1
|
MacDonald CRM, Draper ER. Applications of microscopy and small angle scattering techniques for the characterisation of supramolecular gels. Beilstein J Org Chem 2024; 20:2608-2634. [PMID: 39445219 PMCID: PMC11496719 DOI: 10.3762/bjoc.20.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
When evaluating soft self-assembling materials for use in any application, the structural or morphological characterisation is highly important. We know that the hierarchal molecular self-assembly of these materials into larger structures directly influences behaviours such as performance and stability. It is therefore imperative that these materials are characterised effectively over multiple length scales. Two effective methods of achieving this are small angle scattering (SAS) and imaging. Scattering giving us indirect information about the systems, whereas imaging is often looking at the material directly. In this review, we discuss the benefits, caveats and power of using both these techniques separately and together for the characterisation of supramolecular gels.
Collapse
Affiliation(s)
| | - Emily R Draper
- School of Chemistry, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| |
Collapse
|
2
|
Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, Badawi M, Ganachari SV, Shetti NP, Aminabhavi TM. Polymeric hydrogels-based materials for wastewater treatment. CHEMOSPHERE 2023; 331:138743. [PMID: 37105310 DOI: 10.1016/j.chemosphere.2023.138743] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
3
|
Hydrogen bonding dissipating hydrogels: The influence of network structure design on structure–property relationships. J Colloid Interface Sci 2023; 630:638-653. [DOI: 10.1016/j.jcis.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
4
|
Wu Z, Jayaraman A. Machine Learning-Enhanced Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) for Analyzing Fibrillar Structures in Polymer Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zijie Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware19716, United States
| |
Collapse
|
5
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
6
|
Urimi D, Hellsing M, Mahmoudi N, Söderberg C, Widenbring R, Gedda L, Edwards K, Loftsson T, Schipper N. Structural Characterization Study of a Lipid Nanocapsule Formulation Intended for Drug Delivery Applications Using Small-Angle Scattering Techniques. Mol Pharm 2022; 19:1068-1077. [PMID: 35226500 PMCID: PMC8985204 DOI: 10.1021/acs.molpharmaceut.1c00648] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Lipid nanocapsules
(LNCs) are increasingly being used for various
drug delivery applications due to their versatile nature and ability
to carry a wide variety of therapeutic drug molecules. In the present
investigation, small-angle X-ray (SAXS) and neutron scattering (SANS)
techniques were used to elucidate the structure of LNCs. Overall,
size measurements obtained from SAXS and SANS techniques were complemented
with dynamic light scattering, zeta potential, and cryogenic transmission
electron microscopy measurements. The structural aspects of LNCs can
be affected by drug loading and the properties of the drug. Here,
the impact of drug loading on the overall structure was evaluated
using DF003 as a model drug molecule. LNCs with varying compositions
were prepared using a phase inversion method. Combined analysis of
SAXS and SANS measurements indicated the presence of a core–shell
structure in the LNCs. Further, the drug loading did not alter the
overall core–shell structure of the LNCs. SANS data revealed
that the core size remained unchanged with a radius of 20.0 ±
0.9 nm for unloaded LNCs and 20.2 ± 0.6 nm for drug-loaded LNCs.
Furthermore, interestingly, the shell becomes thicker in an order
of ∼1 nm in presence of the drug compared to the shell thickness
of unloaded LNCs as demonstrated by SAXS data. This can be correlated
with the strong association of hydrophilic DF003 with Kolliphor HS
15, a polyethylene glycol-based surfactant that predominantly makes
up the shell, resulting in a drug-rich hydrated shell.
