1
|
Gilbert K, Vuorinen A, Aatkar A, Pogány P, Pettinger J, Grant EK, Kirkpatrick JM, Rittinger K, House D, Burley GA, Bush JT. Profiling Sulfur(VI) Fluorides as Reactive Functionalities for Chemical Biology Tools and Expansion of the Ligandable Proteome. ACS Chem Biol 2023; 18:285-295. [PMID: 36649130 PMCID: PMC9942091 DOI: 10.1021/acschembio.2c00633] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Here, we report a comprehensive profiling of sulfur(VI) fluorides (SVI-Fs) as reactive groups for chemical biology applications. SVI-Fs are reactive functionalities that modify lysine, tyrosine, histidine, and serine sidechains. A panel of SVI-Fs were studied with respect to hydrolytic stability and reactivity with nucleophilic amino acid sidechains. The use of SVI-Fs to covalently modify carbonic anhydrase II (CAII) and a range of kinases was then investigated. Finally, the SVI-F panel was used in live cell chemoproteomic workflows, identifying novel protein targets based on the type of SVI-F used. This work highlights how SVI-F reactivity can be used as a tool to expand the liganded proteome.
Collapse
Affiliation(s)
- Katharine
E. Gilbert
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Aini Vuorinen
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Arron Aatkar
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Peter Pogány
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | - Jonathan Pettinger
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Emma K. Grant
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | | | - Katrin Rittinger
- The
Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
| | - David House
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Glenn A. Burley
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Jacob T. Bush
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| |
Collapse
|
2
|
Fallon DJ, Lehmann S, Chung CW, Phillipou A, Eberl C, Fantom KGM, Zappacosta F, Patel VK, Bantscheff M, Schofield CJ, Tomkinson NCO, Bush JT. One-Step Synthesis of Photoaffinity Probes for Live-Cell MS-Based Proteomics. Chemistry 2021; 27:17880-17888. [PMID: 34328642 DOI: 10.1002/chem.202102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/06/2022]
Abstract
We present a one-step Ugi reaction protocol for the expedient synthesis of photoaffinity probes for live-cell MS-based proteomics. The reaction couples an amine affinity function with commonly used photoreactive groups, and a variety of handle functionalities. Using this technology, a series of pan-BET (BET: bromodomain and extra-terminal domain) selective bromodomain photoaffinity probes were obtained by parallel synthesis. Studies on the effects of photoreactive group, linker length and irradiation wavelength on photocrosslinking efficiency provide valuable insights into photoaffinity probe design. Optimal probes were progressed to MS-based proteomics to capture the BET family of proteins from live cells and reveal their potential on- and off-target profiles.
Collapse
Affiliation(s)
- David J Fallon
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Stephanie Lehmann
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Alex Phillipou
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Christian Eberl
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Ken G M Fantom
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | | | - Marcus Bantscheff
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | | | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Jacob T Bush
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| |
Collapse
|
3
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
4
|
Thomas RP, Heap RE, Zappacosta F, Grant EK, Pogány P, Besley S, Fallon DJ, Hann MM, House D, Tomkinson NCO, Bush JT. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem Sci 2021; 12:12098-12106. [PMID: 34667575 PMCID: PMC8457371 DOI: 10.1039/d1sc03551g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we report a screening platform that combines 'direct-to-biology' high-throughput chemistry (D2B-HTC) with photoreactive fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates in 24 h and their subsequent screening as crude reaction products with a protein target without purification. Screening the HTC-PhABit library with carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn2+ binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.
Collapse
Affiliation(s)
- Ross P Thomas
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Rachel E Heap
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Emma K Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Pogány
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Stephen Besley
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David J Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Michael M Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
5
|
Baby S, Gurukkala Valapil D, Shankaraiah N. Unravelling KDM4 histone demethylase inhibitors for cancer therapy. Drug Discov Today 2021; 26:1841-1856. [PMID: 34051367 DOI: 10.1016/j.drudis.2021.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic enzyme-targeted therapy is a promising new development in the field of drug discovery. To date, histone deacetylases and DNA methyltransferases have been investigated as druggable epigenetic enzyme targets in cancer therapeutics. Histone methyltransferases and lysine demethylase inhibitors are the latest groups of epi-drugs being actively studied in clinical trials. KDM4s are JmjC domain-containing histone H3 lysine 9/36 demethylase enzymes, belonging to the 2-OG-dependent oxygenases, which are upregulated in multiple malignancies. In the recent years, these enzymes have captured much attention as a novel target in cancer therapy. Herein, we traverse the discovery path and current challenges in designing potent KDM4 inhibitors as potential anticancer agents. We discuss the considerable efforts and proposed future strategies to develop selective small molecule inhibitors of KDM4s, highlighting scaffold candidates and cyclic skeletons for which activity data, selectivity profiles and structure-activity relationships (SARs) have been studied.
