1
|
Ma JH, Zhong Y, Zhou Y, Zhang Y, Feng XS. Organosulfur in food samples: Recent updates on sampling, pretreatment and determination technologies. J Chromatogr A 2023; 1689:463769. [PMID: 36610185 DOI: 10.1016/j.chroma.2022.463769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Organosulfur compounds (OSCs), mainly found in garlic, are the main biologically active substances for their pharmacological effects, including lowering of blood pressure and cholesterol, anti-cancer effect, liver protection, and anti-inflammatory. Efficient and sensitive pretreatment and determination methods of OSCs in different food matrices are of great significance. This review provides a comprehensive summary about the pretreatment and determination methods for OSCs in different food samples since 2010. Commonly used pretreatment methods, such as liquid-liquid extraction, microwave-assisted extraction, pressurized liquid extraction, liquid-liquid microextraction, solid phase extraction, dispersive solid phase extraction, solid-phase microextraction, and so on, have been summarized and overviewed in this paper. In particular, we discussed and compared various analysis methods including high performance liquid chromatography coupled with different detectors, gas chromatography-based methods, and few other methods. Finally, we tried to highlight the applicability, advantages and disadvantages of different pretreatment and analysis methods, and identified future prospects in this field.
Collapse
Affiliation(s)
- Jia-Hui Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang Zhong
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Swift SJ, Smith D, Dryahina K, Gnioua MO, Španěl P. Kinetics of reactions of NH 4 + with some biogenic organic molecules and monoterpenes in helium and nitrogen carrier gases: A potential reagent ion for selected ion flow tube mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9328. [PMID: 35603529 DOI: 10.1002/rcm.9328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE To assess the suitability of NH4 + as a reagent ion for trace gas analysis by selected ion flow tube mass spectrometry, SIFT-MS, its ion chemistry must be understood. Thus, rate coefficients and product ions for its reactions with typical biogenic molecules and monoterpenes need to be experimentally determined in both helium, He, and nitrogen, N2 , carrier gases. METHODS NH4 + and H3 O+ were generated in a microwave gas discharge through an NH3 and H2 O vapour mixture and, after m/z selection, injected into He and N2 carrier gas. Using the conventional SIFT method, NH4 + reactions were then studied with M, the biogenic molecules acetone, 1-propanol, 2-butenal, trans-2-heptenal, heptanal, 2-heptanone, 2,3-heptanedione and 15 monoterpene isomers to obtain rate coefficients, k, and product ion branching ratios. Polarisabilities and dipole moments of the reactant molecules and the enthalpy changes in proton transfer reactions were calculated using density functional theory. RESULTS The k values for the reactions of the biogenic molecules were invariably faster in N2 than in He but similar in both bath gases for the monoterpenes. Adducts NH4 + M were the dominant product ions in He and N2 for the biogenic molecules, whereas both MH+ and NH4 + M product ions were observed in the monoterpene reactions; the monoterpene ratio correlating (R2 = 0.7) with the proton affinity, PA, of the monoterpene molecule as calculated. The data indicate that this adduct ion formation is the result of bimolecular rather than termolecular association. CONCLUSIONS NH4 + can be a useful reagent ion for SIFT-MS analyses of molecules with PA(M) < PA(NH3 ) when the dominant single product ion is the adduct NH4 + M. For molecules with PA(M) > PA(NH3 ), such as monoterpenes, both MH+ and NH4 + M ions are likely products, which must be determined along with k by experiment.
Collapse
Affiliation(s)
- Stefan James Swift
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - Maroua Omezzine Gnioua
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| |
Collapse
|
3
|
Guerrini C, Nardella F, Morganti A, La Nasa J, Degano I, Ribechini E. Focusing on Volatile Organic Compounds of Natural Resins by Selected-Ion Flow Tube-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1465-1473. [PMID: 35762529 DOI: 10.1021/jasms.2c00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The analysis of archeological artifacts, due to the high value of antique objects, is preferably performed by nondestructive, noninvasive, and in situ techniques. At present, the most common in situ protocols used for the analysis of organic materials are spectroscopic approaches. In this work, we tested selected-ion flow tube-mass spectrometry (SIFT-MS), a transportable mass spectrometry system for the characterization and discrimination of natural resins by the analysis of their volatile organic compounds profiles. We chose diterpenoid, triterpenoid, and aromatic resins as reference materials, focusing on the most identified in archeological artifacts. This work aims to create a SIFT-MS database of mass spectra suitable for characterizing archeological samples. The spectral data obtained by SIFT-MS were interpreted with the aid of chromatograms and mass spectra obtained by head space-gas chromatography/mass spectrometry (HS-GC/MS). Finally, principal components analysis (PCA) was used to further underline the differences among the different materials and to investigate the possibility of discriminating different classes of resins based on their SIFT spectra.