Collapse
Affiliation(s)
- Dileep Urimi
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, Forskargatan 18, Södertälje 151 36, Sweden.,Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, Reykjavík IS-107, Iceland
| | - Maja Hellsing
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, Forskargatan 18, Södertälje 151 36, Sweden
| | - Najet Mahmoudi
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Christopher Söderberg
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, Forskargatan 18, Södertälje 151 36, Sweden
| | - Ronja Widenbring
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, Forskargatan 18, Södertälje 151 36, Sweden
| | - Lars Gedda
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 573, Uppsala SE-751 23, Sweden
| | - Katarina Edwards
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 573, Uppsala SE-751 23, Sweden
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, Reykjavík IS-107, Iceland
| | - Nicolaas Schipper
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, Forskargatan 18, Södertälje 151 36, Sweden
| |
Collapse
|
7
|
Patel P, Thareja P. Hydrogels differentiated by length scales: A review of biopolymer-based hydrogel preparation methods, characterization techniques, and targeted applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Song Q, Cheng Z, Kariuki M, Hall SCL, Hill SK, Rho JY, Perrier S. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chem Rev 2021; 121:13936-13995. [PMID: 33938738 PMCID: PMC8824434 DOI: 10.1021/acs.chemrev.0c01291] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/19/2023]
Abstract
This Review focuses on the establishment and development of self-assemblies governed by the supramolecular interactions between cyclic peptides. The Review first describes the type of cyclic peptides able to assemble into tubular structures to form supramolecular cyclic peptide nanotubes. A range of cyclic peptides have been identified to have such properties, including α-peptides, β-peptides, α,γ-peptides, and peptides based on δ- and ε-amino acids. The Review covers the design and functionalization of these cyclic peptides and expands to a recent advance in the design and application of these materials through their conjugation to polymer chains to generate cyclic peptide-polymer conjugates nanostructures. The Review, then, concentrates on the challenges in characterizing these systems and presents an overview of the various analytical and characterization techniques used to date. This overview concludes with a critical survey of the various applications of the nanomaterials obtained from supramolecular cyclic peptide nanotubes, with a focus on biological and medical applications, ranging from ion channels and membrane insertion to antibacterial materials, anticancer drug delivery, gene delivery, and antiviral applications.
Collapse
Affiliation(s)
- Qiao Song
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Zihe Cheng
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Maria Kariuki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Sophie K. Hill
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Julia Y. Rho
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Affiliation(s)
- Zhi Yang
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - Sahraoui Chaieb
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
10
|
Grant TD. Reply to: Limitations of the iterative electron density reconstruction algorithm from solution scattering data. Nat Methods 2021; 18:246-248. [PMID: 33649588 PMCID: PMC8284390 DOI: 10.1038/s41592-021-01083-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/01/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
11
|
Hirun N, Tantishaiyakul V, Sangfai T, Boonlai W, Soontaranon S, Rugmai S. The effect of poly(acrylic acid) on temperature‐dependent behaviors and structural evolution of poloxamer 407. POLYM INT 2021. [DOI: 10.1002/pi.6197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Namon Hirun
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT‐Pharm), Faculty of Pharmacy Thammasat University Pathumthani Thailand
| | - Vimon Tantishaiyakul
- Center of Excellence for Drug Delivery System and Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences Prince of Songkla University Hat‐Yai Thailand
| | | | - Wannisa Boonlai
- Center of Excellence for Drug Delivery System and Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences Prince of Songkla University Hat‐Yai Thailand
| | - Siriwat Soontaranon
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima Thailand
| | - Supagorn Rugmai
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima Thailand
| |
Collapse
|
12
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
13
|
Antfolk M, Jensen KB. A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nat Commun 2020; 11:6244. [PMID: 33288759 PMCID: PMC7721730 DOI: 10.1038/s41467-020-20052-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
The small intestine is a specialised organ, essential for nutrient digestion and absorption. It is lined with a complex epithelial cell layer. Intestinal epithelial cells can be cultured in three-dimensional (3D) scaffolds as self-organising entities with distinct domains containing stem cells and differentiated cells. Recent developments in bioengineering provide new possibilities for directing the organisation of cells in vitro. In this Perspective, focusing on the small intestine, we discuss how studies at the interface between bioengineering and intestinal biology provide new insights into organ function. Specifically, we focus on engineered biomaterials, complex 3D structures resembling the intestinal architecture, and micro-physiological systems.