Collapse
Affiliation(s)
- Stephin Baby
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
6
|
van der Zouwen AJ, Witte MD. Modular Approaches to Synthesize Activity- and Affinity-Based Chemical Probes. Front Chem 2021; 9:644811. [PMID: 33937194 PMCID: PMC8082414 DOI: 10.3389/fchem.2021.644811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial and modular methods to synthesize small molecule modulators of protein activity have proven to be powerful tools in the development of new drug-like molecules. Over the past decade, these methodologies have been adapted toward utilization in the development of activity- and affinity-based chemical probes, as well as in chemoproteomic profiling. In this review, we will discuss how methods like multicomponent reactions, DNA-encoded libraries, phage displays, and others provide new ways to rapidly screen novel chemical probes against proteins of interest.
Collapse
Affiliation(s)
- Antonie J van der Zouwen
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Martin D Witte
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
van der Zouwen AJ, Jeucken A, Steneker R, Hohmann KF, Lohse J, Slotboom DJ, Witte MD. Iminoboronates as Dual-Purpose Linkers in Chemical Probe Development. Chemistry 2021; 27:3292-3296. [PMID: 33259638 PMCID: PMC7898632 DOI: 10.1002/chem.202005115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/25/2022]
Abstract
Chemical probes that covalently modify proteins of interest are powerful tools for the research of biological processes. Important in the design of a probe is the choice of reactive group that forms the covalent bond, as it decides the success of a probe. However, choosing the right reactive group is not a simple feat and methodologies for expedient screening of different groups are needed. We herein report a modular approach that allows easy coupling of a reactive group to a ligand. α-Nucleophile ligands are combined with 2-formylphenylboronic acid derived reactive groups to form iminoboronate probes that selectively label their target proteins. A transimination reaction on the labeled proteins with an α-amino hydrazide provides further modification, for example to introduce a fluorophore.
Collapse
Affiliation(s)
| | - Aike Jeucken
- Membrane EnzymologyGroningen Biomolecular Sciences and Biotechnology Institute9747AGGroningenThe Netherlands
| | - Roy Steneker
- Chemical Biology IIStratingh Institute for ChemistryNijenborgh 79747 AGGroningenThe Netherlands
| | - Katharina F. Hohmann
- Chemical Biology IIStratingh Institute for ChemistryNijenborgh 79747 AGGroningenThe Netherlands
| | - Jonas Lohse
- Chemical Biology IIStratingh Institute for ChemistryNijenborgh 79747 AGGroningenThe Netherlands
| | - Dirk J. Slotboom
- Membrane EnzymologyGroningen Biomolecular Sciences and Biotechnology Institute9747AGGroningenThe Netherlands
| | - Martin D. Witte
- Chemical Biology IIStratingh Institute for ChemistryNijenborgh 79747 AGGroningenThe Netherlands
| |
Collapse
|
8
|
Grant EK, Fallon DJ, Hann MM, Fantom KGM, Quinn C, Zappacosta F, Annan RS, Chung C, Bamborough P, Dixon DP, Stacey P, House D, Patel VK, Tomkinson NCO, Bush JT. A Photoaffinity‐Based Fragment‐Screening Platform for Efficient Identification of Protein Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Michael M. Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Chad Quinn
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Roland S. Annan
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | - Chun‐wa Chung
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Paul Bamborough
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David P. Dixon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Stacey
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | | | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
9
|
Grant EK, Fallon DJ, Hann MM, Fantom KGM, Quinn C, Zappacosta F, Annan RS, Chung C, Bamborough P, Dixon DP, Stacey P, House D, Patel VK, Tomkinson NCO, Bush JT. A Photoaffinity‐Based Fragment‐Screening Platform for Efficient Identification of Protein Ligands. Angew Chem Int Ed Engl 2020; 59:21096-21105. [DOI: 10.1002/anie.202008361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Michael M. Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Chad Quinn
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Roland S. Annan
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | - Chun‐wa Chung
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Paul Bamborough
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David P. Dixon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Stacey
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | | | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
10
|
Liu N, Fu C, Zhang Q, Zhao R, Sun Z, Zhang P, Ding L, Deng K. Multifunctionalized Polyamides Prepared by Facile Ugi Reaction as Thermosensitive, Biocompatible and Antibacterial Biomaterials. ChemistrySelect 2020. [DOI: 10.1002/slct.201904329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Na Liu
- College of Chemistry & Environmental Science, Affiliated Hospital, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Hebei University Baoding 071002 China
| | - Congcong Fu
