1
|
Chatterjee P, Mishra R, Chawla S, Sonkar AK, De AK, Patra AK. Dual Photoreactive Ternary Ruthenium(II) Terpyridyl Complexes: A Comparative Study on Visible-Light-Induced Single-Step Dissociation of Bidentate Ligands and Generation of Singlet Oxygen. Inorg Chem 2024; 63:14998-15015. [PMID: 39092885 DOI: 10.1021/acs.inorgchem.4c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The versatile and tunable ligand-exchange dynamics in ruthenium(II)-polypyridyl complexes imposed by the modulation of the steric and electronic effects of the coordinated ligands provide an unlimited scope for developing phototherapeutic agents. The photorelease of a bidentate ligand from the Ru-center is better suited for potent Ru(II)-based photocytotoxic agents with two available labile sites for cross-linking with biological targets augmented with possible phototriggered 1O2 generation. Herein, we introduced a phenyl-terpyridine (ptpy) ligand in the octahedral Ru(II) core of [Ru(ptpy)(L-L)Cl]+ to induce structural distortion for the possible photorelease of electronically distinct bidentate ligands (L-L). For a systematic study, we designed four Ru(II) polypyridyl complexes: [Ru(ptpy)(L-L)Cl](PF6), ([1]-[4]), where L-L = 1,2-bis(phenylthio)ethane (SPH) [1], N,N,N',N'-tetramethylethylenediamine (TMEN) [2], N1,N2-diphenylethane-1,2-diimine (BPEDI) [3], and bis[2-(diphenylphosphino)phenyl]ether (DPE-Phos) [4]. The detailed photochemical studies suggest a single-step dissociation of L-L from the bis-thioether (SPH) complex [1] and diamine (TMEN) complex [2], while no photosubstitution was observed for [3] and [4]. Complex [1] and [2] demonstrated a dual role, involving both photosubstitution and 1O2 generation, while [3] and [4] solely exhibited poor to moderate 1O2 production. The interplay of excited states leading to these behaviors was rationalized from the lifetimes of the 3MLCT excited states by using transient absorption spectroscopy, suggesting intricate relaxation dynamics and 1O2 generation upon excitation. Therefore, the photolabile complexes [1] and [2] could potentially act as dual photoreactive agents via the phototriggered release of L-L (PACT) and/or 1O2-mediated PDT mechanisms, while [4] primarily can be utilized as a PDT agent.
Collapse
Affiliation(s)
- Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Avinash Kumar Sonkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
2
|
Geppert M, Jellinek K, Linseis M, Bodensteiner M, Geppert J, Unterlass MM, Winter RF. Dual Fluorescence and Phosphorescence Emissions from Dye-Modified ( NCN)-Bismuth Pincer Thiolate Complexes. Inorg Chem 2024; 63:14876-14888. [PMID: 39078292 PMCID: PMC11323247 DOI: 10.1021/acs.inorgchem.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the synthesis, characterization, and photophysical properties of four new dye-modified (NCN)Bi pincer complexes with two mercaptocoumarin or mercaptopyrene ligands. Their photophysical properties were probed by UV/vis spectroscopy, photoluminescence (PL) studies, and time-dependent density functional theory (TD-DFT) calculations. Absorption spectra of the complexes are dominated by mixed pyrene or coumarin π → π*/n(pS) → pyrene or coumarin π* transitions. While unstable toward reductive elimination of the corresponding disulfide under irradiation at room temperature, the complexes provide stable emissions at 77 K. Under these conditions, coumarin complexes 2 and 4 exhibit exclusively green phosphorescence at 508 nm. In contrast, the emissive properties of pyrene complexes 1 and 3 depend on the excitation wavelength and on sample concentration. Irradiation into the lowest-energy absorption band exclusively triggers red phosphorescence from the pyrenyl residues at 640 nm. At concentrations c < 1 μM, excitation into higher excited electronic states results in blue pyrene fluorescence. With increasing c (1-100 μM), the emission profile changes to dual fluorescence and phosphorescence emission, with a steady increase of the phosphorescence intensity, until at c ≥ 1 mM only red phosphorescence ensues. Progressive red-shifts and broadening of steady-state excitation spectra with increasing sample concentration suggest the presence of static excimers, as we observe it for concentrated solutions of pyrene. Crystalline and powdered samples of 1 indeed show intermolecular association through π-stacking. TD-DFT calculations on model dimers and a tetramer of 1 support the idea of aggregation-induced intersystem crossing (AI-ISC) as the underlying reason for this behavior.
Collapse
Affiliation(s)
- Marcel Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Kai Jellinek
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Jessica Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Kubota K, Endo T, Ito H. Solid-state mechanochemistry for the rapid and efficient synthesis of tris-cyclometalated iridium(iii) complexes. Chem Sci 2024; 15:3365-3371. [PMID: 38425515 PMCID: PMC10901499 DOI: 10.1039/d3sc05796h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Tris-cyclometalated iridium(iii) complexes have received widespread attention as attractive prospective materials for e.g., organic light-emitting diodes (OLEDs), photoredox catalysts, and bioimaging probes. However, their preparation usually requires prolonged reaction times, significant amounts of high-boiling solvents, multistep synthesis, and inert-gas-line techniques. Unfortunately, these requirements represent major drawbacks from both a production-cost and an environmental perspective. Herein, we show that a two-step mechanochemical protocol using ball milling enables the rapid and efficient synthesis of various tris-cyclometalated iridium(iii) complexes from relatively cheap iridium(iii) chloride hydrate without the use of significant amounts of organic solvent in air. Notably, a direct one-pot procedure is also demonstrated. The present solid-state approach can be expected to inspire the development of cost-effective and timely production methods for these valuable iridium-based complexes, as well as the discovery of new phosphorescent materials, sensors, and catalysts.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Tsubura Endo
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
4
|
Sahu G, Patra SA, Pattanayak PD, Dinda R. Recent advancements of fluorescent tin(IV) complexes in biomedical molecular imaging. Chem Commun (Camb) 2023; 59:10188-10204. [PMID: 37551645 DOI: 10.1039/d3cc01953e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
In the last few years, tin(IV) complexes have emerged as very attractive candidates in the field of molecular imaging due to their unique photophysical properties. Despite the few reviews published to date covering the chemistry of organotin and tin complexes and their cytotoxic potential, there are no reviews devoted to their live cell imaging properties. Therefore, this feature article summarizes the discussion of the fundamental photophysical properties of fluorescent tin metal complexes focusing on their recent advances in "biomedical molecular imaging". A debate on the design of tin complexes as cellular imaging agents relating to their chemical, electronic and photophysical properties is enclosed. This paper also discusses the imaging applications of tin complexes in cells, tissues, and organisms via confocal and multiphoton imaging for sensing mechanisms in cellular media, bioimaging, and therapeutic labeling. In addition, it explores and explains the current challenges and prospects associated with these tin complexes as emerging luminescent cellular agents for potential clinical use.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India.
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India.
| | | | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India.
| |
Collapse
|
5
|
Tsakaraki D, Andreopoulou AK, Bokias G. pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:927. [PMID: 35335741 PMCID: PMC8951343 DOI: 10.3390/nano12060927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
The synthesis and characterization of water-soluble copolymers containing N,N-dimethylacrylamide (DMAM) and a vinylic monomer containing an Iridium(III), Ir(III), complex substituted with the quinoline-based unit 2-(pyridin-2-ylo)-6-styrene-4-phenylquinoline (VQPy) as ligand are reported. These copolymers were prepared through pre- or post-polymerization complexation of Ir(III) with the VQPy units. The first methodology led to copolymer P1 having fully complexed VQPy units, whereas the latter methodology allowed the preparation of terpolymers containing free and Ir(III)-complexed VQPy units (copolymer P2). The optical properties of the copolymers were studied in detail through UV-Vis and photoluminescence spectroscopy in aqueous solution. It is shown that the metal-to-ligand charge transfer (ΜLCT) emission is prevailing in the case of P1, regardless of pH. In contrast, in the case of terpolymer P2 the MLCT emission of the Ir(III) complex is combined with the pH-responsive emission of free VQPy units, leading to characteristic pH-responsive color changes under UV illumination in the acidic pH region.
