1
|
Qu Y, Zou Y, Wang G, Zhang Y, Yu Q. Disruption of Communication: Recent Advances in Antibiofilm Materials with Anti-Quorum Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13353-13383. [PMID: 38462699 DOI: 10.1021/acsami.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Gorgan M, Vanunu Ofri S, Engler ER, Yehuda A, Hutnick E, Hayouka Z, Bertucci MA. The importance of the PapR 7 C-terminus and amide protons in mediating quorum sensing in Bacilluscereus. Res Microbiol 2023; 174:104139. [PMID: 37758114 DOI: 10.1016/j.resmic.2023.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
The opportunistic human pathogen Bacillus cereus controls the expression of key infection-promoting phenotypes using bacterial quorum sensing (QS). QS signal transduction within the species is controlled by an autoinducing peptide, PapR7, and its cognate receptor, PlcR, indicating that the PlcR:PapR interface is a prime target for QS inhibitor development. The C-terminal region of the peptide (PapR7; ADLPFEF) has been successfully employed as a scaffold to develop potent QS modulators. Despite the noted importance of the C-terminal carboxylate and amide protons in crystallographic data, their role in QS activity has yet to be explored. In this study, an N-methyl scan of PapR7 was conducted in conjunction with a C-terminal modification of previously identified B. cereus QS inhibitors. The results indicate that the amide proton at Glu6 and the C-terminal carboxylate are important for effective QS inhibition of the PlcR regulon. Through β-galactosidase and hemolysis assays, a series of QS inhibitors were discovered, including several capable of inhibiting QS with nanomolar potency. These inhibitors, along with the structure-activity data reported, will serve as valuable tools for disrupting the B. cereus QS pathway towards developing novel anti-infective strategies.
Collapse
Affiliation(s)
- Michael Gorgan
- Department of Chemistry, Lafayette College, 701 Sullivan Rd., Easton, PA 18042, United States
| | - Shahar Vanunu Ofri
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Emilee R Engler
- Department of Chemistry, Moravian University, 1200 Main St., Bethlehem, PA 18018, United States
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elizabeth Hutnick
- Department of Chemistry, Moravian University, 1200 Main St., Bethlehem, PA 18018, United States
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Michael A Bertucci
- Department of Chemistry, Lafayette College, 701 Sullivan Rd., Easton, PA 18042, United States.
| |
Collapse
|
3
|
Milly TA, Tal-Gan Y. Targeting Peptide-Based Quorum Sensing Systems for the Treatment of Gram-Positive Bacterial Infections. Pept Sci (Hoboken) 2023; 115:e24298. [PMID: 37397504 PMCID: PMC10312355 DOI: 10.1002/pep2.24298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023]
Abstract
Bacteria utilize a cell density-dependent communication system called quorum sensing (QS) to coordinate group behaviors. In Gram-positive bacteria, QS involves the production of and response to auto-inducing peptide (AIP) signaling molecules to modulate group phenotypes, including pathogenicity. As such, this bacterial communication system has been identified as a potential therapeutic target against bacterial infections. More specifically, developing synthetic modulators derived from the native peptide signal paves a new way to selectively block the pathogenic behaviors associated with this signaling system. Moreover, rational design and development of potent synthetic peptide modulators allows in depth understanding of the molecular mechanisms that drive QS circuits in diverse bacterial species. Overall, studies aimed at understanding the role of QS in microbial social behavior could result in the accumulation of significant knowledge of microbial interactions, and consequently lead to the development of alternative therapeutic agents to treat bacterial infectivity. In this review, we discuss recent advances in the development of peptide-based modulators to target QS systems in Gram-positive pathogens, with a focus on evaluating the therapeutic potential associated with these bacterial signaling pathways.
Collapse
Affiliation(s)
- Tahmina A. Milly
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada, 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada, 89557, United States
| |
Collapse
|
4
|
McBrayer DN, Ghosh U, Lella M, Cameron CD, Tal-Gan Y. Peptoid-Peptide Hybrid Analogs of the Enterococcus faecalis Fsr Auto-Inducing Peptide (AIP) Reveal Crucial Structure-Activity Relationships. Chembiochem 2023; 24:e202200527. [PMID: 36376247 PMCID: PMC9812899 DOI: 10.1002/cbic.202200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/12/2022] [Indexed: 11/16/2022]
Abstract
As multidrug-resistant bacteria become a more pressing risk to human health, alternate approaches to treating bacterial infections are being increasingly investigated. Enterococcus faecalis is an opportunistic pathogen responsible for a large percentage of secondary enterococci infections. Its pathogenicity has been shown to be largely dependent on a cell-density communication mechanism, termed quorum sensing. In this study, we conducted a systematic investigation of the lactone-containing macrocyclic signaling peptide used by E. faecalis for Fsr-mediated communication, termed gelatinase biosynthesis activating pheromone (GBAP). Specifically, through a combination of the on-resin sub-monomer and solution phase peptoid building block synthesis approaches, we successfully synthesized a library of peptoid-peptide hybrid analogs of GBAP and determined the biological effects associated with the introduction of the peptoid (N-alkyl glycine derivative) modifications. Within the macrocycle region of the peptide, as have been seen with other modifications, the F7 site was unusually tolerant toward peptoid modification, compared with other macrocyclic sites. Interestingly, within the exocyclic tail, peptoid modification at the N2 site completely abolished activity, a first for a single tail modification.