Collapse
Affiliation(s)
- Camilla Guerrini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa56124, Italy
| | - Federica Nardella
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa56124, Italy
| | - Annachiara Morganti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa56124, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa56124, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence50121, Italy
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa56124, Italy
| | - Erika Ribechini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa56124, Italy
| |
Collapse
|
4
|
Slade EA, Thorn RMS, Young AE, Reynolds DM. Real-time detection of volatile metabolites enabling species-level discrimination of bacterial biofilms associated with wound infection. J Appl Microbiol 2022; 132:1558-1572. [PMID: 34617369 PMCID: PMC9298000 DOI: 10.1111/jam.15313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
AIMS The main aim of this study was to investigate the real-time detection of volatile metabolites for the species-level discrimination of pathogens associated with clinically relevant wound infection, when grown in a collagen wound biofilm model. METHODS AND RESULTS This work shows that Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes produce a multitude of volatile compounds when grown as biofilms in a collagen-based biofilm model. The real-time detection of these complex volatile profiles using selected ion flow tube mass spectrometry and the use of multivariate statistical analysis on the resulting data can be used to successfully differentiate between the pathogens studied. CONCLUSIONS The range of bacterial volatile compounds detected between the species studied vary and are distinct. Discrimination between bacterial species using real-time detection of volatile metabolites and multivariate statistical analysis was successfully demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY Development of rapid point-of-care diagnostics for wound infection would improve diagnosis and patient care. Such technological approaches would also facilitate the appropriate use of antimicrobials, minimizing the emergence of antimicrobial resistance. This study further develops the use of volatile metabolite detection as a new diagnostic approach for wound infection.
Collapse
Affiliation(s)
- Elisabeth A. Slade
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| | - Robin M. S. Thorn
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| | - Amber E. Young
- Bristol Centre for Surgical ResearchPopulation Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Darren M. Reynolds
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| |
Collapse
|
5
|
Volatile Organic Compound Profile Fingerprints Using DART-MS Shows Species-Specific Patterns in Fusarium Mycotoxin Producing Fungi. J Fungi (Basel) 2021; 8:jof8010003. [PMID: 35049943 PMCID: PMC8780669 DOI: 10.3390/jof8010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Fungal volatile organic compounds (VOCs) are low-molecular weight fungal metabolites that have high vapor pressure at ambient temperatures and can function as airborne signals. Here, we report a VOC study of several different species of Fusarium. Direct analysis in real time mass spectrometry (DART-MS) was applied for non-invasive VOC fingerprinting of Fusarium isolates growing under standardized conditions. A large number of ions were detected from the headspaces of the Fusarium species sampled here. Ions were detected with distinctively high concentrations in some species. While there were few VOCs produced by only one species, the relative concentrations of VOCs differed between species. The methodology has potential for convenient detection and identification of Fusarium contamination in agricultural commodities.
Collapse
|
6
|
Hinz R, 't Mannetje A, Glass B, McLean D, Douwes J. Airborne Fumigants and Residual Chemicals in Shipping Containers Arriving in New Zealand. Ann Work Expo Health 2021; 66:481-494. [PMID: 34657959 PMCID: PMC9030136 DOI: 10.1093/annweh/wxab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Airborne fumigants and other hazardous chemicals inside unopened shipping containers may pose a risk to workers handling containers. Methods Grab air samples from 490 sealed containers arriving in New Zealand were analysed for fumigants and other hazardous chemicals. We also collected grab air samples of 46 containers immediately upon opening and measured the total concentration of volatile organic compounds in real-time during ventilation. Additive Mixture Values (AMV) were calculated using the New Zealand Workplace Exposure standard (WES) and ACGIH Threshold Limit Values (TLV) of the 8-h, time-weighted average (TWA) exposure limit. Regression analyses assessed associations with container characteristics. Results Fumigants were detectable in 11.4% of sealed containers, with ethylene oxide detected most frequently (4.7%), followed by methyl bromide (3.5%). Other chemicals, mainly formaldehyde, were detected more frequently (84.7%). Fumigants and other chemicals exceeded the WES/TLV in 6.7%/7.8%, and 7.8%/20.0% of all containers, respectively. Correspondingly, they more frequently exceeded ‘1’ for the AMV-TLV compared to the AMV-WES (25.7% versus 7.8%). In samples taken upon opening of doors, fumigants were detected in both fumigated and non-fumigated containers, but detection frequencies and exceedances of the WES, TLV, and AMVs were generally higher in fumigated containers. Detection frequencies for other chemicals were similar in fumigated and non-fumigated containers, and only formaldehyde exceeded both the WES and TLV in both container groups. Volatile compounds in container air reduced rapidly during ventilation. Some cargo types (tyres; personal hygiene, beauty and medical products; stone and ceramics; metal and glass; and pet food) and countries of origin (China) were associated with elevated airborne chemical and fumigant concentrations. Conclusion Airborne chemicals in sealed containers frequently exceed exposure limits, both in fumigated and non-fumigated containers, and may contribute to short-term peak exposures of workers unloading or inspecting containers.