Collapse
Affiliation(s)
- Dafnianna Tsakaraki
- Department of Chemistry, University of Patras, GR 26504 Patras, Greece; (D.T.); (A.K.A.)
| | - Aikaterini K. Andreopoulou
- Department of Chemistry, University of Patras, GR 26504 Patras, Greece; (D.T.); (A.K.A.)
- FORTH/ICE-HT, Stadiou Street, P.O. Box 1414, GR 26504 Rio-Patras, Greece
| | - Georgios Bokias
- Department of Chemistry, University of Patras, GR 26504 Patras, Greece; (D.T.); (A.K.A.)
- FORTH/ICE-HT, Stadiou Street, P.O. Box 1414, GR 26504 Rio-Patras, Greece
| |
Collapse
|
6
|
Wang C, Kitzmann WR, Weigert F, Förster C, Wang X, Heinze K, Resch-Genger U. Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cui Wang
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics Richard-Willstaetter-Str. 11 12489 Berlin GERMANY
| | - Winald R. Kitzmann
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Florian Weigert
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics GERMANY
| | - Christoph Förster
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Xifan Wang
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics GERMANY
| | - Katja Heinze
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM) Analytische Chemie und Referenzmaterialien Richard-Willstaetter-Str. 11 12489 Berlin GERMANY
| |
Collapse
|
7
|
Gourlaouen C, Schweitzer B, Daniel C. Are luminescent Ru 2+ chelated complexes selective coordinative sensors for the detection of heavy cations? Phys Chem Chem Phys 2022; 24:2309-2317. [PMID: 35015003 DOI: 10.1039/d1cp04442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of [Ru(bpy)2(bpym)]2+ (bpy = 2,2'-bipyridine; bpym = 2,2'-bipyrimidine) to probe specifically heavy cations has been investigated by means of density functional theory for transition metals, group 12 elements and Pb2+. On the basis of the calculated Gibbs free energies of complexation in water it is shown that all reactions are favorable with negative enthalpies except for Hg2+, with the transition metal cations forming stable bi-metallic complexes by coordination to the bpym ligand. Comparison between the optical and photophysical properties of the Ru2+ probe and those of the coordination compounds does not demonstrate a high selectivity due to very similar characteristics of the absorption and emission spectra. Whereas by complexation the lowest metal-to-ligand-charge-transfer (MLCT) shoulder of [Ru(bpy)2(bpym)]2+ at 462 nm is more or less shifted to the red as a function of the cation, the second MLCT band at 415 nm, less sensitive to the complexation, gains in intensity and is slightly blue-shifted. The visible MLCT emission of [Ru(bpy)2(bpym)]2+ at 706 nm is altered by complexation leading to near IR (800-900 nm) emission in most of the coordination compounds. Complexation to some transition metal cations (Fe, Co, Rh and Pd) generates low-lying metal-centered (MC) excited states that quench luminescence. In contrast to the conclusion of experimental findings by Kumar et al. (Chem. Commun. 2014, 50, 8488-8490), [Ru(bpy)2(bpym)]2+ cannot be proposed as a fast and selective probe for monitoring Pd2+ in aqueous media. Indeed, it does not possess the optical and photophysical characteristics necessary to discriminate Pd2+ ions over a variety of other cations.
Collapse
Affiliation(s)
- Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| | - Benjamin Schweitzer
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| |
Collapse
|
8
|
Lara R, Millán G, Moreno MT, Lalinde E, Alfaro‐Arnedo E, López IP, Larráyoz IM, Pichel JG. Investigation on Optical and Biological Properties of 2-(4-Dimethylaminophenyl)benzothiazole Based Cycloplatinated Complexes. Chemistry 2021; 27:15757-15772. [PMID: 34379830 PMCID: PMC9293083 DOI: 10.1002/chem.202102737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/08/2022]
Abstract
The optical and biological properties of 2-(4-dimethylaminophenyl)benzothiazole cycloplatinated complexes featuring bioactive ligands ([{Pt(Me2 N-pbt)(C6 F5 )}L] [L=Me2 N-pbtH 1, p-dpbH (4-(diphenylphosphino)benzoic acid) 2, o-dpbH (2-(diphenylphosphino)benzoic acid) 3), [Pt(Me2 N-pbt)(o-dpb)] 4, [{Pt(Me2 N-pbt)(C6 F5 )}2 (μ-PRn P)] [PR4 P=O(CH2 CH2 OC(O)C6 H4 PPh2 )2 5, PR12 P=O{(CH2 CH2 O)3 C(O)C6 H4 PPh2 }2 6] are presented. Complexes 1-6 display 1 ILCT and metal-perturbed 3 ILCT dual emissions. The ratio between both bands is excitation dependent, accomplishing warm-white emissions for 2, 5 and 6. The phosphorescent emission is lost in aerated solutions owing to photoinduced electron transfer to 3 O2 and the formation of 1 O2 , as confirmed in complexes 2 and 4. They also exhibit photoinduced phosphorescence enhancement in non-degassed DMSO due to local oxidation of DMSO by sensitized 1 O2 , which causes a local degassing. Me2 N-pbtH and the complexes specifically accumulate in the Golgi apparatus, although only 2, 3 and 6 were active against A549 and HeLa cancer cell lines, 6 being highly selective in respect to nontumoral cells. The potential photodynamic property of these complexes was demonstrated with complex 4.
Collapse
Affiliation(s)
- Rebeca Lara
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Gonzalo Millán
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elvira Alfaro‐Arnedo
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Icíar P. López
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - José G. Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES)ISCIII Av. Monforte de Lemos, 3-5. Pab. 11.28029 MadridSpain
| |
Collapse
|
9
|
Artem'ev AV, Petyuk MY, Berezin AS, Gushchin AL, Sokolov MN, Bagryanskaya IY. Synthesis and study of Re(I) tricarbonyl complexes based on octachloro-1,10-phenanthroline: Towards deep red-to-NIR emitters. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Schindler K, Zobi F. Photochemistry of Rhenium(i) Diimine Tricarbonyl Complexes in Biological Applications. Chimia (Aarau) 2021; 75:837-844. [PMID: 34728010 DOI: 10.2533/chimia.2021.837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Luminescent rhenium complexes continue to be the focus of growing scientific interest for catalytic, diagnostic and therapeutic applications, with emphasis on the development of their photophysical and photochemical properties. In this short review, we explore such properties with a focus on the biological applications of the molecules. We discuss the importance of the ligand choice to the contribution and their involvement towards the most significant electronic transitions of the metal species and what strategies are used to exploit the potential of the molecules in medicinal applications. We begin by detailing the photophysics of the molecules; we then describe the three most common photoreactions of rhenium complexes as photosensitizers in H₂ production, photocatalysts in CO₂ reduction and photochemical ligand substitution. In the last part, we describe their applications as luminescent cellular probes and how photochemical ligand substitution is utilized in the development of photoactive carbon monoxide-releasing molecules as anticancer and antimicrobial agents.