- College of Chemistry & Environmental Science, Affiliated Hospital, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Hebei University Baoding 071002 China
| | - Qi Zhang
- College of Chemistry & Environmental Science, Affiliated Hospital, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Hebei University Baoding 071002 China
| | - Ronghui Zhao
- College of Chemistry & Environmental Science, Affiliated Hospital, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Hebei University Baoding 071002 China
| | - Zhuxing Sun
- College of Chemistry & Environmental Science, Affiliated Hospital, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Hebei University Baoding 071002 China
| | - Pengfei Zhang
- College of Chemistry & Environmental Science, Affiliated Hospital, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Hebei University Baoding 071002 China
| | - Lan Ding
- College of Chemistry & Environmental Science, Affiliated Hospital, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Hebei University Baoding 071002 China
| | - Kuilin Deng
- College of Chemistry & Environmental Science, Affiliated Hospital, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Hebei University Baoding 071002 China
| |
Collapse
|
11
|
Wang C, Liu Y, Bao C, Xue Y, Zhou Y, Zhang D, Lin Q, Zhu L. Phototriggered labeling and crosslinking by 2-nitrobenzyl alcohol derivatives with amine selectivity. Chem Commun (Camb) 2020; 56:2264-2267. [PMID: 31984385 DOI: 10.1039/c9cc09449k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we report the use of 2-nitrobenzyl alcohol (NB) as a photoreactive group with amine selectivity and explore its applications for photoaffinity labeling and crosslinking of biomolecules. This work confirms that NB is an efficient photoreactive group and has great potential in drug discovery, chemical biology and protein engineering.
Collapse
Affiliation(s)
- Chenxi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yuan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Chunyan Bao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yuan Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yaowu Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Dasheng Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Qiuning Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Linyong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
12
|
Grant EK, Fallon DJ, Eberl HC, Fantom KGM, Zappacosta F, Messenger C, Tomkinson NCO, Bush JT. A Photoaffinity Displacement Assay and Probes to Study the Cyclin‐Dependent Kinase Family. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | | | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | - Cassie Messenger
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C. O. Tomkinson
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
13
|
Grant EK, Fallon DJ, Eberl HC, Fantom KGM, Zappacosta F, Messenger C, Tomkinson NCO, Bush JT. A Photoaffinity Displacement Assay and Probes to Study the Cyclin‐Dependent Kinase Family. Angew Chem Int Ed Engl 2019; 58:17322-17327. [DOI: 10.1002/anie.201906321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | | | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | - Cassie Messenger
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C. O. Tomkinson
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
14
|
van der Zouwen AJ, Lohse J, Wieske LHE, Hohmann KF, van der Vlag R, Witte MD. An in situ combinatorial methodology to synthesize and screen chemical probes. Chem Commun (Camb) 2019; 55:2050-2053. [DOI: 10.1039/c8cc06991c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Linking of reactive groups and ligands by imine chemistry provides chemical probes that label proteins of interest.
Collapse
Affiliation(s)
- Antonie J. van der Zouwen
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen
- 9747AG Groningen
- The Netherlands
| | - Jonas Lohse
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen
- 9747AG Groningen
- The Netherlands
| | - Lianne H. E. Wieske
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen
- 9747AG Groningen
- The Netherlands
| | - Katharina F. Hohmann
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen
- 9747AG Groningen
- The Netherlands
| | - Ramon van der Vlag
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen
- 9747AG Groningen
- The Netherlands
| | - Martin D. Witte
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen
- 9747AG Groningen
- The Netherlands
| |
Collapse
|
15
|
Opportunities for Lipid-Based Probes in the Field of Immunology. Curr Top Microbiol Immunol 2018; 420:283-319. [PMID: 30242513 DOI: 10.1007/82_2018_127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Lipids perform a wide range of functions inside the cell, ranging from structural building block of membranes and energy storage to cell signaling. The mode of action of many signaling lipids has remained elusive due to their low abundance, high lipophilicity, and inherent instability. Various chemical biology approaches, such as photoaffinity or activity-based protein profiling methods, have been employed to shed light on the biological role of lipids and the lipid-protein interaction profile. In this review, we will summarize the recent developments in the field of chemical probes to study lipid biology, especially in immunology, and indicate potential avenues for future research.
