1
|
Zanetti D, Matuszewska O, Giorgianni G, Pezzetta C, Demitri N, Bonifazi D. Photoredox Annulation of Polycyclic Aromatic Hydrocarbons. JACS AU 2023; 3:3045-3054. [PMID: 38034957 PMCID: PMC10685425 DOI: 10.1021/jacsau.3c00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023]
Abstract
The rise of interest in using polycyclic aromatic hydrocarbons (PAHs) and molecular graphenoids in optoelectronics has recently stimulated the growth of modern synthetic methodologies giving access to intramolecular aryl-aryl couplings. Here, we show that a radical-based annulation protocol allows expansion of the planarization approaches to prepare functionalized molecular graphenoids. The enabler of this reaction is peri-xanthenoxanthene, the photocatalyst which undergoes photoinduced single electron transfer with an ortho-oligoarylenyl precursor bearing electron-withdrawing and nucleofuge groups. Dissociative electron transfer enables the formation of persistent aryl radical intermediates, the latter undergoing intramolecular C-C bond formation, allowing the planarization reaction to occur. The reaction conditions are mild and compatible with various electron-withdrawing and -donating substituents on the aryl rings as well as heterocycles and PAHs. The method could be applied to induce double annulation reactions, allowing the synthesis of π-extended scaffolds with different edge peripheries.
Collapse
Affiliation(s)
- Davide Zanetti
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Oliwia Matuszewska
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Giuliana Giorgianni
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Cristofer Pezzetta
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Nicola Demitri
- Elettra—Sincrotrone
Trieste, S.S. 14 Km 163.5
in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Davide Bonifazi
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
2
|
Zhou S, Liu Y, Jin W, Qin T, Liu X, Zhao C, Liu Z, Yu X. Synthesis, Structures, and Photophysical Properties of Zigzag BNBNB-Embedded Anthracene-Fused Fluoranthene. Org Lett 2023; 25:1573-1577. [PMID: 36825803 DOI: 10.1021/acs.orglett.3c00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Three zigzag BNBNB-embedded anthracene-fused fluoranthenes are synthesized from 1,3,2-benzodiazaboroles through an indole-type N-directed C-H borylation reaction. Single-crystal X-ray diffraction analyses confirm the double bond character of all four alternating B-N bonds and reveal the five-center four-π-electron nature of the BNBNB group. Experimental spectra and density functional theory calculations indicate that borylation remarkably enhances the planarity, extends π-conjugation, and leads to a bathochromic shift in the absorption and emission bands, with remarkable fluorescence quantum yields in solution (92%).
Collapse
Affiliation(s)
- Shimin Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Tingting Qin
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuguang Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Cuihua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Ruhl J, Oberhof N, Dreuw A, Wegner HA. Diazadiboraacenes: Synthesis, Spectroscopy and Computations. Angew Chem Int Ed Engl 2023; 62:e202300785. [PMID: 36779363 DOI: 10.1002/anie.202300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The incorporation of heteroatoms into hydrocarbon compounds greatly expands the chemical space of molecular materials. In this context, B-N doping takes a center stage due to its isosterism with a C=C-bond. Herein, we present a new and modular synthetic concept to access novel diazadiborabenzo[b]triphenylenes 7 a-h using the B-N doped biradical 16 as intermediate. Characterization of the photophysical properties revealed the emission spectra of the diazadibora benzo[b]triphenylenes 7 a-h can conveniently be tuned by small changes of the substitution on the boron-atom. All of the diazadibora compounds show a short life-time phosphorescence. Additionally, we were able to rationalize the excited-state relaxation of the diazadiboraacene 7 a via intersystem crossing by quantum chemical calculations. The new synthetic strategy provides an elegant route to various novel B-N doped acenes with great potential for applications in molecular materials.
Collapse
Affiliation(s)
- Julia Ruhl
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| | - Nils Oberhof
- Interdisciplinary Center for Scientic Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientic Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| |
Collapse
|
4
|
Neogi I, Szpilman AM. Synthesis and Reactions of Borazines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1684-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractGiven the wide array of current applications of borazine-based materials, synthetic access to these compounds is of importance. This review summarizes the many ways of preparing borazines and its carbo-substituted analogues. In addition, the functionalization of borazines is covered. The synthesis of molecules incorporating more than one borazine units as well as aspects of unsymmetrically substituted borazines are not included. The literature has been covered comprehensively until the end of 2020.1 Introduction: Structure and Properties of Borazine2 Synthesis of Parent Borazine3 Synthesis of N-Substituted Borazines4 Synthesis of B-Halo/B-Halo-N-Substituted Borazines5 Synthesis of B-Substituted Borazines6 Synthesis of Polycyclic Borazines Containing One Borazine Ring7 Modifications or Hydrolysis of the Borazine Ring8 Borazine Metal Complexes9 Outlook and Conclusion
Collapse
Affiliation(s)
- Ishita Neogi
- Photoscience and Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Academy of Scientific and Innovative Research (AcSIR)
| | | |
Collapse
|
5
|
Yuan K, Volland D, Kirschner S, Uzelac M, Nichol GS, Nowak-Król A, Ingleson MJ. Enhanced N-directed electrophilic C-H borylation generates BN-[5]- and [6]helicenes with improved photophysical properties. Chem Sci 2022; 13:1136-1145. [PMID: 35211280 PMCID: PMC8790800 DOI: 10.1039/d1sc06513k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022] Open
Abstract
Helicenes are chiral polycyclic aromatic hydrocarbons (PAHs) of significant interest, e.g. in supramolecular chemistry, materials science and asymmetric catalysis. Herein an enhanced N-directed electrophilic C-H borylation methodology has been developed that provides access to azaborine containing helicenes (BN-helicenes). This borylation process proceeds via protonation of an aminoborane with bistriflimidic acid. DFT calculations reveal the borenium cation formed by protonation to be more electrophilic than the product derived from aminoborane activation with BBr3. The synthesised helicenes include BN-analogues of archetypal all carbon [5]- and [6]helicenes. The replacement of a CC with a BN unit (that has a longer bond) on the outer helix increases the strain in the BN congeners and the racemization half-life for a BN-[5]helicene relative to the all carbon [5]helicene. BN incorporation also increases the fluorescence efficiency of the helicenes, a direct effect of BN incorporation altering the distribution of the key frontier orbitals across the helical backbone relative to carbo-helicenes.