Collapse
Affiliation(s)
- Kevin Schindler
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland;,
| |
Collapse
|
11
|
Palma E, Carvalho J, Cruz C, Paulo A. Metal-Based G-Quadruplex Binders for Cancer Theranostics. Pharmaceuticals (Basel) 2021; 14:605. [PMID: 34201682 PMCID: PMC8308583 DOI: 10.3390/ph14070605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of fluorescent small molecules, such as metal complexes, to selectively recognize G-quadruplex (G4) structures has opened a route to develop new probes for the visualization of these DNA structures in cells. The main goal of this review is to update the most recent research efforts towards the development of novel cancer theranostic agents using this type of metal-based probes that specifically recognize G4 structures. This encompassed a comprehensive overview of the most significant progress in the field, namely based on complexes with Cu, Pt, and Ru that are among the most studied metals to obtain this class of molecules. It is also discussed the potential interest of obtaining G4-binders with medical radiometals (e.g., 99mTc, 111In, 64Cu, 195mPt) suitable for diagnostic and/or therapeutic applications within nuclear medicine modalities, in order to enable their theranostic potential.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
12
|
Daga P, Manna P, Majee P, Singha DK, Hui S, Ghosh AK, Mahata P, Mondal SK. Response of a Zn(II)-based metal-organic coordination polymer towards trivalent metal ions (Al 3+, Fe 3+ and Cr 3+) probed by spectroscopic methods. Dalton Trans 2021; 50:7388-7399. [PMID: 33969864 DOI: 10.1039/d1dt00729g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new zinc-based two-dimensional coordination polymer, [Zn(5-AIP)(Ald-4)]·H2O (5-AIP = 5-amino isophthalate, Ald-4 = aldrithiol-4), 1, has been synthesized at room temperature by the layer diffusion technique. Single-crystal X-ray diffraction analysis of 1 showed a two-dimensional bilayer structure. An aqueous suspension of 1 upon excitation at 300 nm displayed an intense blue emission at 403 nm. The luminescence spectra were interestingly responsive and selective to Al3+, Cr3+ and Fe3+ ions even in the presence of other interfering ions. The calculated detection limits for Al3+, Cr3+ and Fe3+ were 0.35 μM ([triple bond, length as m-dash]8.43 ppb), 0.46 μM ([triple bond, length as m-dash]22.6 ppb) and 0.30 μM ([triple bond, length as m-dash]15.85 ppb), respectively. Notably, with the cumulative addition of Al3+ ions, the luminescence intensity at 403 nm decreased steadily with a gradual red shift up to 427 nm. Afterward, this red shifted peak showed a turn-on effect upon further addition of Al3+ ions. On the other hand, for Cr3+ and Fe3+ ions, there was only drastic luminescence quenching and a large red shift up to 434 nm. This indicated the formation of a complex between 1 and these metal ions, which was also supported by the UV-Visible absorption spectra of 1 that showed the appearance of a new band at 280 nm in the presence of these three metal ions. The FTIR spectra revealed that these ions interacted with the carboxylate oxygen atom of 5-AIP and the nitrogen atom of the Ald-4 ligand in the structure. The luminescence lifetime decay analysis manifested that a charge-transfer type complex was formed between 1 and Cr3+ and Fe3+ ions that resulted in huge luminescence quenching due to the efficient charge transfer involving the vacant d-orbitals, whereas for Al3+ ions having no vacant d-orbital, turn-on of luminescence occurred because of the increased rigidity of 1 upon complexation.
Collapse
Affiliation(s)
- Pooja Daga
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | - Priyanka Manna
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Prakash Majee
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | - Debal Kanti Singha
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India. and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Sayani Hui
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Ananta Kumar Ghosh
- Department of Chemistry, Burdwan Raj College, Burdwan, Burdwan-713104, West Bengal, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Sudip Kumar Mondal
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| |
Collapse
|
13
|
Moitra T, Karak P, Chakraborty S, Ruud K, Chakrabarti S. Behind the scenes of spin-forbidden decay pathways in transition metal complexes. Phys Chem Chem Phys 2021; 23:59-81. [PMID: 33319894 DOI: 10.1039/d0cp05108j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The interpretation of the ultrafast photophysics of transition metal complexes following photo-absorption is quite involved as the heavy metal center leads to a complicated and entangled singlet-triplet manifold. This opens up multiple pathways for deactivation, often with competitive rates. As a result, intersystem crossing (ISC) and phosphorescence are commonly observed in transition metal complexes. A detailed understanding of such an excited-state structure and dynamics calls for state-of-the-art experimental and theoretical methodologies. In this review, we delve into the inability of non-relativistic quantum theory to describe spin-forbidden transitions, which can be overcome by taking into account spin-orbit coupling, whose importance grows with increasing atomic number. We present the quantum chemical theory of phosphorescence and ISC together with illustrative examples. Finally, a few applications are highlighted, bridging the gap between theoretical studies and experimental applications, such as photofunctional materials.
Collapse
Affiliation(s)
- Torsha Moitra
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
14
|
Xu GX, Mak ECL, Lo KKW. Photofunctional transition metal complexes as cellular probes, bioimaging reagents and phototherapeutics. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00931a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This critical review summarises the recent biological applications of transition metal complexes as cellular probes, bioimaging reagents and phototherapeutics.
Collapse
Affiliation(s)
- Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Eunice Chiu-Lam Mak
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- Centre of Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|
15
|
Schneider KRA, Chettri A, Cole HD, Reglinski K, Brückmann J, Roque JA, Stumper A, Nauroozi D, Schmid S, Lagerholm CB, Rau S, Bäuerle P, Eggeling C, Cameron CG, McFarland SA, Dietzek B. Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand. Chemistry 2020; 26:14844-14851. [PMID: 32761643 PMCID: PMC7704931 DOI: 10.1002/chem.202002667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Indexed: 12/27/2022]
Abstract
This contribution describes the excited-state properties of an Osmium-complex when taken up into human cells. The complex 1 [Os(bpy)2 (IP-4T)](PF6 )2 with bpy=2,2'-bipyridine and IP-4T=2-{5'-[3',4'-diethyl-(2,2'-bithien-5-yl)]-3,4-diethyl-2,2'-bithiophene}imidazo[4,5-f][1,10]phenanthroline) can be discussed as a candidate for photodynamic therapy in the biological red/NIR window. The complex is taken up by MCF7 cells and localizes rather homogeneously within in the cytoplasm. To detail the sub-ns photophysics of 1, comparative transient absorption measurements were carried out in different solvents to derive a model of the photoinduced processes. Key to rationalize the excited-state relaxation is a long-lived 3 ILCT state associated with the oligothiophene chain. This model was then tested with the complex internalized into MCF7 cells, since the intracellular environment has long been suspected to take big influence on the excited state properties. In our study of 1 in cells, we were able to show that, though the overall model remained the same, the excited-state dynamics are affected strongly by the intracellular environment. Our study represents the first in depth correlation towards ex-vivo and in vivo ultrafast spectroscopy for a possible photodrug.