Collapse
|
16
|
Jackson P, Lapinsky DJ. Appendage and Scaffold Diverse Fully Functionalized Small-Molecule Probes via a Minimalist Terminal Alkyne-Aliphatic Diazirine Isocyanide. J Org Chem 2018; 83:11245-11253. [DOI: 10.1021/acs.joc.8b01831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Jackson
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - David J. Lapinsky
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
17
|
McAllister TE, Yeh TL, Abboud MI, Leung IKH, Hookway ES, King ONF, Bhushan B, Williams ST, Hopkinson RJ, Münzel M, Loik ND, Chowdhury R, Oppermann U, Claridge TDW, Goto Y, Suga H, Schofield CJ, Kawamura A. Non-competitive cyclic peptides for targeting enzyme-substrate complexes. Chem Sci 2018; 9:4569-4578. [PMID: 29899950 PMCID: PMC5969509 DOI: 10.1039/c8sc00286j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/23/2018] [Indexed: 01/19/2023] Open
Abstract
Affinity reagents are of central importance for selectively identifying proteins and investigating their interactions. We report on the development and use of cyclic peptides, identified by mRNA display-based RaPID methodology, that are selective for, and tight binders of, the human hypoxia inducible factor prolyl hydroxylases (PHDs) - enzymes crucial in hypoxia sensing. Biophysical analyses reveal the cyclic peptides to bind in a distinct site, away from the enzyme active site pocket, enabling conservation of substrate binding and catalysis. A biotinylated cyclic peptide captures not only the PHDs, but also their primary substrate hypoxia inducible factor HIF1-α. Our work highlights the potential for tight, non-active site binding cyclic peptides to act as promising affinity reagents for studying protein-protein interactions.
Collapse
Affiliation(s)
- T E McAllister
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - T-L Yeh
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - M I Abboud
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - I K H Leung
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand
| | - E S Hookway
- Botnar Research Centre , NIHR Oxford Biomedical Research Unit , University of Oxford , Windmill Road , Oxford , OX3 7LD , UK
| | - O N F King
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - B Bhushan
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
- Division of Cardiovascular Medicine , Radcliffe Department of Medicine , University of Oxford , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - S T Williams
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - R J Hopkinson
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - M Münzel
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - N D Loik
- Department of Chemistry , Graduate School of Science , The University of Tokyo , Tokyo 113-0033 , Japan
| | - R Chowdhury
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - U Oppermann
- Botnar Research Centre , NIHR Oxford Biomedical Research Unit , University of Oxford , Windmill Road , Oxford , OX3 7LD , UK
| | - T D W Claridge
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - Y Goto
- Department of Chemistry , Graduate School of Science , The University of Tokyo , Tokyo 113-0033 , Japan
| | - H Suga
- Department of Chemistry , Graduate School of Science , The University of Tokyo , Tokyo 113-0033 , Japan
- JST , CREST , The University of Tokyo , Tokyo 113-0033 , Japan
| | - C J Schofield
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - A Kawamura
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
- Division of Cardiovascular Medicine , Radcliffe Department of Medicine , University of Oxford , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| |
Collapse
|
18
|
Bag SS, De S. Multipurpose isothiocyanyl alanine/lysine: Use as solvatochromic IR probes and in site specific labeling/ligation of short peptides. Bioorg Med Chem Lett 2018; 28:1404-1409. [PMID: 29555154 DOI: 10.1016/j.bmcl.2018.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/27/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