Collapse
Affiliation(s)
- Dominic N. McBrayer
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA
| | - Uttam Ghosh
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA
| | - Muralikrishna Lella
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA
| | - Crissey D. Cameron
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
5
|
Gordon CP. Synthetic strategies to access staphylococcus auto-inducing peptides as quorum sensing modulators. Org Biomol Chem 2020; 18:379-390. [PMID: 31844862 DOI: 10.1039/c9ob02038a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accessory gene regulator (agr) quorum-sensing system is arguably the most important regulator of staphylococcus virulence and has been the focus of tremendous interest in the development of effective therapies for pathogenic bacterial infections. With regards to chemotherapeutic based strategies, the significant proportion of currently reported agr-system modulating molecules are mimics of the native ArgC substrate, which is a thioester-based macrocyclic peptide know as the auto-inducing peptide. Over the past two decades, more than two-hundred synthetic analogues have been reported. This review traces the development of the synthetic strategies employed to synthesise these analogues with a particular focus on macrocyclisation. At present these synthetic approaches can be clustered into five broad categories (1) solution-phase cyclisation, (2) immobilised carbodiimide assisted cyclisation, (3) concomitant on-resin cleavage and macrocyclisation, (4) Boc-compatible chemoselective thioesterification, and (5) Fmoc-compatible chemoselective thioesterification. The advantages and limitation provided by each of the approaches are compared and contrasted with a view towards potential reaction scale-up.
Collapse
Affiliation(s)
- Christopher P Gordon
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia.
| |
Collapse
|
6
|
Vasquez JK, West KHJ, Yang T, Polaske TJ, Cornilescu G, Tonelli M, Blackwell HE. Conformational Switch to a β-Turn in a Staphylococcal Quorum Sensing Signal Peptide Causes a Dramatic Increase in Potency. J Am Chem Soc 2020; 142:750-761. [PMID: 31859506 DOI: 10.1021/jacs.9b05513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the solution-phase structures of native signal peptides and related analogs capable of either strongly agonizing or antagonizing the AgrC quorum sensing (QS) receptor in the emerging pathogen Staphylococcus epidermidis. Chronic S. epidermidis infections are often recalcitrant to traditional therapies due to antibiotic resistance and formation of robust biofilms. The accessory gene regulator (agr) QS system plays an important role in biofilm formation in this opportunistic pathogen, and the binding of an autoinducing peptide (AIP) signal to its cognate transmembrane receptor (AgrC) is responsible for controlling agr. Small molecules or peptides capable of modulating this binding event are of significant interest as probes to investigate both the agr system and QS as a potential antivirulence target. We used NMR spectroscopy to characterize the structures of the three native S. epidermidis AIP signals and five non-native analogs with distinct activity profiles in the AgrC-I receptor from S. epidermidis. These studies revealed a suite of structural motifs critical for ligand activity. Interestingly, a unique β-turn was present in the macrocycles of the two most potent AgrC-I modulators, in both an agonist and an antagonist, which was distinct from the macrocycle conformation in the less-potent AgrC-I modulators and in the native AIP-I itself. This previously unknown β-turn provides a structural rationale for these ligands' respective biological activity profiles. Development of analogs to reinforce the β-turn resulted in our first antagonist with subnanomolar potency in AgrC-I, while analogs designed to contain a disrupted β-turn were dramatically less potent relative to their parent compounds. Collectively, these studies provide new insights into the AIP:AgrC interactions crucial for QS activation in S. epidermidis and advance the understanding of QS at the molecular level.
Collapse
Affiliation(s)
- Joseph K Vasquez
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Korbin H J West
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Tian Yang
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Thomas J Polaske
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Helen E Blackwell
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
7
|
Chen Y. Advances in the Synthesis of Methylated Products through Indirect Approaches. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yantao Chen
- Medicinal Chemistry, Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca 43183 Gothenburg Sweden
| |
Collapse
|
8
|
Horswill AR, Gordon CP. Structure-Activity Relationship Studies of Small Molecule Modulators of the Staphylococcal Accessory Gene Regulator. J Med Chem 2019; 63:2705-2730. [PMID: 31658413 DOI: 10.1021/acs.jmedchem.9b00798] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The accessory gene regulator (agr) quorum-sensing system is arguably the most important regulator of Staphylococcus virulence. The agr-system serves a crucial role in pathogenesis by triggering substantive gene expression alterations to up-regulate the production of a wide variety of virulence determinants such as exoenzymes (proteases, lipases, nucleases) and downregulate the expression of surface binding proteins. Accordingly, the agr-system represents a compelling target for the development of antivirulence therapeutics as potential adjuncts, or alternatives, to conventional bactericidal and bacteriostatic antibiotics. Despite this potential, to date, no agr-system inhibitors have progressed to the clinic; however, several promising lead compounds have been identified through screens of synthetic and natural product libraries. On the basis of the molecular components within the agr-system, the current contingent of regulating compounds can be clustered into three broad groups, AgrA-P3 activation inhibitors, AgrB-AgrD processing inhibitors, and AgrC-AIP interaction inhibitors. This review aims to provide an overview of the development, structure-activity-relationships, and limitations of compounds within each of these groups in addition to the current opportunities for developing next-generation anologs.
