selective detection and removal of Hg2+ion in aqueous solution. RSC Adv 2015. [DOI: 10.1039/c4ra13487g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A multifunctional magnetic core–shell Fe3O4@SiO2nanoparticle decorated with rhodamine-based receptor has been successfully synthesized, aiming to detect and remove Hg2+from aqueous media.
Collapse
Affiliation(s)
- Zebin Sun
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- PR China
| | - Dan Guo
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- PR China
| | - Haizhen Li
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- PR China
| | - Li Zhang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- PR China
| | - Bo Yang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- PR China
| | - Shiqiang Yan
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- PR China
| |
Collapse
|
42
|
Giri D, Patra SK. Benzodithieno-imidazole based π-conjugated fluorescent polymer probe for selective sensing of Cu2+. RSC Adv 2015. [DOI: 10.1039/c5ra14079j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A benzodithieno-imidazole based π-conjugated fluorescent polymer probe shows excellent selectivity towards Cu2+ions through fluorescence quenching.
Collapse
Affiliation(s)
- Dipanjan Giri
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Sanjib K Patra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
43
|
Li J, Yin C, Huo F. Chromogenic and fluorogenic chemosensors for hydrogen sulfide: review of detection mechanisms since the year 2009. RSC Adv 2015. [DOI: 10.1039/c4ra11870g] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of probes for the biologically important gas hydrogen sulfide (H2S) has been an active area of research in recent years.
Collapse
Affiliation(s)
- Jianfang Li
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
44
|
Wang D, Ren AM, Guo JF, Zou LY, Huang S. Computational design of a two-photon excited FRET-based ratiometric fluorescent Cu2+ probe for living cell imaging. RSC Adv 2015. [DOI: 10.1039/c5ra18393f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A novel TP FRET ratiometric fluorescent probe 2a for Cu2+ is designed. 2a has a large TPA peak in the near-infrared light region and its energy transfer efficiency is nearly 100%.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- People's Republic of China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- People's Republic of China
| | - Jing-Fu Guo
- School of Physics
- Northeast Normal University
- Changchun 130021
- People's Republic of China
| | - Lu-Yi Zou
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- People's Republic of China
| | - Shuang Huang
- School of Mathematics and Physics
- Changzhou University
- Changzhou 213164
- People's Republic of China
| |
Collapse
|
45
|
Sun Z, Guo D, Zhang L, Li H, Yang B, Yan S. Multifunctional fibrous silica composite with high optical sensing performance and effective removal ability toward Hg2+ions. J Mater Chem B 2015; 3:3201-3210. [DOI: 10.1039/c5tb00038f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multifunctional organic–inorganic hybrid sensing material (RB-KCC-1) decorated with rhodamine-based receptor has been successfully synthesized, aiming to detect and remove Hg2+from aqueous media.
Collapse
Affiliation(s)
- Zebin Sun
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Dan Guo
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Li Zhang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Haizhen Li
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Bo Yang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shiqiang Yan
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
46
|
Park GJ, Na YJ, Jo HY, Lee SA, Kim AR, Noh I, Kim C. A single chemosensor for multiple analytes: fluorogenic detection of Zn2+ and OAc− ions in aqueous solution, and an application to bioimaging. NEW J CHEM 2014. [DOI: 10.1039/c4nj00191e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A single fluorescent chemosensor 1 for multiple analytes (Zn2+ and OAc−) has been developed and it can monitor Zn2+ ions in living cells.
Collapse
Affiliation(s)
- Gyeong Jin Park
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743, Korea
| | - Yu Jeong Na
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743, Korea
| | - Hyun Yong Jo
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743, Korea
| | - Seul Ah Lee
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743, Korea
| | - Ah Ram Kim
- Department of Chemical Engineering
- Seoul National University of Science & Technology
- Seoul 139-743, Korea
| | - Insup Noh
- Department of Chemical Engineering
- Seoul National University of Science & Technology
- Seoul 139-743, Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743, Korea
| |
Collapse
|