Collapse
Affiliation(s)
- Kilian R. A. Schneider
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller-University JenaHelmholtzweg 407743JenaGermany
| | - Avinash Chettri
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller-University JenaHelmholtzweg 407743JenaGermany
| | - Houston D. Cole
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTX76019-0065USA
| | - Katharina Reglinski
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Applied Optic and BiophysicsFriedrich-Schiller University JenaMax-Wien-Platz 107743JenaGermany
- University Hospital JenaBachstraße 1807743JenaGermany
| | - Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - John A. Roque
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTX76019-0065USA
- Department of Chemistry and BiochemistryThe University of North Carolina at GreensboroGreensboroNorth Carolina27402USA
| | - Anne Stumper
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sylvia Schmid
- Institute of Organic Chemistry II and Advanced MaterialsUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | | | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced MaterialsUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christian Eggeling
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Applied Optic and BiophysicsFriedrich-Schiller University JenaMax-Wien-Platz 107743JenaGermany
- <MRC Human Immunology Unit & Wolfson Imaging Center OxfordHeadley WayOxfordOX3 9DSUK
| | - Colin G. Cameron
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTX76019-0065USA
| | - Sherri A. McFarland
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTX76019-0065USA
| | - Benjamin Dietzek
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller-University JenaHelmholtzweg 407743JenaGermany
| |
Collapse
|
16
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
17
|
Baschieri A, Sambri L, Mazzanti A, Carlone A, Monti F, Armaroli N. Iridium(III) Complexes with Fluorinated Phenyl-tetrazoles as Cyclometalating Ligands: Enhanced Excited-State Energy and Blue Emission. Inorg Chem 2020; 59:16238-16250. [DOI: 10.1021/acs.inorgchem.0c01995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Baschieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, L’Aquila 67100, Italy
| | - Letizia Sambri
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Andrea Mazzanti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Armando Carlone
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, L’Aquila 67100, Italy
| | - Filippo Monti
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, Bologna 40129, Italy
| | - Nicola Armaroli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, Bologna 40129, Italy
| |
Collapse
|
18
|
Pandey R, Kumar A, Xu Q, Pandey DS. Zinc(ii), copper(ii) and cadmium(ii) complexes as fluorescent chemosensors for cations. Dalton Trans 2020; 49:542-568. [PMID: 31894793 DOI: 10.1039/c9dt03017d] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence chemosensing behavior of Zn(ii), Cu(ii), and Cd(ii) based complexes toward cations has been described. Cation detection via conventional mechanisms, metal-metal exchange and chemodosimetric approaches along with the importance of metal ions and the scope, significance, and challenges with regard to the detection of cations by metal complex based probes will be discussed in detail. The fundamentals of photophysical behavior and mechanisms involved in the fluorescence detection of analytes will also be described. This article provides a detailed overview of Zn(ii), Cu(ii), and Cd(ii) based complexes as fluorescent probes for cations, together with essential discussions pertaining to detection mechanisms.
Collapse
Affiliation(s)
- Rampal Pandey
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Garhwal 246174, India
| | | | | | | |
Collapse
|
19
|
Masai H, Yokoyama T, Miyagishi HV, Liu M, Tachibana Y, Fujihara T, Tsuji Y, Terao J. Insulated conjugated bimetallopolymer with sigmoidal response by dual self-controlling system as a biomimetic material. Nat Commun 2020; 11:408. [PMID: 31964865 PMCID: PMC6972936 DOI: 10.1038/s41467-019-14271-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Biological systems are known to spontaneously adjust the functioning of neurotransmitters, ion channels, and the immune system, being promoted or regulated through allosteric effects or inhibitors, affording non-linear responses to external stimuli. Here we report that an insulated conjugated bimetallopolymer, in which Ru(II) and Pt(II) complexes are mutually connected with insulated conjugations, exhibits phosphorescence in response to CO gas. The net profile corresponds to a sigmoidal response with a dual self-controlling system, where drastic changes were exhibited at two threshold concentrations. The first threshold for activation of the system is triggered by the depolymerization of the non-radiative conjugated polymer to luminescent monomers, while the second one for regulation is triggered by the switch in the rate-determining step of the Ru complex. Such a molecular design with cooperative multiple transition metals would provide routes for the development of higher-ordered artificial molecular systems bearing bioinspired responses with autonomous modulation.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Takuya Yokoyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hiromichi V Miyagishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Maning Liu
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yasuhiro Tachibana
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yasushi Tsuji
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
| |
Collapse
|
20
|
Singh MP, Baruah JB. Photophysical properties of Ag, Zn and Cd - N-(4-pyridylmethyl)-1,8-naphthalimide complexes: influences of π-stacking and C–H⋯O interactions. CrystEngComm 2020. [DOI: 10.1039/d0ce00555j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In solution ligand and complexes show similiar fluorescence emission whereas emission in solid samples are distinguishable.
Collapse
Affiliation(s)
- Munendra Pal Singh
- Department of Chemistry
- Indian Institute of Technology
- Guwahati 781039
- India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology
- Guwahati 781039
- India
| |
Collapse
|
21
|
Phosphorescence properties of anionic cyclometalated platinum(II) complexes with fluorine-substituted tridentate diphenylpyridine in the solid state. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Daga P, Majee P, Singha DK, Manna P, Hui S, Ghosh AK, Mahata P, Mondal SK. Dramatic luminescence signal from a Co(ii)-based metal–organic compound due to the construction of charge-transfer bands with Al3+ and Fe3+ ions in water: steady-state and time-resolved spectroscopic studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj00295j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co(ii)-based metal–organic compound exhibits luminescence turn-on by Al3+ and quenching by Fe3+ due to the formation of charge-transfer complexes/adducts.
Collapse
Affiliation(s)
- Pooja Daga
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Debal Kanti Singha
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Priyanka Manna
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | | | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
23
|
Diana R, Panunzi B, Marrafino F, Piotto S, Caruso U. Novel Dicyano-Phenylenevinylene Fluorophores for Low-Doped Layers: A Highly Emissive Material for Red OLEDs. Polymers (Basel) 2019; 11:E1751. [PMID: 31731406 PMCID: PMC6918329 DOI: 10.3390/polym11111751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022] Open
Abstract
Two efficient deep red (DR)-emitting organic dicyano-phenylenevinylene derivatives with terminal withdrawing or donor groups were synthesized. The spectroscopic properties of the neat solids and the low-doped layers in polystyrene or polyvinylcarbazole host matrixes were analyzed, and the luminescence performance was explained using density functional theory (DFT) analysis. A noteworthy 89% fluorescence quantum yield was observed for the brightest red-emissive polyvinylcarbazole (PVK) blend. This result pushed us to successfully produce an emissive red organic light-emitting device (OLED) as a preliminary feasibility test.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy;
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy;
| | - Francesco Marrafino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (F.M.); (S.P.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (F.M.); (S.P.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy;
| |
Collapse
|
24
|
Zeng D, Yuan XA, Liu JC, Li L, Wang LP, Qin MF, Bao SS, Ma J, Zheng LM. Cyclometalated Iridium(III) Complexes Incorporating Aromatic Phosphonate Ligands: Syntheses, Structures, and Tunable Optical Properties. ACS OMEGA 2019; 4:16543-16550. [PMID: 31616834 PMCID: PMC6788060 DOI: 10.1021/acsomega.9b02311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The incorporation of phosphonate ligands into the cyclometalated iridium(III) complexes can not only tune their electronic and optical properties but also provide the possibility of anchoring these molecules on the semiconductor surfaces for further applications. Herein, we report the first examples of mononuclear cyclometallated iridium(III) complexes incorporating phosphonate ligands, namely, [Ir(ppy)2(HL1)]·0.5H2O (1), [Ir(ppy)2(HL2)]·0.5H2O (2), [Ir(dfppy)2(HL1)] (3), and [Ir(dfppy)2(HL2)]·3.5H2O (4) (ppy = 2-phenylpyridine, dfppy = 2-(2,4-difluorophenyl)pyridine, H2L1 = 2-pyridylphosphonic acid, H2L2 = 2-quinolinephosphonic acid). Luminescent spectra are studied both in solution and in the solid state, and significantly red-shifted broad emission bands are observed in complexes 2 and 4. The experimental and density functional theory (DFT) time-dependent-DFT calculation results indicate that the expansion of the aromatic conjugation length in the ancillary phosphonate ligands decreases the lowest unoccupied molecular orbital energy levels of the systems, originating from the triplet state associated with the ancillary ligand such as 3MLCT, 3LC, and 3LLCT charge-transfer transitions.