The solvatochromic IR responsivity of small side chain -NCS in two unexplored unnatural amino acids, isothiocyanyl alanine (NCSAla = Ita) and lysine (NCSLys = Itl), without perturbing the conformation is demonstrated in two designed short tripeptide (BocAla-NCSAla-Ala-OMe) and hexapeptide (BocLeu-Val-Phe-Phe-NCSLys-Gly-OMe). Demonstration of site specific fluorescent labeling in both the peptides and ligation type reaction in NCSLys indicates the novelty of these two amino acids as alternative to the available canonical amino acids.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Suranjan De
- Bioorganic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
19
|
Bag SS, De S. Isothiocyanyl Alanine as a Synthetic Intermediate for the Synthesis of Thioureayl Alanines and Subsequent Aminotetrazolyl Alanines. J Org Chem 2017; 82:12276-12285. [PMID: 29065260 DOI: 10.1021/acs.joc.7b02103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The synthesis of unnatural amino acids with small side-chain functionalities usable for further transformations is highly demanding for the expansion of the genetic code and other possible biotechnological applications. To this end, we wanted to report the utility of an unexplored unnatural amino acid, isothiocyanyl alanine (NCSAla = Ita), for the synthesis of another class of unnatural amino acids, thioureayl alanines (TUAla = Tua). The synthesis of a third class of unnatural amino acids, amino tetrazolyl alanines (ATzAla = Ata), in a very good yield was subsequently achieved utilizing thioureayl alanines. Thus, a variety of aliphatic- and aromatic-substituted thioureayl alanines and aromatic-substituted amino tetrazolyl alanines were successfully synthesized in good to excellent yields. The photophysical properties of three of the fluorescent unnatural amino acids from two classes were also studied and presented herein.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati 781039, India
| | - Suranjan De
- Bioorganic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati 781039, India
| |
Collapse
|
20
|
Murale DP, Hong SC, Haque MM, Lee JS. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). Proteome Sci 2017; 15:14. [PMID: 28652856 PMCID: PMC5483283 DOI: 10.1186/s12953-017-0123-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Protein-protein interactions (PPIs) trigger a wide range of biological signaling pathways that are crucial for biomedical research and drug discovery. Various techniques have been used to study specific proteins, including affinity chromatography, activity-based probes, affinity-based probes and photo-affinity labeling (PAL). PAL has become one of the most powerful strategies to study PPIs. Traditional photocrosslinkers are used in PAL, including benzophenone, aryl azide, and diazirine. Upon photoirradiation, these photocrosslinkers (Pls) generate highly reactive species that react with adjacent molecules, resulting in a direct covalent modification. This review introduces recent examples of chemical proteomics study using PAL for PPIs.
Collapse
Affiliation(s)
- Dhiraj P Murale
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea
| | - Seong Cheol Hong
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea.,Department of Biological Chemistry, KIST-School UST, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea
| | - Md Mamunul Haque
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea.,Department of Biological Chemistry, KIST-School UST, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea
| |
Collapse
|
21
|
Singha M, Roy S, Pandey SD, Bag SS, Bhattacharya P, Das M, Ghosh AS, Ray D, Basak A. Use of azidonaphthalimide carboxylic acids as fluorescent templates with a built-in photoreactive group and a flexible linker simplifies protein labeling studies: applications in selective tagging of HCAII and penicillin binding proteins. Chem Commun (Camb) 2017; 53:13015-13018. [DOI: 10.1039/c7cc08209f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple design of versatile template-based protein labeling agents has been successfully demonstrated with HCA and PBPs.