Collapse
Affiliation(s)
- Ruth Hinz
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Andrea 't Mannetje
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Bill Glass
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Dave McLean
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| |
Collapse
|
7
|
Ghislain M, Reyrolle M, Sotiropoulos JM, Pigot T, Le Bechec M. Chemical ionization of carboxylic acids and esters in negative mode selected ion flow tube – Mass spectrometry (SIFT-MS). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Hagens LA, Verschueren ARM, Lammers A, Heijnen NFL, Smit MR, Nijsen TME, Geven I, Schultz MJ, Bergmans DCJJ, Schnabel RM, Bos LDJ. Development and validation of a point-of-care breath test for octane detection. Analyst 2021; 146:4605-4614. [PMID: 34160491 DOI: 10.1039/d1an00378j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND There is a demand for a non-invasive bedside method to diagnose Acute Respiratory Distress Syndrome (ARDS). Octane was discovered and validated as the most important breath biomarker for diagnosis of ARDS using gas-chromatography and mass-spectrometry (GC-MS). However, GC-MS is unsuitable as a point-of-care (POC) test in the intensive care unit (ICU). Therefore, we determined if a newly developed POC breath test can reliably detect octane in exhaled breath of invasively ventilated ICU patients. METHODS Two developmental steps were taken to design a POC breath test that relies on gas-chromatography using air as carrier gas with a photoionization detector. Calibration measurements were performed with a laboratory prototype in healthy subjects. Subsequently, invasively ventilated patients were included for validation and assessment of repeatability. After evolving to a POC breath test, this device was validated in a second group of invasively ventilated patients. Octane concentration was based on the area under the curve, which was extracted from the chromatogram and compared to known values from calibration measurements. RESULTS Five healthy subjects and 53 invasively ventilated patients were included. Calibration showed a linear relation (R2 = 1.0) between the octane concentration and the quantified octane peak in the low parts per billion (ppb) range. For the POC breath test the repeatability was excellent (R2 = 0.98, ICC = 0.97 (95% CI 0.94-0.99)). CONCLUSION This is the first study to show that a POC breath test can rapidly and reliably detect octane, with excellent repeatability, at clinically relevant levels of low ppb in exhaled breath of ventilated ICU patients. This opens possibilities for targeted exhaled breath analysis to be used as a bedside test and makes it a potential diagnostic tool for the early detection of ARDS.
Collapse
Affiliation(s)
- Laura A Hagens
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Alwin R M Verschueren
- Remote Patient Monitoring & Connected Care, Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, Netherlands
| | - Ariana Lammers
- Department of Respiratory Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marry R Smit
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tamara M E Nijsen
- Remote Patient Monitoring & Connected Care, Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, Netherlands
| | - Inge Geven
- Remote Patient Monitoring & Connected Care, Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands and Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand and Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dennis C J J Bergmans
- Department of Intensive Care, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ronny M Schnabel
- Department of Intensive Care, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands and Department of Respiratory Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Simon AG, Van Arsdale K, Barrow J, Wagner J. Real-time monitoring of TATP released from PDMS-based canine training aids versus bulk TATP using DART-MS. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Segers K, Slosse A, Viaene J, Bannier MAGE, Van de Kant KDG, Dompeling E, Van Eeckhaut A, Vercammen J, Vander Heyden Y. Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques. Talanta 2021; 225:122080. [PMID: 33592793 DOI: 10.1016/j.talanta.2021.122080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/26/2023]
Abstract
Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical context as diagnostic tool for breath samples using target biomarkers. Exhaled breath sampling is non-invasive and therefore much more patient friendly compared to bronchoscopy, which is the golden standard for evaluating airway inflammation. In the actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and healthy individuals were included. Rather than focusing on the analysis of target biomarkers or on the identification of biomarkers, different data analysis strategies, including a variety of pretreatment, classification and discrimination techniques, are evaluated regarding their capacity to distinguish the three classes based on subtle differences in their full scan SIFT-MS spectra. Proper data-analysis strategies are required because these full scan spectra contain much external, i.e. unwanted, variation. Each SIFT-MS analysis generates three spectra resulting from ion-molecule reactions of analyte molecules with H3O+, NO+ and O2+. Models were built with Linear Discriminant Analysis, Quadratic Discriminant Analysis, Soft Independent Modelling by Class Analogy, Partial Least Squares - Discriminant Analysis, K-Nearest Neighbours, and Classification and Regression Trees. Perfect models, concerning overall sensitivity and specificity (100% for both) were found using Direct Orthogonal Signal Correction (DOSC) pretreatment. Given the uncertainty related to the classification models associated with DOSC pretreatments (i.e. good classification found also for random classes), other models are built applying other preprocessing approaches. A Partial Least Squares - Discriminant Analysis model with a combined pre-processing method considering single value imputation results in 100% sensitivity and specificity for calibration, but was less good predictive. Pareto scaling prior to Quadratic Discriminant Analysis resulted in 41/55 correctly classified samples for calibration and 34/55 for cross-validation. In future, the uncertainty with DOSC and the applicability of the promising preprocessing methods and models must be further studied applying a larger representative data set with a more extensive number of samples for each class. Nevertheless, this pilot study showed already some potential for the untargeted SIFT-MS application as a rapid pattern-recognition technique, useful in the diagnosis of clinical breath samples.