Collapse
Affiliation(s)
- Dai Zeng
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, China
| | - Xiang-Ai Yuan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Cui Liu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li Li
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lu-Ping Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Feng Qin
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Song-Song Bao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Min Zheng
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Umehara Y, Kageyama T, Son A, Kimura Y, Kondo T, Tanabe K. Biological reduction of nitroimidazole-functionalized gold nanorods for photoacoustic imaging of tumor hypoxia. RSC Adv 2019; 9:16863-16868. [PMID: 35516361 PMCID: PMC9064429 DOI: 10.1039/c9ra00951e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-selective accumulation of gold nanorods (GNR) has been demonstrated for visualization of tumor hypoxia by photoacoustic imaging. We prepared GNRs with hypoxia-targeting nitroimidazole units (G-NI) on their surface. Biological experiments revealed that G-NI produced a strong photoacoustic signal in hypoxic tumor cells and tissues. Tumor-selective accumulation of gold nanorods (GNR) has been demonstrated for visualization of tumor hypoxia by photoacoustic imaging.![]()
Collapse
Affiliation(s)
- Yui Umehara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Toki Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Aoi Son
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Yu Kimura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Teruyuki Kondo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara 252-5258 Japan +81-42-759-6493 +81-42-759-6229
| |
Collapse
|
26
|
Toscani A, Marín‐Hernández C, Robson JA, Chua E, Dingwall P, White AJP, Sancenón F, de la Torre C, Martínez‐Máñez R, Wilton‐Ely JDET. Highly Sensitive and Selective Molecular Probes for Chromo‐Fluorogenic Sensing of Carbon Monoxide in Air, Aqueous Solution and Cells. Chemistry 2019; 25:2069-2081. [DOI: 10.1002/chem.201805244] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/22/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Anita Toscani
- Department of ChemistryImperial College London, Molecular Sciences Research Hub, White City London W12 0BZ UK
| | - Cristina Marín‐Hernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de València Spain
- Departamento de QuímicaUniversitat Politècnica de València Camí de Vera s/n 46022 València Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Jonathan A. Robson
- Department of ChemistryImperial College London, Molecular Sciences Research Hub, White City London W12 0BZ UK
| | - Elvin Chua
- Department of ChemistryImperial College London, Molecular Sciences Research Hub, White City London W12 0BZ UK
| | - Paul Dingwall
- School of Chemistry and Chemical EngineeringQueen's University Belfast Belfast BT9 5AG UK
| | - Andrew J. P. White
- Department of ChemistryImperial College London, Molecular Sciences Research Hub, White City London W12 0BZ UK
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de València Spain
- Departamento de QuímicaUniversitat Politècnica de València Camí de Vera s/n 46022 València Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de València Spain
- Departamento de QuímicaUniversitat Politècnica de València Camí de Vera s/n 46022 València Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de València Spain
- Departamento de QuímicaUniversitat Politècnica de València Camí de Vera s/n 46022 València Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - James D. E. T. Wilton‐Ely
- Department of ChemistryImperial College London, Molecular Sciences Research Hub, White City London W12 0BZ UK
| |
Collapse
|
27
|
Ogawa T, Sameera WMC, Saito D, Yoshida M, Kobayashi A, Kato M. Phosphorescence Properties of Discrete Platinum(II) Complex Anions Bearing N-Heterocyclic Carbenes in the Solid State. Inorg Chem 2018; 57:14086-14096. [PMID: 30354093 DOI: 10.1021/acs.inorgchem.8b01654] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - W. M. C. Sameera
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Daisuke Saito
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
28
|
Zhang W, Liu H, Zhang F, Wang YL, Song B, Zhang R, Yuan J. Development of a ruthenium(II) complex-based luminescence probe for detection of hydrogen sulfite in food samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Masum AA, Yokoi K, Hisamatsu Y, Naito K, Shashni B, Aoki S. Design and synthesis of a luminescent iridium complex-peptide hybrid (IPH) that detects cancer cells and induces their apoptosis. Bioorg Med Chem 2018; 26:4804-4816. [PMID: 30177492 DOI: 10.1016/j.bmc.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 08/11/2018] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) triggers the cell-extrinsic apoptosis pathway by complexation with its signaling receptors such as death receptors (DR4 and DR5). TRAIL is a C3-symmetric type II transmembrane protein, consists of three monomeric units. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) also possess a C3-symmetric structure and are known to have excellent luminescence properties. In this study, we report on the design and synthesis of a C3-symmetric and luminescent Ir complex-peptide hybrid (IPH), which contains a cyclic peptide that had been reported to bind to death receptor (DR5). The results of MTT assay of Jurkat, K562 and Molt-4 cells with IPH and co-staining experiments with IPH and an anti-DR5 antibody indicate that IPH binds to DR5 and induces apoptosis in a manner parallel to the DR5 expression level. Mechanistic studies of cell death suggest that apoptosis and necrosis-like cell death are differentiated by the position of the hydrophilic part that connects Ir complex and the peptide units. These findings suggest that IPHs could be a promising tool for controlling apoptosis and necrosis by activation of the extra-and intracellular cell death pathway and to develop new anticancer drugs that detect cancer cells and induce their cell death.
Collapse
Affiliation(s)
- Abdullah-Al Masum
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kana Naito
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Babita Shashni
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
30
|
Luminescent Iridium Complex-Peptide Hybrids (IPHs) for Therapeutics of Cancer: Design and Synthesis of IPHs for Detection of Cancer Cells and Induction of Their Necrosis-Type Cell Death. Bioinorg Chem Appl 2018; 2018:7578965. [PMID: 30154833 PMCID: PMC6092981 DOI: 10.1155/2018/7578965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Death receptors (DR4 and DR5) offer attractive targets for cancer treatment because cancer cell death can be induced by apoptotic signal upon binding of death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with death receptors. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) possess a C3-symmetric structure like TRAIL and exhibit excellent luminescence properties. Therefore, cyclometalated Ir complexes functionalized with DR-binding peptide motifs would be potent TRAIL mimics to detect cancer cells and induce their cell death. In this study, we report on the design and synthesis of C3-symmetric and luminescent Ir complex-peptide hybrids (IPHs), which possess cyclic peptide that had been reported to bind DR5. The results of 27 MHz quartz-crystal microbalance (QCM) measurements of DR5 with IPHs and costaining experiments of IPHs and anti-DR5 antibody, suggest that IPHs bind with DR5 and undergo internalization into cytoplasm, possibly via endocytosis. It was also found that IPHs induce slow cell death of these cancer cells in a parallel manner to the DR5 expression level. These results indicate that IPHs may offer a promising tool as artificial luminescent mimics of death ligands to develop a new category of anticancer agents that detect and kill cancer cells.
Collapse
|
31
|
Rohrabaugh TN, Rohrabaugh AM, Kodanko JJ, White JK, Turro C. Photoactivation of imatinib-antibody conjugate using low-energy visible light from Ru(ii)-polypyridyl cages. Chem Commun (Camb) 2018; 54:5193-5196. [PMID: 29707728 DOI: 10.1039/c8cc01348a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ru(ii)-polypyridyl cages with sterically bulky bidentate ligands provide efficient photochemical release of the anticancer drug imatinib using low energy visible light, imparting spatiotemporal control over drug bioavailability. The light-activated drug release is maintained when the Ru(ii) cage is covalently coupled to an antibody, which is expected to localize selectively on the tumor.
Collapse
Affiliation(s)
- Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
32
|
Yip AMH, Lo KKW. Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Malik MA, Dar OA, Gull P, Wani MY, Hashmi AA. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MEDCHEMCOMM 2018; 9:409-436. [PMID: 30108933 PMCID: PMC6071736 DOI: 10.1039/c7md00526a] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
Abstract
In recent years, the number of people suffering from cancer and multidrug-resistant infections has sharply increased, leaving humanity without any choice but to search for new treatment options and strategies. Although cancer is considered the leading cause of death worldwide, it also paves the way many microbial infections and thus increases this burden manifold. Development of small molecules as anticancer and anti-microbial agents has great potential and a plethora of drugs are already available to combat these diseases. However, the wide occurrence of multidrug resistance in both cancer and microbial infections necessitates the development of new and potential molecules with desired properties that could circumvent the multidrug resistance problem. A successful strategy in anticancer chemotherapy has been the use of metallo-drugs and this strategy has the potential to be used for treating multidrug-resistant infections more efficiently. As a class of molecules, Schiff bases have been the topic of considerable interest, owing to their versatile metal chelating properties, inherent biological activities and flexibility to modify the structure to fine-tune it for a particular biological application. Schiff base-based metallo-drugs are being researched to develop new anticancer and anti-microbial chemotherapies and because both anticancer and anti-microbial targets are different, heterocyclic Schiff bases can be structurally modified to achieve the desired molecule, targeting a particular disease. In this review, we collect the most recent and relevant literature concerning the synthesis of heterocyclic Schiff base metal complexes as anticancer and anti-microbial agents and discuss the potential and future of this class of metallo-drugs as either anticancer or anti-microbial agents.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ; Tel: +91 9868523358
| | - Ovas Ahmad Dar
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ; Tel: +91 9868523358
| | - Parveez Gull
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ; Tel: +91 9868523358
| | - Mohmmad Younus Wani
- Texas Therapeutics Institute , Brown Foundation Institute of Molecular Medicine , The University of Texas Health Science Center at Houston , 1881 East Road , Houston 77054 , TX , USA
- Chemistry Department , Faculty of Science , University of Jeddah , Jeddah , Kingdom of Saudi Arabia
| | - Athar Adil Hashmi
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ; Tel: +91 9868523358
- Chemistry Department , Faculty of Science , King Abdulaziz University , P.O. Box 80203 , Jeddah , 21589 , Saudi Arabia
| |
Collapse
|
34
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
35
|
Zhang R, Song B, Yuan J. Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Tang J, Yin HY, Zhang JL. A luminescent aluminium salen complex allows for monitoring dynamic vesicle trafficking from the Golgi apparatus to lysosomes in living cells. Chem Sci 2018; 9:1931-1939. [PMID: 29675239 PMCID: PMC5892405 DOI: 10.1039/c7sc04498d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Tracking vesicle transport from the Golgi apparatus to lysosomes based on an Al3+–phospholipid coordination strategy.
The Golgi apparatus is well-known as the center of vesicle trafficking whose malfunction might cause the breakdown of overall cellular architecture and ultimately cell death. The development of fluorescent probes to not only precisely stain the Golgi apparatus but also monitor dynamic vesicle trafficking is of great significance. While fluorescent proteins and fluorescent lipid analogs have been reported, they are sometime limited by either overexpression and toxicity or lack of high selectivity, respectively. We herein report a novel approach based on metal-induced coordination between the phosphate anions of phospholipids and the metal center of a luminescent Alsalen complex AlL, which can in situ track membrane vesicle trafficking from the Golgi apparatus to the lysosomes in living cells. This work opens a new avenue for designing luminescent metal probes based on the Lewis acidity of metal ions and allows the use of metal ions with different charge states, polarities, and reactivities within a similar structural scaffold to expand coordination chemistry for biological studies.
Collapse
Affiliation(s)
- Juan Tang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| |
Collapse
|
37
|
Loftus LM, Li A, Fillman KL, Martin PD, Kodanko JJ, Turro C. Unusual Role of Excited State Mixing in the Enhancement of Photoinduced Ligand Exchange in Ru(II) Complexes. J Am Chem Soc 2017; 139:18295-18306. [PMID: 29226680 PMCID: PMC5901749 DOI: 10.1021/jacs.7b09937] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Four Ru(II) complexes were prepared bearing two new tetradentate ligands, cyTPA and 1-isocyTPQA, which feature a piperidine ring that provides a structurally rigid backbone and facilitates the installation of other donors as the fourth chelating arm, while avoiding the formation of stereoisomers. The photophysical properties and photochemistry of [Ru(cyTPA)(CH3CN)2]2+ (1), [Ru(1-isocyTPQA)(CH3CN)2]2+ (2), [Ru(cyTPA)(py)2]2+ (3), and [Ru(1-isocyTPQA)(py)2]2+ (4) were compared. The quantum yield for the CH3CN/H2O ligand exchange of 2 was measured to be Φ400 = 0.033(3), 5-fold greater than that of 1, Φ400 = 0.0066(3). The quantum yields for the py/H2O ligand exchange of 3 and 4 were lower, 0.0012(1) and 0.0013(1), respectively. DFT and related calculations show the presence of a highly mixed 3MLCT/3ππ* excited state as the lowest triplet state in 2, whereas the lowest energy triplet states in 1, 3, and 4 were calculated to be 3LF in nature. The mixed 3MLCT/3ππ* excited state places significant spin density on the quinoline moiety of the 1-isocyTPQA ligand positioned trans to the photolabile CH3CN ligand in 2, suggesting the presence of a trans-type influence in the excited state that enhances ligand exchange. Ultrafast spectroscopy was used to probe the excited states of 1-4, which confirmed that the mixed 3MLCT/3ππ* excited state in 2 promotes ligand dissociation, representing a new manner to effect photoinduced ligand exchange. The findings from this work can be used to design improved complexes for applications that require efficient ligand dissociation, as well as for those that require minimal deactivation of the 3MLCT state through low-lying metal-centered states.