Collapse
Affiliation(s)
- Alexander R Horswill
- Veterans Affairs Eastern Colorado Health Care System, Aurora, Colorado 80045, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Christopher P Gordon
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia.,Molecular Medicine Research Group, School of Medicine, Westerm Sydney University, Building 30, Campbelltown, NSW 2560, Australia
| |
Collapse
|
9
|
Koirala B, Phillips NR, Tal-Gan Y. Unveiling the Importance of Amide Protons in CSP:ComD Interactions in Streptococcus pneumoniae. ACS Med Chem Lett 2019; 10:880-886. [PMID: 31223442 DOI: 10.1021/acsmedchemlett.9b00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/30/2019] [Indexed: 01/06/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that can cause diseases ranging from mild respiratory infections to life-threatening conditions such as pneumonia, meningitis, and bacteremia. S. pneumoniae pathogenicity is dependent on the action of a 17-amino acid peptide pheromone, termed competence stimulating peptide (CSP) that controls the competence regulon, a quorum sensing (QS) circuit. Therefore, intercepting QS could have therapeutic implications in treating pneumococcal infections while avoiding emerging antimicrobial resistance. In this study, we set out to evaluate the impact of amide protons on CSP activity and metabolic stability through systematic N-methylation. Our results indicate that the majority of amide protons are critical for CSP activity, either through direct interactions with the cognate receptor or by stabilizing the bioactive conformation. Importantly, we identified several N-methyl CSP analogs, namely, CSP1(15)-N-Me-K6 and CSP1(15)-N-Me-F7, that retain their biological activity while exhibiting enhanced metabolic stability. These analogs are privileged scaffolds for the design of CSP-based QS modulators with drug-like properties.
Collapse
Affiliation(s)
- Bimal Koirala
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Naiya R. Phillips
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
10
|
Yehuda A, Slamti L, Malach E, Lereclus D, Hayouka Z. Elucidating the Hot Spot Residues of Quorum Sensing Peptidic Autoinducer PapR by Multiple Amino Acid Replacements. Front Microbiol 2019; 10:1246. [PMID: 31231335 PMCID: PMC6568020 DOI: 10.3389/fmicb.2019.01246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022] Open
Abstract
The quorum sensing (QS) system of Bacillus cereus, an opportunistic human pathogen, utilizes the autoinducing PapR peptide signal that mediates the activation of the pleiotropic virulence regulator PlcR. A set of synthetic 7-mer PapR-derived peptides (PapR7; ADLPFEF) have been shown to inhibit efficiently the PlcR regulon activity and the production of virulence factors, reflected by a loss in hemolytic activity without affecting bacterial growth. Interestingly, these first potent synthetic inhibitors involved D-amino acid or alanine replacements of three amino acids; proline, glutamic acid, and phenylalanine of the heptapeptide PapR. To better understand the role of these three positions in PlcR activity, we report herein the second generation design, synthesis, and characterization of PapR7-derived combinations, alternate double and triple alanine and D-amino acids replacement at these positions. Our findings generate a new set of non-native PapR7-derived peptides that inhibit the PlcR regulon activity and the production of virulence factors. Using the amino acids substitution strategy, we revealed the role of proline and glutamic acid on PlcR regulon activation. Moreover, we demonstrated that the D-Glutamic acid substitution was crucial for the design of stronger PlcR antagonists. These peptides represent potent synthetic inhibitors of B. cereus QS and constitute new and readily accessible chemical tools for the study of the PlcR system. Our method might be applied to other quorum sensing systems to design new anti-virulence agents.
Collapse
Affiliation(s)
- Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
11
|
Gless BH, Bojer MS, Peng P, Baldry M, Ingmer H, Olsen CA. Identification of autoinducing thiodepsipeptides from staphylococci enabled by native chemical ligation. Nat Chem 2019; 11:463-469. [PMID: 31011175 DOI: 10.1038/s41557-019-0256-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/14/2019] [Indexed: 11/09/2022]
Abstract
Staphylococci secrete autoinducing peptides (AIPs) as signalling molecules to regulate population-wide behaviour. AIPs from non-Staphylococcus aureus staphylococci have received attention as potential antivirulence agents to inhibit quorum sensing and virulence gene expression in the human pathogen Staphylococcus aureus. However, only a limited number of AIP structures from non-S. aureus staphylococci have been identified to date, as the minute amounts secreted in complex media render it difficult. Here, we report a method for the identification of AIPs by exploiting their thiolactone functionality for chemoselective trapping and enrichment of the compounds from the bacterial supernatant. Standard liquid chromatography mass spectrometry analysis, guided by genome sequencing data, then readily provides the AIP identities. Using this approach, we confirm the identity of five known AIPs and identify the AIPs of eleven non-S. aureus species, and we expect that the method should be extendable to AIP-expressing Gram-positive bacteria beyond the Staphylococcus genus.