Collapse
Affiliation(s)
- Kang Yuan
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Daniel Volland
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry and Catalysis with Boron Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Sven Kirschner
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Marina Uzelac
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry and Catalysis with Boron Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
6
|
Brady RP, Zhang C, DeFrancisco JR, Barrett BJ, Cheng L, Bragg AE. Multiphoton Control of 6π Photocyclization via State-Dependent Reactant-Product Correlations. J Phys Chem Lett 2021; 12:9493-9500. [PMID: 34559534 DOI: 10.1021/acs.jpclett.1c02353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiphoton excitation promises opportunities for opening new photochemical reaction pathways and controlling photoproduct distributions. We demonstrate photonic control of the 6π photocyclization of ortho-terphenyl to make 4a,4b-dihydrotriphenylene (DHT). Using pump-repump-probe spectroscopy we show that 1 + 1' excitation to a high-lying reactant electronic state generates a metastable species characterized by a red absorption feature that accompanies a repump-induced depletion in the one-photon trans-dihydro product (trans-DHT); signatures of the new photoproduct are clearer for a structural analogue of the reactant that is sterically inhibited against one-photon cyclization. Quantum-chemical computations support assignment of this species to cis-DHT, which is accessible photochemically along a disrotatory coordinate from high-lying electronic states reached by 1 + 1' excitation. We use time-resolved spectroscopy to track photochemical dynamics producing cis-DHT. In total, we demonstrate that selective multiphoton excitation opens a new photoreaction channel in these photocyclizing reactants by taking advantage of state-dependent correlations between reactant and product electronic states.
Collapse
Affiliation(s)
- Ryan P Brady
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Justin R DeFrancisco
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Brandon J Barrett
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Fingerle M, Dingerkus J, Schubert H, Wurst KM, Scheele M, Bettinger HF. Heteroatom Cycloaddition at the (BN)
2
Bay Region of Dibenzoperylene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Fingerle
- Institut für Organische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Juliane Dingerkus
- Institut für Organische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Kai M. Wurst
- Institut für Physikalische und Theoretische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marcus Scheele
- Institut für Physikalische und Theoretische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Holger F. Bettinger
- Institut für Organische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
8
|
Fingerle M, Dingerkus J, Schubert H, Wurst KM, Scheele M, Bettinger HF. Heteroatom Cycloaddition at the (BN) 2 Bay Region of Dibenzoperylene. Angew Chem Int Ed Engl 2021; 60:15798-15802. [PMID: 33798286 PMCID: PMC9545313 DOI: 10.1002/anie.202016699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 11/12/2022]
Abstract
Cycloaddition-dehydration involving a BNBN-butadiene analogue at the bay region of a dibenzoperylene and a non-enolizable aldehyde provides a novel strategy for incorporation of the oxadiazadiborinane (B2 N2 CO) ring into the scaffold of a polycyclic aromatic hydrocarbon resulting in highly emissive compounds.
Collapse
Affiliation(s)
- Michael Fingerle
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Juliane Dingerkus
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Hartmut Schubert
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Kai M. Wurst
- Institut für Physikalische und Theoretische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Marcus Scheele
- Institut für Physikalische und Theoretische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Holger F. Bettinger
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
9
|
Boron–Nitrogen‐Doped Nanographenes: A Synthetic Tale from Borazine Precursors. Chemistry 2020; 26:6608-6621. [DOI: 10.1002/chem.201905794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/21/2022]
|
10
|
Tasseroul J, Lorenzo-Garcia MM, Dosso J, Simon F, Velari S, De Vita A, Tecilla P, Bonifazi D. Probing Peripheral H-Bonding Functionalities in BN-Doped Polycyclic Aromatic Hydrocarbons. J Org Chem 2020; 85:3454-3464. [PMID: 32027511 DOI: 10.1021/acs.joc.9b03202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The replacement of carbon atoms at the zigzag periphery of a benzo[fg]tetracenyl derivative with an NBN atomic triad allows the formation of heteroatom-doped polycyclic aromatic hydrocarbon (PAH) isosteres, which expose BN mimics of the amidic NH functions. Their ability to form H-bonded complexes has never been touched so far. Herein, we report the first solution recognition studies of peripherally NBN-doped PAHs to form H-bonded DD·AA- and ADDA·DAAD-type complexes with suitable complementary H-bonding acceptor partners. The first determination of Ka in solution showed that the 1:1 association strength is around 27 ± 1 M-1 for the DD·AA complexes in C6D6, whereas it rises to 1820 ± 130 M-1 for the ADDA·DAAD array in CDCl3. