1
|
Adwani G, Bharti S, Kumar A. Engineered nanoparticles in non-invasive insulin delivery for precision therapeutics of diabetes. Int J Biol Macromol 2024; 275:133437. [PMID: 38944087 DOI: 10.1016/j.ijbiomac.2024.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus is a chronic disease leading to the death of millions a year across the world. Insulin is required for Type 1, Type 2, and gestational diabetic patients, however, there are various modes of insulin delivery out of which oral delivery is noninvasive and convenient. Moreover, factors like insulin degradation and poor intestinal absorption play a crucial role in its bioavailability and effectiveness. This review discusses various types of engineered nanoparticles used in-vitro, in-vivo, and ex-vivo insulin delivery along with their administration routes and physicochemical properties. Injectable insulin formulations, currently in use have certain limitations, leading to invasiveness, low patient compliance, causing inflammation, and side effects. Based on these drawbacks, this review emphasizes more on the non-invasive route, particularly oral delivery. The article is important because it focuses on how engineered nanoparticles can overcome the limitations of free therapeutics (drugs alone), navigate the barriers, and accomplish precision therapeutics in diabetes. In future, more drugs could be delivered with a similar strategy to cure various diseases and resolve challenges in drug delivery. This review significantly describes the role of various engineered nanoparticles in improving the bioavailability of insulin by protecting it from various barriers during non-invasive routes of delivery.
Collapse
Affiliation(s)
- Gunjan Adwani
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
2
|
Golkar N, Sarikhani Z, Aghaei R, Heidari R, Amini A, Gholami A. An oral nanoformulation of insulin: Development and characterization of human insulin loaded graphene oxide-sodium alginate-gold nanocomposite in an animal model. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
A step towards glucose control with a novel nanomagnetic-insulin for diabetes care. Int J Pharm 2021; 601:120587. [PMID: 33845153 DOI: 10.1016/j.ijpharm.2021.120587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Massive efforts have been devoted to insulin delivery for diabetes care. Achieving a long-term tight-regulated blood glucose level with a low risk of hypoglycemia remains a great challenge. In this study we propose a novel strategy to efficiently regulate insulin action after insulin is injected or released into patient body aiming to achieve better glycemic control, which is achieved by the administration of insulin-conjugated magnetic nanoparticles (MNPs-Ins). We show that the locomotion of MNPs-Ins can be controlled to reach a target site on an in vitro microfluidic platform, which may open a way to modulate the physiological effect of insulin in a remote-control manner. Most importantly, the in vivo blood glucose regulation of the MNPs-Ins was performed on diabetic mice to understand the glycemic control performance. The results showed that the MNPs-Ins can achieve a better glycemic control with longer effective drug duration while not causing hypoglycemia and a magnetic-modulated hypoglycemic dynamics. Moreover, the in vivo histochemistry experiments confirmed the good biocompatibility of MNPs-Ins. Along with our on-going research on the possibility of the recycle and reuse of the MNPs-Ins, the finding presented in this paper may manifest a fascinating potential in insulin delivery in the near future.
Collapse
|
4
|
Karki N, Tiwari H, Tewari C, Rana A, Pandey N, Basak S, Sahoo NG. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J Mater Chem B 2021; 8:8116-8148. [PMID: 32966535 DOI: 10.1039/d0tb01149e] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Graphene oxide (GO) has attracted tremendous attention as a most promising nanomaterial among the carbon family since it emerged as a polynomial functional tool with rational applications in diverse fields such as biomedical engineering, electrocatalysis, biosensing, energy conversion, and storage devices. Despite having certain limitations due to its irreversible aggregation performance owing largely to the strong van der Waals interactions, efforts have been made to smartly engineer its surface chemistry for realistic multimodal applications. The use of such GO-based engineered devices has increased rapidly in the last few years, principally due to its excellent properties, such as huge surface area, honeycomb-like structure allowing vacant interstitial space to accommodate compounds, sp2 hybridized carbon, improved biocompatibility and cell surface penetration due to electronic interactions. Amongst multifaceted GO dynamics, in this review, attempts are made to discuss the advanced applications of GO or graphene-based materials (GBNs) in the biomedical field involving drug or therapeutic gene delivery, dual drug or drug-gene combination targeting, special delivery of drug cocktails to the brain, stimuli-responsive release of molecular payloads, and Janus-structured smart applications for polar-nonpolar combination drug loading followed by targeting together with smart bioimaging approaches. In addition, the advantages of duel-drug delivery systems are discussed in detail. We also discuss various electronic mechanisms, and detailed surface engineering to meet microcosmic criteria for its utilization, various novel implementations of engineered GO as mentioned above, together with discussions of its inevitable toxicity or disadvantages. We hope that the target audience, belonging to biomedical engineering, pharmaceutical or material science fields, may acquire relevant information from this review which may help them design future studies in this field.