Collapse
Affiliation(s)
- Monisha Singha
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Sayantani Roy
- School of Bioscience
- Indian Institute of Technology Kharagpur
- India
| | - Satya Deo Pandey
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | | | | | - Mainak Das
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Anindya S. Ghosh
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | - Debashis Ray
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Amit Basak
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|
22
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
23
|
Kleiner P, Heydenreuter W, Stahl M, Korotkov VS, Sieber SA. Eine Gesamtproteom‐basierte Auflistung der Hintergrundbinder von Photovernetzern. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Kleiner
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Wolfgang Heydenreuter
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Matthias Stahl
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Vadim S. Korotkov
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Stephan A. Sieber
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
24
|
Kleiner P, Heydenreuter W, Stahl M, Korotkov VS, Sieber SA. A Whole Proteome Inventory of Background Photocrosslinker Binding. Angew Chem Int Ed Engl 2016; 56:1396-1401. [DOI: 10.1002/anie.201605993] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/15/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Kleiner
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Wolfgang Heydenreuter
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Matthias Stahl
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Vadim S. Korotkov
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Stephan A. Sieber
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
25
|
Weigt D, Hopf C, Médard G. Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clin Epigenetics 2016; 8:76. [PMID: 27437033 PMCID: PMC4950666 DOI: 10.1186/s13148-016-0244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022] Open
Abstract
Some epigenetic modifier proteins have become validated clinical targets. With a few small molecule inhibitors already approved by national health administrations and many more in the pharmaceutical industry pipelines, there is a need for technologies that can promote full comprehension of the molecular action of these drugs. Proteomics, with its relatively unbiased nature, can contribute to a thorough understanding of the complexity of the megadalton complexes, which write, read and erase the histone code, and it can help study the on-target and off-target effect of the drugs designed to modulate their action. This review on the one hand gathers the published affinity probes able to decipher small molecule targets and off-targets in a close-to-native environment. These are small molecule analogues of epigenetic drugs conceived as protein target enrichment tools after they have engaged them in cells or lysates. Such probes, which have been designed for deacetylases, bromodomains, demethylases, and methyltransferases not only enrich their direct protein targets but also their stable interactors, which can be identified by mass spectrometry. Hence, they constitute a tool to study the epigenetic complexes together with other techniques also reviewed here: immunoaffinity purification with antibodies against native protein complex constituents or epitope tags, affinity matrices designed to bind recombinantly tagged protein, and enrichment of the complexes using histone tail peptides as baits. We expect that this toolbox will be adopted by more and more researchers willing to harness the spectacular advances in mass spectrometry to the epigenetic field.
Collapse
Affiliation(s)
- David Weigt
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Carsten Hopf
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Guillaume Médard
- />Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| |
Collapse
|
26
|
Passos STA, Correa JR, Soares SLM, da Silva WA, Neto BAD. Fluorescent Peptoids as Selective Live Cell Imaging Probes. J Org Chem 2016; 81:2646-51. [DOI: 10.1021/acs.joc.6b00034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Saulo T. A. Passos
- Laboratory
of Bioactive Compounds Synthesis N.T.S., University of Brasilia (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - José R. Correa
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, CEP 70904-970, P.O. Box 4478, Brasília, DF, Brazil
| | - Samira L. M. Soares
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, CEP 70904-970, P.O. Box 4478, Brasília, DF, Brazil
| | - Wender A. da Silva
- Laboratory
of Bioactive Compounds Synthesis N.T.S., University of Brasilia (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Brenno A. D. Neto
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, CEP 70904-970, P.O. Box 4478, Brasília, DF, Brazil
| |
Collapse
|
27
|
Sakurai K, Yasui T, Mizuno S. Comparative Analysis of the Reactivity of Diazirine-Based Photoaffinity Probes toward a Carbohydrate-Binding Protein. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaori Sakurai
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho, Koganei-shi Tokyo, 184-8588 Japan
| | - Tomoki Yasui
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho, Koganei-shi Tokyo, 184-8588 Japan
| | - Sakae Mizuno
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho, Koganei-shi Tokyo, 184-8588 Japan
| |
Collapse
|
28
|
Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ. Targeting histone lysine demethylases - progress, challenges, and the future. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:1416-32. [PMID: 24859458 PMCID: PMC4316176 DOI: 10.1016/j.bbagrm.2014.05.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022]
Abstract
N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, N(ε)-methyllysine residue demethylation is catalysed by two distinct subfamilies of demethylases (KDMs), the flavin-dependent KDM1 subfamily and the 2-oxoglutarate- (2OG) dependent JmjC subfamily, which both employ oxidative mechanisms. Modulation of histone methylation status is proposed to be important in epigenetic regulation and has substantial medicinal potential for the treatment of diseases including cancer and genetic disorders. This article provides an introduction to the enzymology of the KDMs and the therapeutic possibilities and challenges associated with targeting them, followed by a review of reported KDM inhibitors and their mechanisms of action from kinetic and structural perspectives.