Collapse
Affiliation(s)
- Karen Segers
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Amorn Slosse
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Michiel A G E Bannier
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Kim D G Van de Kant
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Edward Dompeling
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Joeri Vercammen
- Interscience Expert Center (IS-X), Avenue Jean-Etienne Lenoir 2, 1348, Louvain-la-Neuve, Belgium; Industrial Catalysis and Adsorption Technology (INCAT), Faculty of Engineering and Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
11
|
Hinz R, Mannetje A', Glass B, McLean D, Pearce N, Douwes J. Exposures to Fumigants and Residual Chemicals in Workers Handling Cargo from Shipping Containers and Export Logs in New Zealand. Ann Work Expo Health 2020; 64:826-837. [PMID: 32504467 DOI: 10.1093/annweh/wxaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Previous studies have reported high concentrations of airborne fumigants and other chemicals inside unopened shipping containers, but it is unclear whether this is reflective of worker exposures. METHODS We collected personal 8-h air samples using a whole-air sampling method. Samples were analysed for 1,2-dibromoethane, chloropicrin, ethylene oxide, hydrogen cyanide, hydrogen phosphide, methyl bromide, 1,2-dichloroethane, C2-alkylbenzenes, acetaldehyde, ammonia, benzene, formaldehyde, methanol, styrene, and toluene. Additive Mixture Values (AMVs) were calculated using the New Zealand Workplace Exposure standard (WES) and American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) of the 8-h, time-weighted average exposure limit. Linear regression was conducted to assess associations with work characteristics. RESULTS We included 133 workers handling shipping containers, 15 retail workers unpacking container goods, 40 workers loading fumigated and non-fumigated export logs, and 5 fumigators. A total of 193 personal 8-h air measurements were collected. Exposures were generally low, with >50% below the limit of detection for most chemicals, and none exceeding the NZ WES, although formaldehyde exceeded the TLV in 26.2% of all measurements. The AMV-TLV threshold of 1 was exceeded in 29.0% of the measurements. Levels and detection frequencies of most chemicals varied little between occupational groups, although exposure to methyl bromide was highest in the fumigators (median 43 ppb) without exceeding the TLV of 1000 ppb. Duration spent inside the container was associated with significantly higher levels of ethylene oxide, C2-alkylbenzenes, and acetaldehyde, but levels were well below the TLV/WES. Exposure levels did not differ between workers handling fumigated and non-fumigated containers. CONCLUSIONS Personal exposures of workers handling container cargo in New Zealand were mainly below current exposure standards, with formaldehyde the main contributor to overall exposure. However, as it is not clear whether working conditions of participants included in this study were representative of this industry as a whole, and not all relevant exposures were measured, we cannot exclude the possibility that high exposures may occur in some workers.
Collapse
Affiliation(s)
- Ruth Hinz
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Andrea 't Mannetje
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Bill Glass
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Dave McLean
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Neil Pearce
- Centre for Public Health Research, Massey University, Wellington, New Zealand.,Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| |
Collapse
|
12
|
Allers M, Kirk AT, Schaefer C, Erdogdu D, Wissdorf W, Benter T, Zimmermann S. Field-Dependent Reduced Ion Mobilities of Positive and Negative Ions in Air and Nitrogen in High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2191-2201. [PMID: 32865400 DOI: 10.1021/jasms.0c00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS), ions are formed in a reaction region and separated in a drift region, which is similar to classical drift tube ion mobility spectrometers (IMS) operated at ambient pressure. However, in contrast to the latter, the HiKE-IMS is operated at a decreased background pressure of 10-40 mbar and achieves high reduced electric field strengths of up to 120 Td in both the reaction and the drift region. Thus, the HiKE-IMS allows insights into the chemical kinetics of ion-bound water cluster systems at effective ion temperatures exceeding 1000 K, although it is operated at the low absolute temperature of 45 °C. In this work, a HiKE-IMS with a high resolving power of RP = 140 is used to study the dependence of reduced ion mobilities on the drift gas humidity and the effective ion temperature for the positive reactant ions H3O+(H2O)n, O2+(H2O)n, NO+(H2O)n, NO2+(H2O)n, and NH4+(H2O)n, as well as the negative reactant ions O2-(H2O)n, O3-(H2O)n, CO3-(H2O)n, HCO3-(H2O)n, and NO2-(H2O)n. By varying the reduced electric field strength in the drift region, cluster transitions are observed in the ion mobility spectra. This is demonstrated for the cluster systems H3O+(H2O)n and NO+(H2O)n.
Collapse
Affiliation(s)
- Maria Allers
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany
| | - Ansgar T Kirk
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany
| | - Christoph Schaefer
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany
| | - Duygu Erdogdu
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Walter Wissdorf
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany
| |
Collapse
|
13
|
Calla-Quispe E, Fuentes-Rivera HL, Ramírez P, Martel C, Ibañez AJ. Mass Spectrometry: A Rosetta Stone to Learn How Fungi Interact and Talk. Life (Basel) 2020; 10:E89. [PMID: 32575729 PMCID: PMC7345136 DOI: 10.3390/life10060089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Fungi are a highly diverse group of heterotrophic organisms that play an important role in diverse ecological interactions, many of which are chemically mediated. Fungi have a very versatile metabolism, which allows them to synthesize a large number of still little-known chemical compounds, such as soluble compounds that are secreted into the medium and volatile compounds that are chemical mediators over short and long distances. Mass spectrometry (MS) is currently playing a dominant role in mycological studies, mainly due to its inherent sensitivity and rapid identification capabilities of different metabolites. Furthermore, MS has also been used as a reliable and accurate tool for fungi identification (i.e., biotyping). Here, we introduce the readers about fungal specialized metabolites, their role in ecological interactions and provide an overview on the MS-based techniques used in fungal studies. We particularly present the importance of sampling techniques, strategies to reduce false-positive identification and new MS-based analytical strategies that can be used in mycological studies, further expanding the use of MS in broader applications. Therefore, we foresee a bright future for mass spectrometry-based research in the field of mycology.
Collapse
Affiliation(s)
- Erika Calla-Quispe
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| | - Hammerly Lino Fuentes-Rivera
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Pablo Ramírez
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Carlos Martel
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Arenales 1256, Jesús María 15072, Lima, Peru
| | - Alfredo J. Ibañez
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| |
Collapse
|
14
|
Brůhová Michalčíková R, Dryahina K, Smith D, Španěl P. Volatile compounds released by Nalophan; implications for selected ion flow tube mass spectrometry and other chemical ionisation mass spectrometry analytical methods. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8602. [PMID: 31756780 DOI: 10.1002/rcm.8602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED Nalophan bags are commonly used to collect breath samples for volatile metabolite analysis. Volatile organic compounds (VOCs) released from the polymer can, however, be mistaken as breath metabolites when analyses are performed by selected ion flow tube mass spectrometry, SIFT-MS, or techniques that depend on a proper understanding of ion chemistry. METHODS Three analytical techniques were used to analyse the VOCs released into the nitrogen used to expand Nalophan bags, viz. gas chromatography/mass spectrometry (GC/MS), secondary electrospray ionization mass spectrometry (SESI-MS) and selected ion flow tube mass spectrometry (SIFT-MS). The most significant VOCs were identified and quantified by SIFT-MS as a function of storage time, temperature and humidity. RESULTS The consistent results obtained by these three analytical methods identify 1,2-ethanediol (ethylene glycol) and 2-methyl-1,3-dioxolane as the major VOCs released by the Nalophan. Their concentrations are enhanced by increasing the bag storage temperature and time, reaching 170 parts-per-billion by volume (ppbv) for ethylene glycol and 34 ppbv for 2-methyl-1,3-dioxolane in humid nitrogen (absolute humidity of 5%) contained in an 8-L Nalophan bag stored at 37°C for 160 min. CONCLUSIONS Using H3 O+ reagent ions for SIFT-MS and SESI-MS analyses, the following analyte ions (m/z values) are affected by the Nalophan impurities: 45, 63, 81, 89 and 99, which can compromise analyses of acetaldehyde, ethylene glycol, monoterpenes, acetoin, butyric acid, hexanal and heptane.