Collapse
Affiliation(s)
- Neha Karki
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Himani Tiwari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Chetna Tewari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Anita Rana
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Neema Pandey
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Souvik Basak
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal 713206, India
| | - Nanda Gopal Sahoo
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| |
Collapse
|
5
|
Zhang T, Tang JZ, Fei X, Li Y, Song Y, Qian Z, Peng Q. Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery? Acta Pharm Sin B 2021; 11:651-667. [PMID: 33777673 PMCID: PMC7982494 DOI: 10.1016/j.apsb.2020.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
Insulin therapy plays an essential role in the treatment of diabetes mellitus. However, frequent injections required to effectively control the glycemic levels lead to substantial inconvenience and low patient compliance. In order to improve insulin delivery, many efforts have been made, such as developing the nanoparticles (NPs)-based release systems and oral insulin. Although some improvements have been achieved, the ultimate results are still unsatisfying and none of insulin-loaded NPs systems have been approved for clinical use so far. Recently, nano‒protein interactions and protein corona formation have drawn much attention due to their negative influence on the in vivo fate of NPs systems. As the other side of a coin, such interactions can also be used for constructing advanced drug delivery systems. Herein, we aim to provide an insight into the advance and flaws of various NPs-based insulin delivery systems. Particularly, an interesting discussion on nano‒protein interactions and its potentials for developing novel insulin delivery systems is initiated. Insulin therapy plays essential roles in treating diabetes. Optimizing insulin delivery enhances insulin therapy. Nanoparticles are promising systems for delivery of insulin. Nano-protein interactions influence the delivery of nanoparticles. Nano-protein interactions can be used for advanced delivery of insulin.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - James Zhenggui Tang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, School of Pharmacy, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Xiaofan Fei
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Song
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author.
| |
Collapse
|
6
|
Bahman F, Greish K, Taurin S. Insulin nanoformulations for nonparenteral administration in diabetic patients. THEORY AND APPLICATIONS OF NONPARENTERAL NANOMEDICINES 2021:409-443. [DOI: 10.1016/b978-0-12-820466-5.00017-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Graphene Oxide–Based Nanocomposite for Sustained Release of Cephalexin. J Pharm Sci 2020; 109:1130-1135. [DOI: 10.1016/j.xphs.2019.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022]
|
8
|
Majorošová J, Schroer MA, Tomašovičová N, Batková M, Hu PS, Kubovčíková M, Svergun DI, Kopčanský P. Effect of the concentration of protein and nanoparticles on the structure of biohybrid nanocomposites. Biopolymers 2019; 111:e23342. [PMID: 31794056 DOI: 10.1002/bip.23342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
We present colloidal nanocomposites formed by incorporating magnetite Fe3 O4 nanoparticles (MNPs) with lysozyme amyloid fibrils (LAFs). Preparation of two types of solutions, with and without addition of salt, was carried out to elucidate the structure of MNPs-incorporated fibrillary nanocomposites and to study the effect of the presence of salt on the stability of the nanocomposites. The structural morphology of the LAFs and their interaction with MNPs were analyzed by atomic force microscopy and small-angle x-ray scattering measurements. The results indicate that conformational properties of the fibrils are dependent on the concentration of protein, and the precise ratio of the concentration of the protein and MNPs is crucially important for the stability of the fibrillary nanocomposites. Our results confirm that despite the change in fibrillary morphology induced by the varying concentration of the protein, the adsorption of MNPs on the surface of LAF is morphologically independent. Moreover, most importantly, the samples containing salt have excellent stability for up to 1 year of shelf-life.