Collapse
Affiliation(s)
- Bengt H Gless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pai Peng
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mara Baldry
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Vasquez JK, Blackwell HE. Simplified Autoinducing Peptide Mimetics with Single-Nanomolar Activity Against the Staphylococcus aureus AgrC Quorum Sensing Receptor. ACS Infect Dis 2019; 5:484-492. [PMID: 30817121 DOI: 10.1021/acsinfecdis.9b00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus is a leading cause of hospital-acquired infections worldwide, and cases of community-acquired infections are becoming more prevalent. The production of numerous virulence factors in S. aureus is under the control of the accessory gene regulator (agr) quorum sensing (QS) system. S. aureus upregulates agr at high cell density by secreting a peptide pheromone, or autoinducing peptide (AIP), which is detected by its cognate transmembrane receptor, AgrC. The extracellular AIP binding site of AgrC represents an attractive target for inhibition of the agr system and, thereby, QS-controlled virulence in S. aureus. Nonnative peptides and, more recently, peptidomimetics have been reported to inhibit the AgrC receptor and represent useful chemical tools to study the role of QS in S. aureus infections. We seek to expand beyond peptide-like scaffolds to generate AgrC modulators with enhanced stability, solubility, and synthetic accessibility relative to these compounds, while maintaining their high potencies. Toward this goal, we report herein a study of the structure-activity relationships responsible for the activity of a recently reported simplified AIP mimetic and AgrC antagonist, n7OFF, and the discovery of a new AIP mimetic, Bnc3, which has low- to sub-nanomolar inhibitory activity in all four S. aureus agr specificity groups. NMR structural studies of Bnc3 revealed hydrophobic and hydrophilic faces that are likely critical for AgrC antagonism, in agreement with prior studies of peptide-derived inhibitors. Bnc3 represents an important transition compound toward the development of small-molecule AgrC antagonists.
Collapse
Affiliation(s)
- Joseph K. Vasquez
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Yang J, Qiu L, Huang Y, Chen Y, Rao S, Ruan W, Zhao G, Ye L. [The inhibition of accessory gene regulator C specific binding peptides on biofilm formation of Staphylococcus epidermidis on the surface of polyvinyl chloride in vitro]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:349-355. [PMID: 30874395 PMCID: PMC8337929 DOI: 10.7507/1002-1892.201806110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/15/2019] [Indexed: 11/03/2022]
Abstract
Objective To investigate the effect of accessory gene regulator C (agr C) specific binding peptides (named N1) on the biofilm formation of Staphylococcus epidermidis on the surface of polyvinyl chloride (PVC) materials in vitro. Methods Firstly, the two strains (ATCC35984, ATCC12228) were cultured with N1 at concentrations of 100, 200, 400, 800, and 1 600 μg/mL, respectively. The control group was cultured with agrC specific binding unrelated peptides (named N0) at the same concentrations and the absorbance ( A) value was measured after 24 hours to determine the optimal bacteriostatic concentration of N1. The two strains were cultured with N1 and N0 of the optimal concentration, respectively. The A values were measured at 6, 12, 18, 24, 30, and 48 hours to observe the effect of N1 on the biofilm formation ability of Staphylococcus epidermidis. On this basis, the surface structure of the biofilm on the surface of PVC material was observed by scanning electron microscopy after 6, 12, 18, 24, and 30 hours of incubation with PVC material sheet. The thickness of the biofilm was observed by laser confocal microscopy after 6, 12, 18, and 24 hours of incubation with ATCC35984 strain. Results The optimal bacteriostatic concentration of N1 was 800 μg/mL. ATCC 12228 strain did not form obvious biofilm after being cultured with N1 and N0. When ATCC35984 strain was cultured with N1 and N0 for 12 hours, the difference in biofilm formation ability between groups N1 and N0 was statistically significant ( P<0.05), but there was no significant difference at 6, 18, 24, 30, and 48 hours ( P>0.05). Scanning electron microscopy examination showed that mature biofilm structure was observed in ATCC35984 strain and was not observed in ATCC12228 strain. Laser confocal microscopy observation showed that the number of bacteria in the group N1 was significantly lower than that in the group N0 at 12 hours, and the most of bacteria were dead bacteria. There was no significant difference in the number of bacteria at 6, 18, and 24 hours, and the most of them were live bacteria. The biofilm thickness of group N1 was significantly lower than that of group N0 at 12 and 18 hours ( P<0.05). Conclusion The intensity of N1 inhibiting the formation of Staphylococcus epidermidis biofilm is dose-dependent. During the aggregation period, N1 can inhibit the biofilm formation by hindering the bacterial growth and aggregation. The inhibition effect on mature biofilm is not obvious.
Collapse
Affiliation(s)
- Jichen Yang
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Liangting Qiu
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Yunchao Huang
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Ya Chen
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Sunyin Rao
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Wenpeng Ruan
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Lianhua Ye
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118,
| |
Collapse
|
14
|
Chen Y. Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chemistry 2018; 25:3405-3439. [DOI: 10.1002/chem.201803642] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yantao Chen
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZeneca Gothenburg Sweden
| |
Collapse
|
15
|
Mull RW, Harrington A, Sanchez LA, Tal-Gan Y. Cyclic Peptides that Govern Signal Transduction Pathways: From Prokaryotes to Multi-Cellular Organisms. Curr Top Med Chem 2018; 18:625-644. [PMID: 29773060 DOI: 10.2174/1568026618666180518090705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/30/2016] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
Cyclic peptide scaffolds are key components of signal transduction pathways in both prokaryotic and eukaryotic organisms since they act as chemical messengers that activate or inhibit specific cognate receptors. In prokaryotic organisms these peptides are utilized in non-essential pathways, such as quorum sensing, that are responsible for virulence and pathogenicity. In the more evolved eukaryotic systems, cyclic peptide hormones play a key role in the regulation of the overall function of multicellular organisms, mainly through the endocrine system. This review will highlight several prokaryote and eukaryote systems that use cyclic peptides as their primary signals and the potential associated with utilizing these scaffolds for the discovery of novel therapeutics for a wide range of diseases and illnesses.