Collapse
Affiliation(s)
- Regina Brůhová Michalčíková
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov, Czech Republic
| | - Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova, Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova, Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova, Czech Republic
| |
Collapse
|
15
|
Ghislain M, Costarramone N, Pigot T, Reyrolle M, Lacombe S, Le Bechec M. High frequency air monitoring by selected ion flow tube-mass spectrometry (SIFT-MS): Influence of the matrix for simultaneous analysis of VOCs, CO2, ozone and water. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Zhang X, Liu J, Wang Y, Chingin K, Hua R, Zhu L, Rahman MM, Frankevich V, Chen H. Floral volatiles identification and molecular differentiation of Osmanthus fragrans by neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1861-1869. [PMID: 31414500 DOI: 10.1002/rcm.8554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Floral volatiles are commonly present only at trace amounts and can be degraded or lost during vapor collection, which is often challenging from the analytical standpoint. Osmanthus fragrans Lour. is a widely cultivated plant known for the highly distinct fragrance of its flowers. The identification of specific volatile organic compounds (VOCs) and molecular differentiation of O. fragrans without any chemical pretreatment and VOC collection are important. METHODS Twenty-eight VOCs released by the flowers from ten different cultivars of O. fragrans were identified using neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry (ND-EAPCI-MS) without any chemical pretreatment or VOC collection. Chemical identification was performed by high-resolution MSn analysis and whenever possible was confirmed by the analysis of standards. RESULTS According to our literature search, nine of the identified VOCs, 3-buten-2-one, cyclohexadiene, 2-methylfuran, 3-allylcyclohexene, cuminyl alcohol, hotrienol oxide, epoxy-linalool oxide, N-(2-hydroxyethyl) octanamide, and 3-hydroxy-dihydro-β-ionone, have not been reported in O. fragrans in earlier studies. Confident differentiation between ten different cultivars of O. fragrans was achieved by the principal component analysis of the mass spectrometric results. CONCLUSIONS The results of our ND-EAPCI-MS analysis substantially increase our knowledge about the chemistry of the O. fragrans floral fragrance and demonstrate the power of this technique for direct molecular profiling for plant recognition or in biotechnological applications.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Jianchuan Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Yanan Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Rong Hua
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Liang Zhu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Md Matiur Rahman
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, 117997, Russian Federation
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
17
|
Spesyvyi A, Španěl P, Sovová K. Styrene radical cations for chemical ionization mass spectrometry analyses of monoterpene hydrocarbons. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1870-1876. [PMID: 31418494 DOI: 10.1002/rcm.8556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Monoterpene hydrocarbons play an important role in the formation of secondary aerosol particles and in atmospheric chemistry. Thus, there is a demand to measure their individual concentrations in situ in real time. Currently, only the total concentration of monoterpenes C10 H16 can be determined by chemical ionization mass spectrometry techniques using reagent ions H3 O+ , NO+ and (C6 H6 )n +• without gas chromatographic separation. METHODS The styrene cation C8 H8 +• was investigated as a reagent for chemical ionization of monoterpenes. The modified selected ion flow drift tube, SIFDT, technique was used to characterize the differences in product ion distributions between α-phellandrene, α-pinene, γ-terpinene, β-pinene, ocimene, sabinene, 3-carene, (R)-limonene, camphene and myrcene. RESULTS The monoterpene molecular cation C10 H16 +• is the main product (about 90%) for all isomers except (R)-limonene and camphene with an efficient channel of C8 H8 +• C10 H16 adduct formation and γ-terpinene with unexpectedly significant product ions at m/z 134 and 135 corresponding to losses of H2 and H. CONCLUSIONS Utilization of the styrene cation for the ionization of monoterpenes is beneficial due to the very low fragmentation of the product ions. Specific association product ions for camphene and (R)-limonene and fragment product ions for γ-terpinene allow them to be distinguished from other isomers that produce mostly the molecular cation.
Collapse
Affiliation(s)
- Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic
| | - Kristýna Sovová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic
| |
Collapse
|
18
|
Dryahina K, Som S, Smith D, Španěl P. Characterization of spoilage‐related volatile organic compounds in packaged leaf salads. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Suman Som
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|
19
|
Zhou M, Sharma R, Zhu H, Li Z, Li J, Wang S, Bisco E, Massey J, Pennington A, Sjoding M, Dickson RP, Park P, Hyzy R, Napolitano L, Gillies CE, Ward KR, Fan X. Rapid breath analysis for acute respiratory distress syndrome diagnostics using a portable two-dimensional gas chromatography device. Anal Bioanal Chem 2019; 411:6435-6447. [PMID: 31367803 PMCID: PMC6722019 DOI: 10.1007/s00216-019-02024-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury, responsible for high mortality and long-term morbidity. As a dynamic syndrome with multiple etiologies, its timely diagnosis is difficult as is tracking the course of the syndrome. Therefore, there is a significant need for early, rapid detection and diagnosis as well as clinical trajectory monitoring of ARDS. Here, we report our work on using human breath to differentiate ARDS and non-ARDS causes of respiratory failure. A fully automated portable 2-dimensional gas chromatography device with high peak capacity (> 200 at the resolution of 1), high sensitivity (sub-ppb), and rapid analysis capability (~ 30 min) was designed and made in-house for on-site analysis of patients' breath. A total of 85 breath samples from 48 ARDS patients and controls were collected. Ninety-seven elution peaks were separated and detected in 13 min. An algorithm based on machine learning, principal component analysis (PCA), and linear discriminant analysis (LDA) was developed. As compared to the adjudications done by physicians based on the Berlin criteria, our device and algorithm achieved an overall accuracy of 87.1% with 94.1% positive predictive value and 82.4% negative predictive value. The high overall accuracy and high positive predicative value suggest that the breath analysis method can accurately diagnose ARDS. The ability to continuously and non-invasively monitor exhaled breath for early diagnosis, disease trajectory tracking, and outcome prediction monitoring of ARDS may have a significant impact on changing practice and improving patient outcomes. Graphical abstract.