Collapse
Affiliation(s)
- Jozefína Majorošová
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Martin A Schroer
- European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Hamburg, Germany
| | | | - Marianna Batková
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Po-Sheng Hu
- Institute of Photonic System, National Chiao Tung University, Tainan City, Taiwan
| | - Martina Kubovčíková
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Hamburg, Germany
| | - Peter Kopčanský
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
9
|
Exploring Light-Sensitive Nanocarriers for Simultaneous Triggered Antibiotic Release and Disruption of Biofilms Upon Generation of Laser-Induced Vapor Nanobubbles. Pharmaceutics 2019; 11:pharmaceutics11050201. [PMID: 31052369 PMCID: PMC6571820 DOI: 10.3390/pharmaceutics11050201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Impaired penetration of antibiotics through bacterial biofilms is one of the reasons for failure of antimicrobial therapy. Hindered drug diffusion is caused on the one hand by interactions with the sticky biofilm matrix and on the other hand by the fact that bacterial cells are organized in densely packed clusters of cells. Binding interactions with the biofilm matrix can be avoided by encapsulating the antibiotics into nanocarriers, while interfering with the integrity of the dense cell clusters can enhance drug transport deep into the biofilm. Vapor nanobubbles (VNB), generated from laser irradiated nanoparticles, are a recently reported effective way to loosen up the biofilm structure in order to enhance drug transport and efficacy. In the present study, we explored if the disruptive force of VNB can be used simultaneously to interfere with the biofilm structure and trigger antibiotic release from light-responsive nanocarriers. The antibiotic tobramycin was incorporated in two types of light-responsive nanocarriers-liposomes functionalized with gold nanoparticles (Lip-AuNP) and graphene quantum dots (GQD)-and their efficacy was evaluated on Pseudomonas aeruginosa biofilms. Even though the anti-biofilm efficacy of tobramycin was improved by liposomal encapsulation, electrostatic functionalization with 70 nm AuNP unfortunately resulted in premature leakage of tobramycin in a matter of hours. Laser-irradiation consequently did not further improve P. aeruginosa biofilm eradication. Adsorption of tobramycin to GQD, on the other hand, did result in a stable formulation with high encapsulation efficiency, without burst release of tobramycin from the nanocarriers. However, even though laser-induced VNB formation from GQD resulted in biofilm disruption, an enhanced anti-biofilm effect was not achieved due to tobramycin not being efficiently released from GQD. Even though this study was unsuccessful in designing suitable nanocarriers for simultaneous biofilm disruption and light-triggered release of tobramycin, it provides insights into the difficulties and challenges that need to be considered for future developments in this regard.