Collapse
Affiliation(s)
- Cyrille C Thinnes
- The Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Akane Kawamura
- The Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|
29
|
Addy PS, Bhattacharya A, Mandal SM, Basak A. Label-assisted laser desorption/ionization mass spectrometry (LA-LDI-MS): an emerging technique for rapid detection of ubiquitous cis-1,2-diol functionality. RSC Adv 2014. [DOI: 10.1039/c4ra07499h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Sakurai K, Ozawa S, Yamada R, Yasui T, Mizuno S. Comparison of the Reactivity of Carbohydrate Photoaffinity Probes with Different Photoreactive Groups. Chembiochem 2014; 15:1399-403. [DOI: 10.1002/cbic.201402051] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 01/12/2023]
|
31
|
Preston GW, Radford SE, Ashcroft AE, Wilson AJ. Analysis of amyloid nanostructures using photo-cross-linking: in situ comparison of three widely used photo-cross-linkers. ACS Chem Biol 2014; 9:761-8. [PMID: 24372480 PMCID: PMC3964826 DOI: 10.1021/cb400731s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photoinduced cross-linking (PIC) has become a powerful tool in chemical biology for the identification and mapping of stable or transient interactions between biomacromolecules and their (unknown) ligands. However, the value of PIC for in vitro and in vivo structural proteomics can be realized only if cross-linking reports accurately on biomacromolecule secondary, tertiary, and quaternary structures with residue-specific resolution. Progress in this area requires rigorous and comparative studies of PIC reagents, but despite widespread use of PIC, these have rarely been performed. The use of PIC to report reliably on noncovalent structure is therefore limited, and its potentials have yet to be fully realized. In the present study, we compared the abilities of three probes, phenyl trifluoromethyldiazirine (TFMD), benzophenone (BP), and phenylazide (PA), to record structural information within a biomolecular complex. For this purpose, we employed a self-assembled amyloid-like peptide nanostructure as a tightly and specifically packed model environment in which to photolyze the reagents. Information about PIC products was gathered using mass spectrometry and ion mobility spectrometry, and the data were interpreted using a mechanism-oriented approach. While all three PIC groups appeared to generate information within the packed peptide environment, the data highlight technical limitations of BP and PA. On the other hand, TFMD displayed accuracy and generated straightforward results. Thus TFMD, with its robust and rapid photochemistry, was shown to be an ideal probe for cross-linking of peptide nanostructures. The implications of our findings for detailed analyses of complex systems, including those that are transiently populated, are discussed.
Collapse
Affiliation(s)
- George W. Preston
- School
of Chemistry, ‡Astbury Centre for Structural Molecular Biology, and §School of Molecular and Cellular Biology,
Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sheena E. Radford
- School
of Chemistry, ‡Astbury Centre for Structural Molecular Biology, and §School of Molecular and Cellular Biology,
Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Alison. E. Ashcroft
- School
of Chemistry, ‡Astbury Centre for Structural Molecular Biology, and §School of Molecular and Cellular Biology,
Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Andrew J. Wilson
- School
of Chemistry, ‡Astbury Centre for Structural Molecular Biology, and §School of Molecular and Cellular Biology,
Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
32
|
Schiller R, Scozzafava G, Tumber A, Wickens JR, Bush JT, Rai G, Lejeune C, Choi H, Yeh TL, Chan MC, Mott BT, McCullagh JSO, Maloney DJ, Schofield CJ, Kawamura A. A cell-permeable ester derivative of the JmjC histone demethylase inhibitor IOX1. ChemMedChem 2014; 9:566-71. [PMID: 24504543 PMCID: PMC4503230 DOI: 10.1002/cmdc.201300428] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Indexed: 12/24/2022]
Abstract
The 2-oxoglutarate (2OG)-dependent Jumonji C domain (JmjC) family is the largest family of histone lysine demethylases. There is interest in developing small-molecule probes that modulate JmjC activity to investigate their biological roles. 5-Carboxy-8-hydroxyquinoline (IOX1) is the most potent broad-spectrum inhibitor of 2OG oxygenases, including the JmjC demethylases, reported to date; however, it suffers from low cell permeability. Here, we describe structure–activity relationship studies leading to the discovery of an n-octyl ester form of IOX1 with improved cellular potency (EC50 value of 100 to 4 μm). These findings are supported by in vitro inhibition and selectivity studies, docking studies, activity versus toxicity analysis in cell cultures, and intracellular uptake measurements. The n-octyl ester was found to have improved cell permeability; it was found to inhibit some JmjC demethylases in its intact ester form and to be more selective than IOX1. The n-octyl ester of IOX1 should find utility as a starting point for the development of JmjC inhibitors and as a use as a cell-permeable tool compound for studies investigating the roles of 2OG oxygenases in epigenetic regulation.
Collapse
Affiliation(s)
- Rachel Schiller
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|