Collapse
Affiliation(s)
- Ryan W Mull
- Department of Chemistry, University of Nevada, Reno, NV 89557, United States
| | - Anthony Harrington
- Department of Chemistry, University of Nevada, Reno, NV 89557, United States
| | - Lucia A Sanchez
- Department of Chemistry, University of Nevada, Reno, NV 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, NV 89557, United States
| |
Collapse
|
16
|
Hansen AM, Peng P, Baldry M, Perez-Gassol I, Christensen SB, Vinther JMO, Ingmer H, Franzyk H. Lactam hybrid analogues of solonamide B and autoinducing peptides as potent S. aureus AgrC antagonists. Eur J Med Chem 2018; 152:370-376. [DOI: 10.1016/j.ejmech.2018.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/04/2023]
|
17
|
Karathanasi G, Bojer MS, Baldry M, Johannessen BA, Wolff S, Greco I, Kilstrup M, Hansen PR, Ingmer H. Linear peptidomimetics as potent antagonists of Staphylococcus aureus agr quorum sensing. Sci Rep 2018; 8:3562. [PMID: 29476092 PMCID: PMC5824847 DOI: 10.1038/s41598-018-21951-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/14/2018] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is an important pathogen causing infections in humans and animals. Increasing problems with antimicrobial resistance has prompted the development of alternative treatment strategies, including antivirulence approaches targeting virulence regulation such as the agr quorum sensing system. agr is naturally induced by cyclic auto-inducing peptides (AIPs) binding to the AgrC receptor and cyclic peptide inhibitors have been identified competing with AIP binding to AgrC. Here, we disclose that small, linear peptidomimetics can act as specific and potent inhibitors of the S. aureus agr system via intercepting AIP-AgrC signal interaction at low micromolar concentrations. The corresponding linear peptide did not have this ability. This is the first report of a linear peptide-like molecule that interferes with agr activation by competitive binding to AgrC. Prospectively, these peptidomimetics may be valuable starting scaffolds for the development of new inhibitors of staphylococcal quorum sensing and virulence gene expression.
Collapse
Affiliation(s)
- Georgia Karathanasi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Martin Saxtorph Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Mara Baldry
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Bárdur Andréson Johannessen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Sanne Wolff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Ines Greco
- Department of Drug Design and Farmacology, Faculty of Health and Medical Sciences University of Copenhagen, Universitetsparken 2, 2100, København, Denmark
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Metabolic Signaling and Regulation, Technical University of Denmark, Matematiktorvet, 2800, Lyngby, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Farmacology, Faculty of Health and Medical Sciences University of Copenhagen, Universitetsparken 2, 2100, København, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark.
| |
Collapse
|
18
|
Vasquez JK, Tal-Gan Y, Cornilescu G, Tyler KA, Blackwell HE. Simplified AIP-II Peptidomimetics Are Potent Inhibitors of Staphylococcus aureus AgrC Quorum Sensing Receptors. Chembiochem 2017; 18:413-423. [PMID: 28006082 DOI: 10.1002/cbic.201600516] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 01/13/2023]
Abstract
The bacterial pathogen Staphylococcus aureus controls many aspects of virulence by using the accessory gene regulator (agr) quorum sensing (QS) system. The agr system is activated by a macrocyclic peptide signal known as an autoinducing peptide (AIP). We sought to develop structurally simplified mimetics of AIPs for use as chemical tools to study QS in S. aureus. Herein, we report new peptidomimetic AgrC receptor inhibitors based on a tail-truncated AIP-II peptide that have almost analogous inhibitory activities to the parent peptide. Structural comparison of one of these peptidomimetics to the parent peptide and a highly potent, all-peptide-derived, S. aureus agr inhibitor (AIP-III D4A) revealed a conserved hydrophobic motif and overall amphipathic nature. Our results suggest that the AIP scaffold is amenable to structural mimicry and minimization for the development of synthetic agr inhibitors.
Collapse
Affiliation(s)
- Joseph K Vasquez
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA.,Present address: Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, NV, 89557, USA
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Kimberly A Tyler
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
19
|
Wang B, Muir TW. Regulation of Virulence in Staphylococcus aureus: Molecular Mechanisms and Remaining Puzzles. Cell Chem Biol 2016; 23:214-224. [PMID: 26971873 DOI: 10.1016/j.chembiol.2016.01.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 12/23/2022]
Abstract
The agr locus encodes a quorum-sensing (QS) circuit required for the virulence of a spectrum of Gram-positive pathogens and is, therefore, regarded as an important target for the development of chemotherapeutics. In recent years, many of the biochemical events in the Staphylococcus aureus agr circuit have been reconstituted and subject to quantitative analysis in vitro. This work, in conjunction with structural studies on several key players in the signaling circuit, has furnished mechanistic insights into the regulation and evolution of the agr QS system. Here, we review this progress and discuss the remaining open questions in the area. We also highlight advances in the discovery of small-molecule agr modulators and how the newly available biochemical and structural information might be leveraged for the design of next-generation therapeutics targeting the agr system.