Collapse
|
10
|
Magnetic reduced graphene oxide loaded hydrogels: Highly versatile and efficient adsorbents for dyes and selective Cr(VI) ions removal. J Colloid Interface Sci 2017; 507:360-369. [DOI: 10.1016/j.jcis.2017.07.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023]
|
11
|
Muazim K, Hussain Z. Graphene oxide — A platform towards theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1274-1288. [DOI: 10.1016/j.msec.2017.02.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 11/24/2022]
|
12
|
Photothermally triggered on-demand insulin release from reduced graphene oxide modified hydrogels. J Control Release 2017; 246:164-173. [DOI: 10.1016/j.jconrel.2016.10.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 11/22/2022]
|
13
|
Teodorescu F, Quéniat G, Foulon C, Lecoeur M, Barras A, Boulahneche S, Medjram MS, Hubert T, Abderrahmani A, Boukherroub R, Szunerits S. Transdermal skin patch based on reduced graphene oxide: A new approach for photothermal triggered permeation of ondansetron across porcine skin. J Control Release 2017; 245:137-146. [DOI: 10.1016/j.jconrel.2016.11.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/23/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
|
14
|
Ben Ali M, Yolcu HH, Elhouichet H, Sieber B, Addad A, Boussekey L, Moreau M, Férid M, Szunerits S, Boukherroub R. Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation. J Colloid Interface Sci 2016; 473:66-74. [DOI: 10.1016/j.jcis.2016.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 11/16/2022]
|
15
|
Pardo A, Pujales R, Blanco M, Villar-Alvarez EM, Barbosa S, Taboada P, Mosquera V. Analysis of the influence of synthetic paramaters on the structure and physico-chemical properties of non-spherical iron oxide nanocrystals and their biological stability and compatibility. Dalton Trans 2016; 45:797-810. [DOI: 10.1039/c5dt03923a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monodisperse non-spherical magnetic IONCs obtained by simple methods display excellent magnetic properties with high potential for theranostic applications.
Collapse
Affiliation(s)
- Alberto Pardo
- Grupo de Física de Coloides y Polímeros
- Departamento de Física de la Materia Condensada
- 15782-Santiago de Compostela
- Spain
| | - Rosa Pujales
- Grupo de Física de Coloides y Polímeros
- Departamento de Física de la Materia Condensada
- 15782-Santiago de Compostela
- Spain
| | - Mateo Blanco
- Grupo de Física de Coloides y Polímeros
- Departamento de Física de la Materia Condensada
- 15782-Santiago de Compostela
- Spain
| | - Eva M. Villar-Alvarez
- Grupo de Física de Coloides y Polímeros
- Departamento de Física de la Materia Condensada
- 15782-Santiago de Compostela
- Spain
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros
- Departamento de Física de la Materia Condensada
- 15782-Santiago de Compostela
- Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros
- Departamento de Física de la Materia Condensada
- 15782-Santiago de Compostela
- Spain
| | - Víctor Mosquera
- Grupo de Física de Coloides y Polímeros
- Departamento de Física de la Materia Condensada
- 15782-Santiago de Compostela
- Spain
| |
Collapse
|
16
|
Modugno G, Ménard-Moyon C, Prato M, Bianco A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol 2015; 172:975-91. [PMID: 25323135 PMCID: PMC4314189 DOI: 10.1111/bph.12984] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023] Open
Abstract
Among targeted delivery systems, platforms with nanosize dimensions, such as carbon nanomaterials (CNMs) and metal nanoparticles (NPs), have shown great potential in biomedical applications. They have received considerable interest in recent years, especially with respect to their potential utilization in the field of cancer diagnosis and therapy. The many functions of nanomaterials provide opportunities to use them as multimodal agents for theranostics, a combination of therapy and diagnosis. Carbon nanotubes and graphene are some of the most widely used CNMs because of their unique structural and physicochemical properties. Their high specific surface area allows for efficient drug loading and the possibility of functionalization with various bioactive molecules. In addition, CNMs are ideal platforms for the attachment of NPs. In the biomedical field, NPs have also shown tremendous potential for use in drug delivery, non-invasive tumour imaging and early detection due to their optical and magnetic properties. NP/CNM hybrids not only combine the unique properties of the NPs and CNMs but they also exhibit new properties arising from interactions between the two entities. In this review, the preparation of CNMs conjugated to different types of metal NPs and their applications in diagnosis, imaging, therapy and theranostics are presented.
Collapse
Affiliation(s)
- Gloria Modugno
- Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, CNRSStrasbourg, France
| | - Cécilia Ménard-Moyon
- Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, CNRSStrasbourg, France
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di TriesteTrieste, Italy
| | - Alberto Bianco
- Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, CNRSStrasbourg, France
| |
Collapse
|
17
|
Teodorescu F, Rolland L, Ramarao V, Abderrahmani A, Mandler D, Boukherroub R, Szunerits S. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode. Chem Commun (Camb) 2015; 51:14167-70. [DOI: 10.1039/c5cc05539c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An electrochemical insulin-delivery system based on reduced graphene oxide impregnated with insulin is described.