Collapse
Affiliation(s)
- Menglian Zhou
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave, Ann Arbor, MI, 48109, USA
| | - Ruchi Sharma
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave, Ann Arbor, MI, 48109, USA
| | - Hongbo Zhu
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave, Ann Arbor, MI, 48109, USA
| | - Ziqi Li
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave, Ann Arbor, MI, 48109, USA
| | - Jiliang Li
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave, Ann Arbor, MI, 48109, USA
| | - Shiyu Wang
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave, Ann Arbor, MI, 48109, USA
| | - Erin Bisco
- Department of Emergency Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Justin Massey
- Department of Emergency Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Amanda Pennington
- Department of Emergency Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Michael Sjoding
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine: Division of Pulmonary and Critical Care, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Robert P Dickson
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine: Division of Pulmonary and Critical Care, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Pauline Park
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
- Department of Surgery: Section of Acute Care Surgery, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Robert Hyzy
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine: Division of Pulmonary and Critical Care, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Lena Napolitano
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
- Department of Surgery: Section of Acute Care Surgery, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Christopher E Gillies
- Department of Emergency Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Kevin R Ward
- Department of Emergency Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA.
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave, Ann Arbor, MI, 48109, USA.
- Michigan Center for Integrative Research in Critical Care, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Li E, Knight JM, Wu Y, Luong A, Rodriguez A, Kheradmand F, Corry DB. Airway mycosis in allergic airway disease. Adv Immunol 2019; 142:85-140. [PMID: 31296304 DOI: 10.1016/bs.ai.2019.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The allergic airway diseases, including chronic rhinosinusitis (CRS), asthma, allergic bronchopulmonary mycosis (ABPM) and many others, comprise a heterogeneous collection of inflammatory disorders affecting the upper and lower airways and lung parenchyma that represent the most common chronic diseases of humanity. In addition to their shared tissue tropism, the allergic airway diseases are characterized by a distinct pattern of inflammation involving the accumulation of eosinophils, type 2 macrophages, innate lymphoid cells type 2 (ILC2), IgE-secreting B cells, and T helper type 2 (Th2) cells in airway tissues, and the prominent production of type 2 cytokines including interleukin (IL-) 33, IL-4, IL-5, IL-13, and many others. These factors and related inflammatory molecules induce characteristic remodeling and other changes of the airways that include goblet cell metaplasia, enhanced mucus secretion, smooth muscle hypertrophy, tissue swelling and polyp formation that account for the major clinical manifestations of nasal obstruction, headache, hyposmia, cough, shortness of breath, chest pain, wheezing, and, in the most severe cases of lower airway disease, death due to respiratory failure or disseminated, systemic disease. The syndromic nature of the allergic airway diseases that now include many physiological variants or endotypes suggests that distinct endogenous or environmental factors underlie their expression. However, findings from different perspectives now collectively link these disorders to a single infectious source, the fungi, and a molecular pathogenesis that involves the local production of airway proteinases by these organisms. In this review, we discuss the evidence linking fungi and their proteinases to the surprisingly wide variety of chronic airway and systemic disorders and the immune pathogenesis of these conditions as they relate to environmental fungi. We further discuss the important implications these new findings have for the diagnosis and future therapy of these common conditions.
Collapse
Affiliation(s)
- Evan Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - J Morgan Knight
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
| | - Yifan Wu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Amber Luong
- Department of Otolaryngology, University of Texas Health Science at Houston, Houston, TX, United States
| | - Antony Rodriguez
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, United States
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, United States.
| |
Collapse
|
21
|
Brusselmans L, Arnouts L, Millevert C, Vandersnickt J, van Meerbeeck JP, Lamote K. Breath analysis as a diagnostic and screening tool for malignant pleural mesothelioma: a systematic review. Transl Lung Cancer Res 2018; 7:520-536. [PMID: 30450290 PMCID: PMC6204411 DOI: 10.21037/tlcr.2018.04.09] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a tumour related to a historical exposure to asbestos fibres. Currently, the definite diagnosis is made only by the histological examination of a biopsy obtained through an invasive thoracoscopy. However, diagnosis is made too late for curative treatment because of non-specific symptoms mainly appearing at advanced stage disease. Hence, due to its biologic aggressiveness and the late diagnosis, survival rate is low and the patients' outcome poor. In addition, radiological imaging, like computed tomographic scans, and blood biomarkers are found not to be sensitive enough to be used as an early diagnostic tool. Detection in an early stage is assumed to improve the patients' outcome but is hampered due to non-specific and late symptomology. Hence, there is a need for a new screening and diagnostic test which could improve the patients' outcome. Despite extensive research has focused on blood biomarkers, not a single has been shown clinically useful, and therefore research recently shifted to "breathomics" techniques to recognize specific volatile organic compounds (VOCs) in the breath of the patient as potential non-invasive biomarkers for disease. In this review, we summarize the acquired knowledge about using breath analysis for diagnosing and monitoring MPM and asbestos-related disorders (ARD). Gas chromatography-mass spectrometry (GC-MS), the gold standard of breath analysis, appears to be the method with the highest accuracy (97%) to differentiate MPM patients from at risk asbestos-exposed subjects. There have already been found some interesting biomarkers that are significantly elevated in asbestosis (NO, 8-isoprostane, leukotriene B4, α-Pinene…) and MPM (cyclohexane) patients. Regrettably, the different techniques and the plethora of studies suffer some limitations. Most studies are pilot studies with the inclusion of a limited number of patients. Nevertheless, given the promising results and easy sampling methods, we can conclude that breath analysis may become a useful tool in the future to screen for MPM, but further research is warranted.