Collapse
Affiliation(s)
- Boyuan Wang
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA; Graduate Program, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tom W Muir
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
Gordon CP, Olson SD, Lister JL, Kavanaugh JS, Horswill AR. Truncated Autoinducing Peptides as Antagonists of Staphylococcus lugdunensis Quorum Sensing. J Med Chem 2016; 59:8879-8888. [PMID: 27585401 DOI: 10.1021/acs.jmedchem.6b00727] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Competitive quorum sensing (QS) antagonism offers a novel strategy for attenuating current multidrug resistant staphylococcal infections. To this end, a series of 10 truncated analogues based on the parent autoinducing peptides (AIPs) of Staphylococcus lugdunensis (groups I and II) and Staphylococcus epidermidis (groups I-III) were sequentially assessed against a newly developed Staphylococcus lugdunensis group I QS reporter strain. The truncated analogues based upon Staphylococcus lugdunensis AIP-1 (1) and AIP-2 (2) displayed respective IC50 values of 0.2 ± 0.01 μM and 0.3 ± 0.01 μM, while the truncated analogue of the Staphylococcus epidermidis AIP-1 (3) elicited an IC50 value of 2.7 ± 0.1 μM. These findings demonstrate the potential of cognate and "crosstalk" competitive quorum sensing inhibition using truncated AIPs as a means of attenuating staphylococcal infections in species beyond Staphylococcus aureus.
Collapse
Affiliation(s)
- Christopher P Gordon
- School of Science and Health, Western Sydney University , Locked Bag 1797, Penrith South Dc, NSW 2751, Australia
| | - Shondra D Olson
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa 52242, United States
| | - Jessica L Lister
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa 52242, United States
| | - Jeffrey S Kavanaugh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa 52242, United States
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
21
|
Yang T, Tal-Gan Y, Paharik AE, Horswill AR, Blackwell HE. Structure-Function Analyses of a Staphylococcus epidermidis Autoinducing Peptide Reveals Motifs Critical for AgrC-type Receptor Modulation. ACS Chem Biol 2016; 11:1982-91. [PMID: 27159024 DOI: 10.1021/acschembio.6b00120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus epidermidis is frequently implicated in human infections associated with indwelling medical devices due to its ubiquity in the skin flora and formation of robust biofilms. The accessory gene regulator (agr) quorum sensing (QS) system plays a prominent role in the establishment of biofilms and infection by this bacterium. Agr activation is mediated by the binding of a peptide signal (or autoinducing peptide, AIP) to its cognate AgrC receptor. Many questions remain about the role of QS in S. epidermidis infections, as well as in mixed-microbial populations on a host, and chemical modulators of its agr system could provide novel insights into this signaling network. The AIP ligand provides an initial scaffold for the development of such probes; however, the structure-activity relationships (SARs) for activation of S. epidermidis AgrC receptors by AIPs are largely unknown. Herein, we report the first SAR analyses of an S. epidermidis AIP by performing systematic alanine and d-amino acid scans of the S. epidermidis AIP-I. On the basis of these results, we designed and identified potent, pan-group inhibitors of the AgrC receptors in the three S. epidermidis agr groups, as well as a set of AIP-I analogs capable of selective AgrC inhibition in either specific S. epidermidis agr groups or in another common staphylococcal species, S. aureus. In addition, we uncovered a non-native peptide agonist of AgrC-I that can strongly inhibit S. epidermidis biofilm growth. Together, these synthetic analogs represent new and readily accessible probes for investigating the roles of QS in S. epidermidis colonization and infections.
Collapse
Affiliation(s)
- Tian Yang
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Yftah Tal-Gan
- Department
of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557, United States
| | - Alexandra E. Paharik
- Department
of Microbiology, University of Iowa Carver College of Medicine, 431 Newton Rd., Iowa City, Iowa 52242, United States
| | - Alexander R. Horswill
- Department
of Microbiology, University of Iowa Carver College of Medicine, 431 Newton Rd., Iowa City, Iowa 52242, United States
| | - Helen E. Blackwell
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Eustache S, Leprince J, Tufféry P. Progress with peptide scanning to study structure-activity relationships: the implications for drug discovery. Expert Opin Drug Discov 2016; 11:771-84. [PMID: 27310575 DOI: 10.1080/17460441.2016.1201058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Peptides have gained renewed interest as candidate therapeutics. However, to bring them to a broader clinical use, challenges such as the rational optimization of their pharmacological properties remain. Peptide scanning techniques offer a systematic framework to gain information on the functional role of individual amino acids of a peptide. Due to progress in mastering new chemical synthesis routes targeting amino acid backbone, they are currently diversified. Structure-activity relationship (SAR) analyses such as alanine- or enantioneric- scanning can now be supplemented by N-substitution, lactam cyclisation- or aza-amino scanning procedures addressing not only SAR considerations but also the peptide pharmacological properties. AREAS COVERED This review highlights the different scanning techniques currently available and illustrates how they can impact drug discovery. EXPERT OPINION Progress in peptide scanning techniques opens new perspectives for peptide drug development. It comes with the promise of a paradigm change in peptide drug design in which peptide drugs will be closer to the parent peptides. However, scanning still remains assimilable to a trial and error strategy that could benefit from being combined with specific in silico approaches that start reaching maturity.