Collapse
Affiliation(s)
- Florina Teodorescu
- Institute d’Electronique
- de Microélectronique et de Nanotechnologie (IEMN, UMR CNRS 8520)
- Université Lille 1
- 59652 Villeneuve d’Ascq
- France
| | - Laure Rolland
- Univ. Lille
- CNRS
- CHU Lille
- Institut Pasteur de Lille
- European Genomic Institute of Diabetes (EGID) FR 3508
| | - Viswanatha Ramarao
- Institute d’Electronique
- de Microélectronique et de Nanotechnologie (IEMN, UMR CNRS 8520)
- Université Lille 1
- 59652 Villeneuve d’Ascq
- France
| | - Amar Abderrahmani
- Univ. Lille
- CNRS
- CHU Lille
- Institut Pasteur de Lille
- European Genomic Institute of Diabetes (EGID) FR 3508
| | - Daniel Mandler
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| | - Rabah Boukherroub
- Institute d’Electronique
- de Microélectronique et de Nanotechnologie (IEMN, UMR CNRS 8520)
- Université Lille 1
- 59652 Villeneuve d’Ascq
- France
| | - Sabine Szunerits
- Institute d’Electronique
- de Microélectronique et de Nanotechnologie (IEMN, UMR CNRS 8520)
- Université Lille 1
- 59652 Villeneuve d’Ascq
- France
| |
Collapse
|
18
|
Anju M, Renuka NK. A novel template free synthetic strategy to graphene–iron oxide nanotube hybrid. RSC Adv 2015. [DOI: 10.1039/c5ra16954b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A magnetically separable graphene–iron oxide nanotube composite was synthesised for the first time via an adept template free hydrothermal route.
Collapse
Affiliation(s)
- M. Anju
- Department of Chemistry
- University of Calicut
- India
| | - N. K. Renuka
- Department of Chemistry
- University of Calicut
- India
| |
Collapse
|
19
|
Mudassir J, Darwis Y, Khiang PK. Prerequisite Characteristics of Nanocarriers Favoring Oral Insulin Delivery: Nanogels as an Opportunity. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.921919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Cui Y, Zhou D, Sui Z, Han B. Sonochemical Synthesis of Graphene Oxide-Wrapped Gold Nanoparticles Hybrid Materials: Visible Light Photocatalytic Activity. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400309] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Kwan K, Cranford SW. ‘Unsticking’ and exposing the surface area of graphene bilayers via randomly distributed nanoparticles. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chaudhari NS, Pandey AP, Patil PO, Tekade AR, Bari SB, Deshmukh PK. Graphene oxide based magnetic nanocomposites for efficient treatment of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:278-85. [DOI: 10.1016/j.msec.2014.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/05/2013] [Accepted: 01/05/2014] [Indexed: 11/15/2022]
|
23
|
Deepachitra R, Ramnath V, Sastry TP. Graphene oxide incorporated collagen–fibrin biofilm as a wound dressing material. RSC Adv 2014. [DOI: 10.1039/c4ra10150b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
GO was incorporated in the collagen and fibrin composite film (CFGO), these films were used as wound dressing material on the experimental wounds of rats and the efficacy of CFGO was studied using conventional methods (schematic illustration).
Collapse
Affiliation(s)
- R. Deepachitra
- Bio-Products Laboratory
- Central Leather Research Institute
- Chennai 600020, India
| | - V. Ramnath
- Bio-Products Laboratory
- Central Leather Research Institute
- Chennai 600020, India
| | - T. P. Sastry
- Bio-Products Laboratory
- Central Leather Research Institute
- Chennai 600020, India
| |
Collapse
|