Collapse
Affiliation(s)
- Maria Antfolk
- BRIC - Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Lombardo D, Calandra P, Kiselev MA. Structural Characterization of Biomaterials by Means of Small Angle X-rays and Neutron Scattering (SAXS and SANS), and Light Scattering Experiments. Molecules 2020; 25:E5624. [PMID: 33260426 PMCID: PMC7730346 DOI: 10.3390/molecules25235624] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Scattering techniques represent non-invasive experimental approaches and powerful tools for the investigation of structure and conformation of biomaterial systems in a wide range of distances, ranging from the nanometric to micrometric scale. More specifically, small-angle X-rays and neutron scattering and light scattering techniques represent well-established experimental techniques for the investigation of the structural properties of biomaterials and, through the use of suitable models, they allow to study and mimic various biological systems under physiologically relevant conditions. They provide the ensemble averaged (and then statistically relevant) information under in situ and operando conditions, and represent useful tools complementary to the various traditional imaging techniques that, on the contrary, reveal more local structural information. Together with the classical structure characterization approaches, we introduce the basic concepts that make it possible to examine inter-particles interactions, and to study the growth processes and conformational changes in nanostructures, which have become increasingly relevant for an accurate understanding and prediction of various mechanisms in the fields of biotechnology and nanotechnology. The upgrade of the various scattering techniques, such as the contrast variation or time resolved experiments, offers unique opportunities to study the nano- and mesoscopic structure and their evolution with time in a way not accessible by other techniques. For this reason, highly performant instruments are installed at most of the facility research centers worldwide. These new insights allow to largely ameliorate the control of (chemico-physical and biologic) processes of complex (bio-)materials at the molecular length scales, and open a full potential for the development and engineering of a variety of nano-scale biomaterials for advanced applications.
Collapse
Affiliation(s)
- Domenico Lombardo
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- CNR-ISMN, Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Mikhail A. Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| |
Collapse
|
15
|
Caputo P, Porto M, Angelico R, Loise V, Calandra P, Oliviero Rossi C. Bitumen and asphalt concrete modified by nanometer-sized particles: Basic concepts, the state of the art and future perspectives of the nanoscale approach. Adv Colloid Interface Sci 2020; 285:102283. [PMID: 33099178 DOI: 10.1016/j.cis.2020.102283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Asphalt concretes are biphasic systems, with a predominant phase (c.a. 93-96% w/w) made by the macro-meter sized inorganic aggregates hold together by small amounts of a viscoelastic binding bitumen (c.a. 5%). Even if the bitumen is in minor amount, it plays an important role dictating all the desired properties: rheological performances, resistance to aging etc. What happens if nanoparticles are used as additive in such materials? They usually confer enhanced resistance under mechanical stress and give sometimes interesting added-values properties so, despite the high costs of their production, nanoparticles are interesting materials which are being monitored for large scales applications. This work introduces the reader to the properties of nanoparticles in an easy to review their use in bitumen and asphalt preparation. Silica, ceramic, clay, other oxides and inorganic nanoparticles are presented and critically discussed in the framework of their use in bitumen and asphalt preparation for various scopes. Organic and functionalized nanoparticles are likewise discussed. Perspectives and cost analysis are also given for a more complete view of the problematic, hoping this could help researchers in their piloted design of material for road pavements with ever-increasing performances.
Collapse
Affiliation(s)
- Paolino Caputo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Michele Porto
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, Via De Sanctis, 86100 Campobasso, CB, Italy
| | - Valeria Loise
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Pietro Calandra
- CNR-ISMN, National Research Council - Institute for the Study of Nanostructured Materials, Via Salaria km 29.300, 00015 Monterotondo, Stazione (RM), Italy.
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
16
|
Exploiting Nanoparticles to Improve the Properties of Bitumens and Asphalts: At What Extent Is It Really Worth It? APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Asphalt concretes are materials used worldwide. It is well-known that in such materials the minor component, the bitumen, plays the most important role since it binds the high fraction (>95%) of inorganic macrometer-sized particles ensuring a coherent material fit for uses in road pavement. Additives can be used to increase the overall rheological properties, with high benefits in terms of resistance to mechanical stress and to ageing. Among these, nanoparticles have recently been considered as very effective additives in increasing the overall performance, increasing the viscosity, the rutting parameter and the recovery from deformation. However, they are expensive, so a delicate equilibrium between costs and benefits must be found for large-scale uses. In this framework, we furnish our critical analysis of the state-of-the art technologies used for improving the bitumen performances by means of nanoparticles with an eye to eventual added-values (like anti-oxidant effect, antistripping properties, or UV radiation screening which avoids radiation-induced ageing…). We will critically consider the costs involved in their use and we will give our opinion about vanguard techniques which can be fit for the analysis of nanoparticles-containing bitumens and asphalts. Interesting perspectives will be also given for future research and applications.