Collapse
Affiliation(s)
- Stéphanie Eustache
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| | - Jérôme Leprince
- b INSERM U982 , Regional Platform for Cell Imaging of Normandy (PRIMACEN), University Rouen-Normandy , Mont-Saint-Aignan, France
| | - Pierre Tufféry
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
23
|
Tal-Gan Y, Ivancic M, Cornilescu G, Yang T, Blackwell HE. Highly Stable, Amide-Bridged Autoinducing Peptide Analogues that Strongly Inhibit the AgrC Quorum Sensing Receptor in Staphylococcus aureus. Angew Chem Int Ed Engl 2016; 55:8913-7. [PMID: 27276693 DOI: 10.1002/anie.201602974] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/19/2016] [Indexed: 12/20/2022]
Abstract
Blocking quorum sensing (QS) pathways has attracted considerable interest as an approach to suppress virulence in bacterial pathogens. Toward this goal, we recently developed analogues of a native autoinducing peptide (AIP-III) signal that can inhibit AgrC-type QS receptors and attenuate virulence phenotypes in Staphylococcus aureus. Application of these compounds is limited, however, as they contain hydrolytically unstable thioester linkages and have only low aqueous solubilities. Herein, we report amide-linked AIP analogues with greatly enhanced hydrolytic stabilities and solubilities relative to our prior analogues, whilst maintaining strong potencies as AgrC receptor inhibitors in S. aureus. These compounds represent powerful tools for the study of QS.
Collapse
Affiliation(s)
- Yftah Tal-Gan
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
- Current address: Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Monika Ivancic
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
- Current address: Department of Chemistry, University of Vermont, 82 University Pl., Burlington, VT, 05405, USA
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Tian Yang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA.
| |
Collapse
|
24
|
Tal-Gan Y, Ivancic M, Cornilescu G, Yang T, Blackwell HE. Highly Stable, Amide-Bridged Autoinducing Peptide Analogues that Strongly Inhibit the AgrC Quorum Sensing Receptor inStaphylococcus aureus. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yftah Tal-Gan
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Ave. Madison WI 53706 USA
- Current address: Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Monika Ivancic
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Ave. Madison WI 53706 USA
- Current address: Department of Chemistry; University of Vermont; 82 University Pl. Burlington VT 05405 USA
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility; University of Wisconsin-Madison; 433 Babcock Dr. Madison WI 53706 USA
| | - Tian Yang
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Ave. Madison WI 53706 USA
| | - Helen E. Blackwell
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Ave. Madison WI 53706 USA
| |
Collapse
|
25
|
Quorum Quenching Strategy Targeting Gram-Positive Pathogenic Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 901:109-30. [PMID: 27167409 DOI: 10.1007/5584_2016_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Quorum sensing (QS) is a cell density-dependent regulatory system that orchestrates the group behavior of unicellular organisms by synchronizing the expression of certain gene(s) within the clonal community of same species. Bacterial pathogens often employ QS system to establish efficiently an infection. A large part of low GC Gram-positive bacteria belonging to phylum Firmicutes use thiolactone/lactone peptides as communication signals so-called autoinducing peptides (AIPs) to coordinate QS circuit. In particular, QS of staphylococci, enterococci, and clostridia have been intensively studied in terms of alternative target of anti-pathogenic chemotherapy independent of bactericidal antibiotics. Thus far, a number of quorum quenching (QQ) agents that targeting the QS circuit of these Gram-positive pathogens have been developed by random screening of natural compounds or rationale design of AIP antagonists. This review summarizes those QQ agents and previews their potential as post-antibiotic drugs.
Collapse
|
26
|
Tal-Gan Y, Ivancic M, Cornilescu G, Blackwell HE. Characterization of structural elements in native autoinducing peptides and non-native analogues that permit the differential modulation of AgrC-type quorum sensing receptors in Staphylococcus aureus. Org Biomol Chem 2015; 14:113-21. [PMID: 26416476 DOI: 10.1039/c5ob01735a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus uses short macrocyclic peptides (i.e., autoinducing peptides, or AIPs) to assess its local population density in a cell-cell signaling mechanism called quorum sensing (QS). At high cell numbers, this pathogen can initiate many virulent behaviors that allow for the establishment of infection. Binding of the AIP signal to its cognate transmembrane AgrC-type receptor is a critical event in the QS signaling cascade; consequently, interference of AIP:receptor interactions may have the potential to prevent and eradicate certain S. aureus infections. To date, four pairs of AIP:AgrC receptors have been identified in S. aureus, each pair being utilized by a specific S. aureus group (I-IV). Other staphylococcal species also use closely related, but distinct, AIP:AgrC pairs to control QS. We seek to develop non-native ligands capable of intercepting AIP:AgrC binding in each S. aureus group and in related species. As these bacteria may use their respective AIP signal to attenuate the QS systems of other groups/species, such ligands would provide valuable chemical tools to probe possible interference mechanisms in a range of contexts. In the current study, we used solution-phase NMR techniques to characterize the 3-D structures of a set of known native and non-native peptides that have differential modulatory activity in certain AgrC receptors. Analysis of these structures revealed several distinct structural motifs that belay differential activity in selected S. aureus AgrC receptors (i.e., AgrC-I, AgrC-II, and AgrC-III). The results of this study can be leveraged for the design of new synthetic ligands with enhanced selectivities and potencies for these AgrC receptors.