Collapse
Affiliation(s)
- Lauren M. Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ao Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kathlyn L. Fillman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Philip D. Martin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
38
|
Miletić T, Fermi A, Papadakis I, Orfanos I, Karampitsos N, Avramopoulos A, Demitri N, De Leo F, Pope SJA, Papadopoulos MG, Couris S, Bonifazi D. A Twisted Bay-Substituted Quaterrylene Phosphorescing in the NIR Spectral Region. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tanja Miletić
- School of Chemistry; Cardiff University; Park Place CF10 3AT Cardiff UK
- Department of Chemical and Pharmaceutical Sciences; INSTM UdR Trieste; University of Trieste; Piazzale Europa 1 34127 Trieste Italy
| | - Andrea Fermi
- School of Chemistry; Cardiff University; Park Place CF10 3AT Cardiff UK
| | - Ioannis Papadakis
- Department of Physics; University of Patras; 26504 Patras Greece
- Institute of Chemical Engineering Sciences (ICE-HT); Foundation for Research and Technology-Hellas (FORTH); P.O. Box 1414 Patras 26504 Greece
| | - Ioannis Orfanos
- Department of Physics; University of Patras; 26504 Patras Greece
- Institute of Chemical Engineering Sciences (ICE-HT); Foundation for Research and Technology-Hellas (FORTH); P.O. Box 1414 Patras 26504 Greece
| | - Nikolaos Karampitsos
- Department of Physics; University of Patras; 26504 Patras Greece
- Institute of Chemical Engineering Sciences (ICE-HT); Foundation for Research and Technology-Hellas (FORTH); P.O. Box 1414 Patras 26504 Greece
| | - Aggelos Avramopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; 48 Vas. Constantinou Avenue Athens 11635 Greece
- Department of Computer Engineering; Technological Education Institute (TEI) of Sterea Ellada; Lamia 35100 Greece
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste; S.S. 14 Km 163.5 in Area Science Park 34149 Basovizza - Trieste Italy
| | - Federica De Leo
- San Raffaele Hospital; Scientific Institute-IRCCS; Via Olgettina 60 20132 Milan Italy
| | - Simon J. A. Pope
- School of Chemistry; Cardiff University; Park Place CF10 3AT Cardiff UK
| | - Manthos G. Papadopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; 48 Vas. Constantinou Avenue Athens 11635 Greece
| | - Stelios Couris
- Department of Physics; University of Patras; 26504 Patras Greece
- Institute of Chemical Engineering Sciences (ICE-HT); Foundation for Research and Technology-Hellas (FORTH); P.O. Box 1414 Patras 26504 Greece
| | - Davide Bonifazi
- School of Chemistry; Cardiff University; Park Place CF10 3AT Cardiff UK
| |
Collapse
|
39
|
Fiorini V, Zanoni I, Zacchini S, Costa AL, Hochkoeppler A, Zanotti V, Ranieri AM, Massi M, Stefan A, Stagni S. Methylation of Ir(iii)-tetrazolato complexes: an effective route to modulate the emission outputs and to switch to antimicrobial properties. Dalton Trans 2017; 46:12328-12338. [PMID: 28891573 DOI: 10.1039/c7dt02352a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two neutral cyclometalated Ir(iii)-tetrazolato complexes that differ by variations of the substituents on either the phenylpyridine or the tetrazolate ligand have been converted into the corresponding methylated and cationic analogues. NMR (1H and 13C) characterization of the Ir(iii) complexes provided the results in agreement with the chemo- and regioselective character of methylation at the N-3 position of the Ir(iii)-coordinated tetrazolato ring. This evidence was further corroborated by the analysis of the molecular structures of the cationic complexes obtained by X-ray diffraction. In view of the photophysical properties, the addition of a methyl moiety to neutral Ir(iii) tetrazolates, which behave as sky-blue or orange phosphors, caused a systematic red shift of their phosphorescence output. The transformation of neutral Ir(iii) tetrazolates into cationic Ir(iii)-tetrazole complexes was screened for any eventual antimicrobial activity in vitro against Gram negative (E. coli) and Gram positive (D. radiodurans) microorganisms. While both kinds of complexes were not active against E. coli, the conversion of the neutral Ir(iii) tetrazolates into the corresponding methylated and cationic Ir(iii)tetrazole derivatives determined the turn-on of a good to excellent antimicrobial activity toward Gram positive Deinococcus radiodurans, a non-pathogenic bacterium that is listed as one of the toughest microorganisms in light of its outstanding resistance to radiation and oxidative stress.
Collapse
Affiliation(s)
- Valentina Fiorini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Ilaria Zanoni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Via Granarolo 64 I-48018, Faenza, RA, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Anna Luisa Costa
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Via Granarolo 64 I-48018, Faenza, RA, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Valerio Zanotti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Anna Maria Ranieri
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia 6845.
| | - Massimiliano Massi
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia 6845.
| | - Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| |
Collapse
|
40
|
Caporale C, Bader CA, Sorvina A, MaGee KDM, Skelton BW, Gillam TA, Wright PJ, Raiteri P, Stagni S, Morrison JL, Plush SE, Brooks DA, Massi M. Investigating Intracellular Localisation and Cytotoxicity Trends for Neutral and Cationic Iridium Tetrazolato Complexes in Live Cells. Chemistry 2017; 23:15666-15679. [PMID: 28782852 DOI: 10.1002/chem.201701352] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 12/20/2022]
Abstract
A family of five neutral cyclometalated iridium(III) tetrazolato complexes and their methylated cationic analogues have been synthesised and characterised. The complexes are distinguished by variations of the substituents or degree of π conjugation on either the phenylpyridine or tetrazolato ligands. The photophysical properties of these species have been evaluated in organic and aqueous media, revealing predominantly a solvatochromic emission originating from mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. These emissions are characterised by typically long excited-state lifetimes (∼hundreds of ns), and quantum yields around 5-10 % in aqueous media. Methylation of the complexes caused a systematic red-shift of the emission profiles. The behaviour and the effects of the different complexes were then examined in cells. The neutral species localised mostly in the endoplasmic reticulum and lipid droplets, whereas the majority of the cationic complexes localised in the mitochondria. The amount of complexes found within cells does not depend on lipophilicity, which potentially suggests diverse uptake mechanisms. Methylated analogues were found to be more cytotoxic compared to the neutral species, a behaviour that might to be linked to a combination of uptake and intracellular localisation.
Collapse
Affiliation(s)
- Chiara Caporale
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Christie A Bader
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Karen D M MaGee
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Brian W Skelton
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Todd A Gillam
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Phillip J Wright
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari"-, University of Bologna, viale del Risorgimento 4, Bologna, 40136, Italy
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sally E Plush
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.,Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Massimiliano Massi
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| |
Collapse
|
41
|
Yoshihara K, Takagi K, Son A, Kurihara R, Tanabe K. Aggregate Formation of Oligonucleotides that Assist Molecular Imaging for Tracking of the Oxygen Status in Tumor Tissue. Chembiochem 2017; 18:1650-1658. [PMID: 28503897 DOI: 10.1002/cbic.201700116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 12/15/2022]
Abstract
The use of DNA aggregates could be a promising strategy for the molecular imaging of biological functions. Herein, phosphorescent oligodeoxynucleotides were designed with the aim of visualizing oxygen fluctuation in tumor cells. DNA-ruthenium conjugates (DRCs) that consisted of oligodeoxynucleotides, a phosphorescent ruthenium complex, a pyrene unit for high oxygen responsiveness, and a nitroimidazole unit as a tumor-targeting unit were prepared. In general, oligonucleotides have low cell permeability because of their own negative charges; however, the DRC formed aggregates in aqueous solution due to the hydrophobic pyrene and nitroimidazole groups, and smoothly penetrated the cellular membrane to accumulate in tumor cells in a hypoxia-selective manner. The oxygen-dependent phosphorescence of DRC in cells was also observed. In vivo experiments revealed that aggregates of DRC accumulated in hypoxic tumor tissue that was transplanted into the left leg of mice, and showed that oxygen fluctuations in tumor tissue could be monitored by tracking of the phosphorescence emission of DRC.
Collapse
Affiliation(s)
- Kazuki Yoshihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kohei Takagi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Aoi Son
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ryohsuke Kurihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
42
|
Abstract
Phosphorescence is a phenomenon of delayed luminescence that corresponds to the radiative decay of the molecular triplet state. As a general property of molecules, phosphorescence represents a cornerstone problem of chemical physics due to the spin prohibition of the underlying triplet-singlet emission and because its analysis embraces a deep knowledge of electronic molecular structure. Phosphorescence is the simplest physical process which provides an example of spin-forbidden transformation with a characteristic spin selectivity and magnetic field dependence, being the model also for more complicated chemical reactions and for spin catalysis applications. The bridging of the spin prohibition in phosphorescence is commonly analyzed by perturbation theory, which considers the intensity borrowing from spin-allowed electronic transitions. In this review, we highlight the basic theoretical principles and computational aspects for the estimation of various phosphorescence parameters, like intensity, radiative rate constant, lifetime, polarization, zero-field splitting, and spin sublevel population. Qualitative aspects of the phosphorescence phenomenon are discussed in terms of concepts like structure-activity relationships, donor-acceptor interactions, vibronic activity, and the role of spin-orbit coupling under charge-transfer perturbations. We illustrate the theory and principles of computational phosphorescence by highlighting studies of classical examples like molecular nitrogen and oxygen, benzene, naphthalene and their azaderivatives, porphyrins, as well as by reviewing current research on systems like electrophosphorescent transition metal complexes, nucleobases, and amino acids. We furthermore discuss modern studies of phosphorescence that cover topics of applied relevance, like the design of novel photofunctional materials for organic light-emitting diodes (OLEDs), photovoltaic cells, chemical sensors, and bioimaging.