Collapse
|
17
|
Bioprintable tough hydrogels for tissue engineering applications. Adv Colloid Interface Sci 2020; 281:102163. [PMID: 32388202 DOI: 10.1016/j.cis.2020.102163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Bioprinting is an advanced fabrication approach to engineer complex living structures as the conventional fabrication methods are incapable of integrating structural and biological complexities. It offers the versatility of printing different cell incorporated hydrogels (bioink) layer by layer; offering control over spatial resolution and cell distribution to mimic native tissue architectures. However, the bioprinting of tough hydrogels involve additional complexities, such as employing complex crosslinking or reinforcing mechanisms during printing and pre/post printing cellular activities. Solving this complexity requires attention from engineering, material science and cell biology perspectives. In this review, we discuss different types of bioprinting techniques with focus on current state-of-the-art in bioink formulations and pivotal characteristics of bioinks for tough hydrogel printing. We discuss the scope of transition from 3D to 4D bioprinting and some of the advanced characterization techniques for in-depth understanding of the 3D printing process from the microstructural perspective, along with few specific applications and conclude with the future perspectives in biofabrication of hydrogels for tissue engineering applications.
Collapse
|
18
|
Holland C, Ryden P, Edwards CH, Grundy MML. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods 2020; 9:E201. [PMID: 32079083 PMCID: PMC7074226 DOI: 10.3390/foods9020201] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described.
Collapse
Affiliation(s)
- Claire Holland
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| | - Peter Ryden
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Myriam M.-L. Grundy
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| |
Collapse
|
19
|
Raghuwanshi VS, Garnier G. Characterisation of hydrogels: Linking the nano to the microscale. Adv Colloid Interface Sci 2019; 274:102044. [PMID: 31677493 DOI: 10.1016/j.cis.2019.102044] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Hydrogels are water enriched soft materials widely used for applications as varied as super absorbents, breast implants and contact lenses. Hydrogels have also been designed for smart functional devices including drug delivery, tissue engineering and diagnostics such as blood typing. The hydrogel properties and functionality depend on their crosslinking density, water holding capacity and fibre/polymer composition, strength and internal structure. Determining these parameters and properties are challenging. This review presents the main characterisation methods providing both qualitative and quantitative information of the structures and compositions of hydrogel. The length scale of interest ranges from the nano to the micro scale and the techniques and results are analysed in relationship to the hydrogel macroscopic applications. The characterisation methods examined aim at quantifying swelling, mechanical strength, mesh size, bound and free water content, pore structure, chemical composition, strength of chemical bonds and mechanical strength. These hydrogel parameters enable us to understand the fundamental mechanisms of hydrogel formation, to control their structure and functionality, and to optimize and tailor specific hydrogel properties to engineer particular applications.
Collapse
|
20
|
Wang Y, Santos PJ, Kubiak JM, Guo X, Lee MS, Macfarlane RJ. Multistimuli Responsive Nanocomposite Tectons for Pathway Dependent Self-Assembly and Acceleration of Covalent Bond Formation. J Am Chem Soc 2019; 141:13234-13243. [PMID: 31357862 PMCID: PMC6727667 DOI: 10.1021/jacs.9b06695] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 12/22/2022]
Abstract
Nanocomposite tectons (NCTs) are a recently developed building block for polymer-nanoparticle composite synthesis, consisting of nanoparticle cores functionalized with dense monolayers of polymer chains that terminate in supramolecular recognition groups capable of linking NCTs into hierarchical structures. In principle, the use of molecular binding to guide particle assembly allows NCTs to be highly modular in design, with independent control over the composition of the particle core and polymer brush. However, a major challenge to realize an array of compositionally and structurally varied NCT-based materials is the development of different supramolecular bonding interactions to control NCT assembly, as well as an understanding of how the organization of multiple supramolecular groups around a nanoparticle scaffold affects their collective binding interactions. Here, we present a suite of rationally designed NCT systems, where multiple types of supramolecular interactions (hydrogen bonding, metal complexation, and dynamic covalent bond formation) are used to tune NCT assembly as a function of multiple external stimuli including temperature, small molecules, pH, and light. Furthermore, the incorporation of multiple orthogonal supramolecular chemistries in a single NCT system makes it possible to dictate the morphologies of the assembled NCTs in a pathway-dependent fashion. Finally, multistimuli responsive NCTs enable the modification of composite properties by postassembly functionalization, where NCTs linked by covalent bonds with significantly enhanced stability are obtained in a fast and efficient manner. The designs presented here therefore provide major advancement for the field of composite synthesis by establishing a framework for synthesizing hierarchically ordered composites capable of complicated assembly behaviors.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter J. Santos