Collapse
Affiliation(s)
- Yftah Tal-Gan
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
27
|
Kratochvil MJ, Tal-Gan Y, Yang T, Blackwell HE, Lynn DM. Nanoporous Superhydrophobic Coatings that Promote the Extended Release of Water-Labile Quorum Sensing Inhibitors and Enable Long-Term Modulation of Quorum Sensing in Staphylococcus aureus. ACS Biomater Sci Eng 2015; 1:1039-1049. [PMID: 26501126 PMCID: PMC4604486 DOI: 10.1021/acsbiomaterials.5b00313] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Abstract
![]()
Materials and coatings that inhibit
bacterial colonization are
of interest in a broad range of biomedical, environmental, and industrial
applications. In view of the rapid increase in bacterial resistance
to conventional antibiotics, the development of new strategies that
target nonessential pathways in bacterial pathogens—and that
thereby limit growth and reduce virulence through nonbiocidal means—has
attracted considerable attention. Bacterial quorum sensing (QS) represents
one such target, and is intimately connected to virulence in many
human pathogens. Here, we demonstrate that the properties of nanoporous,
polymer-based superhydrophobic coatings can be exploited to host and
subsequently sustain the extended release of potent and water-labile
peptide-based inhibitors of QS (QSIs) in Staphylococcus aureus. Our results demonstrate that these peptidic QSIs can be released
into surrounding media for periods of at least 8 months, and that
they strongly inhibit agr-based QS in S. aureus for
at least 40 days. These results also suggest that these extremely
nonwetting coatings can confer protection against the rapid hydrolysis
of these water-labile peptides, thereby extending their useful lifetimes.
Finally, we demonstrate that these peptide-loaded superhydrophobic
coatings can strongly modulate the QS-controlled formation of biofilm
in wild-type S. aureus. These nanoporous superhydrophobic
films provide a new, useful, and nonbiocidal approach to the design
of coatings that attenuate bacterial virulence. This approach has
the potential to be general, and could prove suitable for the encapsulation,
protection, and release of other classes of water-sensitive agents.
We anticipate that the materials, strategies, and concepts reported
here will enable new approaches to the long-term attenuation of QS
and associated bacterial phenotypes in a range of basic research and
applied contexts.
Collapse
Affiliation(s)
- Michael J Kratochvil
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Yftah Tal-Gan
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Tian Yang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States ; Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Johnson JG, Wang B, Debelouchina GT, Novick RP, Muir TW. Increasing AIP Macrocycle Size Reveals Key Features of agr Activation in Staphylococcus aureus. Chembiochem 2015; 16:1093-100. [PMID: 25801678 DOI: 10.1002/cbic.201500006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/09/2022]
Abstract
The agr locus in the commensal human pathogen, Staphylococcus aureus, is a two-promoter regulon with allelic variability that produces a quorum-sensing circuit involved in regulating virulence within the bacterium. Secretion of unique autoinducing peptides (AIPs) and detection of their concentrations by AgrC, a transmembrane receptor histidine kinase, coordinates local bacterial population density with global changes in gene expression. The finding that staphylococcal virulence can be inhibited through antagonism of this quorum-sensing pathway has fueled tremendous interest in understanding the structure-activity relationships underlying the AIP-AgrC interaction. The defining structural feature of the AIP is a 16-membered, thiolactone-containing macrocycle. Surprisingly, the importance of ring size on agr activation or inhibition has not been explored. In this study, we address this deficiency through the synthesis and functional analysis of AIP analogues featuring enlarged and reduced macrocycles. Notably, this study is the first to interrogate AIP function by using both established cell-based reporter gene assays and newly developed in vitro AgrC-I binding and autophosphorylation activity assays. Based on our data, we present a model for robust agr activation involving a cooperative, three-points-of-contact interaction between the AIP macrocycle and AgrC.
Collapse
Affiliation(s)
- Jeffrey G Johnson
- Department of Chemistry, Princeton University, Frick Chemistry Building, Washington Road, Princeton, NJ 08544 (USA); Graduate Program, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA); Tri-Institutional Training Program in Chemical Biology, Weil-Cornell/Memorial Sloan Kettering/Rockefeller University, New York, NY 10065 (USA)
| | | | | | | | | |
Collapse
|
29
|
Khan BA, Yeh AJ, Cheung GYC, Otto M. Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections. Expert Opin Investig Drugs 2015; 24:689-704. [PMID: 25704585 DOI: 10.1517/13543784.2015.1019062] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Antibiotic resistance is a serious global health concern for developed and developing nations. MRSA represents a particularly severe public health threat that is associated with high morbidity and mortality. The lack of novel antibiotics has led scientists to explore therapies targeting bacterial virulence mechanisms and virulence regulators, including those controlling cell-cell communication. AREAS COVERED The authors discuss the role of quorum-sensing in Staphylococcus aureus infections and components of the system that are being targeted using novel investigational drugs. In particular, the authors examine the role of the accessory gene regulator (Agr) system in virulence regulation of S. aureus pathogenesis. Finally, the authors present and compare natural and synthetic compounds that have been found to interfere with Agr functionality. EXPERT OPINION There is a great need to develop new therapeutic methods to combat S. aureus infections. These include anti-virulence therapies that target key global regulators involved with the establishment and propagation of infection. Several molecules have been found to interfere with S. aureus virulence regulation, especially those targeting the Agr quorum-sensing signaling molecule. These preliminary findings warrant further investigation and validation, with the goal of refining a compound that has broad-spectrum inhibitory effects on most S. aureus strains and Agr subtypes.
Collapse
Affiliation(s)
- Burhan A Khan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories , 903 S. 4th St, 1/1110, Hamilton, MT 59840 , USA
| | | | | | | |
Collapse
|