Collapse
Affiliation(s)
- Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Bohdan Khmelnytsky National University , 18031 Cherkasy, Ukraine
| | - Boris Minaev
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Bohdan Khmelnytsky National University , 18031 Cherkasy, Ukraine
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University , Svobodny pr. 79, 660041 Krasnoyarsk, Russia
| |
Collapse
|
43
|
|
44
|
Zhang W, Zhang F, Wang YL, Song B, Zhang R, Yuan J. Red-Emitting Ruthenium(II) and Iridium(III) Complexes as Phosphorescent Probes for Methylglyoxal in Vitro and in Vivo. Inorg Chem 2017; 56:1309-1318. [DOI: 10.1021/acs.inorgchem.6b02443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenzhu Zhang
- State Key Laboratory
of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Feiyue Zhang
- State Key Laboratory
of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yong-Lei Wang
- Applied Physical Chemistry, Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Bo Song
- State Key Laboratory
of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering
and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- State Key Laboratory
of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
45
|
Lee LCC, Leung KK, Lo KKW. Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans 2017; 46:16357-16380. [DOI: 10.1039/c7dt03465b] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Perspective summarizes recent advances in the biological applications of luminescent rhenium(i) tricarbonyl polypyridine complexes.
Collapse
Affiliation(s)
| | - Kam-Keung Leung
- Department of Chemistry
- City University of Hong Kong
- P. R. China
| | | |
Collapse
|
46
|
Turnbull G, Williams JAG, Kozhevnikov VN. Rigidly linking cyclometallated Ir(iii) and Pt(ii) centres: an efficient approach to strongly absorbing and highly phosphorescent red emitters. Chem Commun (Camb) 2017; 53:2729-2732. [DOI: 10.1039/c7cc00656j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Appending a cyclometallated platinum unit onto each of the three ligands of the archetypal fac-Ir(ppy)3 complex leads to a highly efficient red emitter with a short luminescence decay time.
Collapse
Affiliation(s)
- Graeme Turnbull
- Department of Applied Sciences
- Northumbria University
- Newcastle upon Tyne
- UK
| | | | | |
Collapse
|
47
|
Poma A, Forni A, Baldoli C, Mussini PR, Bossi A. Cyclometalated Pt(ii) complexes with a bidentate Schiff-base ligand displaying unexpected cis/trans isomerism: synthesis, structures and electronic properties. Dalton Trans 2017; 46:12500-12506. [DOI: 10.1039/c7dt02323e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unexpected cis/trans isomerism in a bis-cyclometalated Pt(ii) complex is investigated by NMR, X-ray diffraction, optical, electrochemical and computational methods and rationalized.
Collapse
Affiliation(s)
- A. Poma
- Department of Chemistry
- University of Milan
- and SmartMatLab Center via Golgi 19
- 20133 Milano
- Italy
| | - A. Forni
- Institute of Molecular Science and Technology of the CNR (ISTM-CNR)
- 20133 Milan
- Italy
| | - C. Baldoli
- Institute of Molecular Science and Technology of the CNR (ISTM-CNR)
- 20133 Milan
- Italy
| | - P. R. Mussini
- Department of Chemistry
- University of Milan
- and SmartMatLab Center via Golgi 19
- 20133 Milano
- Italy
| | - A. Bossi
- Institute of Molecular Science and Technology of the CNR (ISTM-CNR)
- 20133 Milan
- Italy
| |
Collapse
|
48
|
Sinopoli A, Black FA, Wood CJ, Gibson EA, Elliott PIP. Investigation of a new bis(carboxylate)triazole-based anchoring ligand for dye solar cell chromophore complexes. Dalton Trans 2017; 46:1520-1530. [DOI: 10.1039/c6dt02905a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel anchoring ligand for dye-sensitised solar cell chromophoric complexes, 1-(2,2′-bipyrid-4-yl)-1,2,3-triazole-4,5-dicarboxylic acid (dctzbpy), is described.
Collapse
Affiliation(s)
| | - Fiona A. Black
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
- UK
| | | | | | | |
Collapse
|
49
|
Hisamatsu Y, Kumar S, Aoki S. Design and Synthesis of Tris-Heteroleptic Cyclometalated Iridium(III) Complexes Consisting of Three Different Nonsymmetric Ligands Based on Ligand-Selective Electrophilic Reactions via Interligand HOMO Hopping Phenomena. Inorg Chem 2016; 56:886-899. [DOI: 10.1021/acs.inorgchem.6b02519] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yosuke Hisamatsu
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sarvendra Kumar
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
50
|
Byrne A, Burke CS, Keyes TE. Precision targeted ruthenium(ii) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy. Chem Sci 2016; 7:6551-6562. [PMID: 28042459 PMCID: PMC5131359 DOI: 10.1039/c6sc02588a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022] Open
Abstract
Fluorescence microscopy has undergone a dramatic evolution over the past two decades with development of super-resolution far-field microscopy methods that break the light diffraction limited resolution of conventional microscopy, offering unprecedented opportunity to interrogate cellular processes at the nanoscale. However, these methods make special demands of the luminescent agents used for contrast and development of probes suited to super-resolution fluorescent methods is still relatively in its infancy. In spite of their many photophysical advantages, metal complex luminophores have not yet been considered as probes in this regard, where to date, only organic fluorophores have been applied. Here, we report the first examples of metal complex luminophores applied as probes for use in stimulated emission depletion (STED) microscopy. Exemplified with endoplasmic reticulum and nuclear targeting complexes we demonstrate that luminescent Ru(ii) polypyridyl complexes can, through signal peptide targeting, be precisely and selectively delivered to key cell organelles without the need for membrane permeabilization, to give high quality STED images of these organelles. Detailed features of the tubular ER structure are revealed and in the case of the nuclear targeting probe we exploit the molecular light switch properties of a dipyrido[3,2-a:2',3'-c]phenazine containing complex which emits only on DNA/RNA binding to give outstanding STED contrast and resolution of the chromosomes within the nucleus. Comparing performance with a member of the AlexaFluor family commonly recommended for STED, we find that the performance of the ruthenium complexes is superior across both CW and gated STED microscopy methods in terms of image resolution and photostability. The large Stokes shifts of the Ru probes permit excellent matching of the stimulating depletion laser with their emission whilst avoiding anti-Stokes excitation. Their long lifetimes make them particularly amenable to gated STED, giving a much wider window for gating than traditional probes. Our findings indicate that ruthenium polypyridyl peptide targeted probes are a powerful new partner to STED microscopy, opening up new approaches to probe design for STED microscopy.
Collapse
Affiliation(s)
- Aisling Byrne
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| | - Christopher S Burke
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| | - Tia E Keyes
- School of Chemical Sciences , National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland . ; National Biophotonics and Imaging Platform , DCU , Ireland
| |
Collapse
|