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joshua M. Kubiak
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xinheng Guo
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Margaret S. Lee
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J. Macfarlane
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Computational modeling of RNA 3D structure based on experimental data. Biosci Rep 2019; 39:BSR20180430. [PMID: 30670629 PMCID: PMC6367127 DOI: 10.1042/bsr20180430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
RNA molecules are master regulators of cells. They are involved in a variety of molecular processes: they transmit genetic information, sense cellular signals and communicate responses, and even catalyze chemical reactions. As in the case of proteins, RNA function is dictated by its structure and by its ability to adopt different conformations, which in turn is encoded in the sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore the majority of known RNAs remain structurally uncharacterized. To address this problem, predictive computational methods were developed based on the accumulated knowledge of RNA structures determined so far, the physical basis of the RNA folding, and taking into account evolutionary considerations, such as conservation of functionally important motifs. However, all theoretical methods suffer from various limitations, and they are generally unable to accurately predict structures for RNA sequences longer than 100-nt residues unless aided by additional experimental data. In this article, we review experimental methods that can generate data usable by computational methods, as well as computational approaches for RNA structure prediction that can utilize data from experimental analyses. We outline methods and data types that can be potentially useful for RNA 3D structure modeling but are not commonly used by the existing software, suggesting directions for future development.
Collapse
Affiliation(s)
- Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Astha
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, Poznan PL-61-614, Poland
| |
Collapse
|
22
|
A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed Pharmacother 2018; 107:96-108. [PMID: 30086465 DOI: 10.1016/j.biopha.2018.07.136] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 01/13/2023] Open
Abstract
Natural polysaccharides are renewable with a high degree of biocompatibility, biodegradability, and ability to mimic the natural extracellular matrix (ECM) microenvironment. Comprehensive investigations of polysaccharides are essential for our fundamental understanding of exploiting its potential as bio-composite, nano-conjugate and in pharmaceutical sectors. Polysaccharides are considered to be superior to other polymers, for its ease in tailoring, bio-compatibility, bio-activity, homogeneity and bio-adhesive properties. The main focus of this review is to spotlight the new advancements and challenges concerned with surface modification, binding domains, biological interaction with the conjugate including stability, polydispersity, and biodegradability. In this review, we have limited our survey to three essential polysaccharides including cellulose, starch, and glycogen that are sourced from plants, microbes, and animals respectively are reviewed. We also present the polysaccharides which have been extensively modified with the various types of conjugates for combating last-ditch pharmaceutical challenges.
Collapse
|
23
|
Ochbaum G, Davidovich-Pinhas M, Bitton R. Tuning the mechanical properties of alginate-peptide hydrogels. SOFT MATTER 2018; 14:4364-4373. [PMID: 29781028 DOI: 10.1039/c8sm00059j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alginate, a polysaccharide that gels in the presence of divalent ions, has been used in the field of regenerative medicine to facilitate cell growth in impaired tissues by providing an artificial bio-surrounding similar to the natural extra cellular matrix (ECM). Here, we present a systematic investigation of the effect of three arginine-glycine-aspartic acid (RGD)-containing peptides, G6KRGDY, A6KRGDY and V6KRGDY, on the physical properties of alginate-peptide hydrogels. Rheology measurements showed that the storage modulus of the alginate-A6KRGDY and alginate-V6KRGDY gels is an order of magnitude higher than that of the alginate-G6KRGDY gel. Small angle X-ray scattering (SAXS) measurements suggest that the difference in the mechanical properties of the gels is due to the formation of larger peptide junction zones in addition to the ones formed by calcium ions. These findings indicate that the peptides' ability to self-assemble in aqueous solution is a significant factor in tuning the stiffness of the alginate/peptide hybrid hydrogels.
Collapse
Affiliation(s)
- Guy Ochbaum
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | |
Collapse
|