Collapse
Affiliation(s)
- Lisa Brusselmans
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Lieselot Arnouts
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Charissa Millevert
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Joyce Vandersnickt
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
- Internal Medicine, Ghent University, Ghent, Belgium
- Department of Pneumology, Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
- Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Dryahina K, Smith D, Španěl P. Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:739-750. [PMID: 29486530 DOI: 10.1002/rcm.8095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The major objective of this exploratory study was to implement selected ion flow tube mass spectrometry, SIFT-MS, as a method for the on-line quantification of the volatile organic compounds, VOCs, in the headspace of the ground roasted coffee. METHODS The optimal precursor ions and characteristic analyte ions were selected for real-time SIFT-MS quantification of those VOCs that are the most abundant in the headspace or known to contribute to aroma. NO+ reagent ion reactions were exploited for most of the VOC analyses. VOC identifications were confirmed using gas chromatography/mass spectrometry, GC/MS, coupled with solid-phase microextraction, SPME. RESULTS Thirty-one VOCs were quantified, including several alcohols, aldehydes, ketones, carboxylic acids, esters and some heterocyclic compounds. Variations in the concentrations of each VOC in the seven regional coffees were typically less than a factor of 2, yet concentrations patterns characteristic of the different regional coffees were revealed by heat map and principal component analyses. The coefficient of variation in the concentrations across the seven coffees was typically below 24% except for furfural, furan, methylfuran and guaiacol. CONCLUSIONS The SIFT-MS analytical method can be used to quantify in real time the most important odoriferous VOCs in ground coffee headspace to sufficient precision to reveal some differences in concentration patterns for coffee produced in different countries.
Collapse
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23, Prague 8, Czech Republic
| | - David Smith
- Trans Spectra Limited, 9 The Elms, Newcastle-under-Lyme, ST5 8RP, UK
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23, Prague 8, Czech Republic
| |
Collapse
|
23
|
Variation in Exhaled Acetone and Other Ketones in Patients Undergoing Bariatric Surgery: a Prospective Cross-sectional Study. Obes Surg 2018. [DOI: 10.1007/s11695-018-3180-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Volatile Organic Compounds: Upcoming Role in Diagnosis of Invasive Mould Infections. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0284-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Byliński H, Gębicki J, Dymerski T, Namieśnik J. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry. Crit Rev Anal Chem 2017; 47:340-358. [DOI: 10.1080/10408347.2017.1298986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hubert Byliński
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Gębicki
- Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Dymerski
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Namieśnik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
26
|
Spesyvyi A, Smith D, Španěl P. Ion chemistry at elevated ion–molecule interaction energies in a selected ion flow-drift tube: reactions of H3O+, NO+ and O2+ with saturated aliphatic ketones. Phys Chem Chem Phys 2017; 19:31714-31723. [DOI: 10.1039/c7cp05795d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rate coefficients and product ion branching ratios determined for proton transfer, association and charge transfer reactions provide insight into reaction mechanisms.
Collapse
Affiliation(s)
- Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences
- 18223 Prague 8
- Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences
- 18223 Prague 8
- Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences
- 18223 Prague 8
- Czech Republic
| |
Collapse
|
27
|
Giannoukos S, Brkić B, Taylor S, Marshall A, Verbeck GF. Chemical Sniffing Instrumentation for Security Applications. Chem Rev 2016; 116:8146-72. [PMID: 27388215 DOI: 10.1021/acs.chemrev.6b00065] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and
Collapse
Affiliation(s)
- Stamatios Giannoukos
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool, L69 3GJ, U.K
| | - Boris Brkić
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool, L69 3GJ, U.K.,Q-Technologies Ltd., 100 Childwall Road, Liverpool, L15 6UX, U.K
| | - Stephen Taylor
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool, L69 3GJ, U.K.,Q-Technologies Ltd., 100 Childwall Road, Liverpool, L15 6UX, U.K
| | - Alan Marshall
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool, L69 3GJ, U.K
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas , Denton, Texas 76201, United States
| |
Collapse
|
28
|
Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas. Bioanalysis 2016; 8:1183-201. [PMID: 27212131 DOI: 10.4155/bio-2016-0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.
Collapse
|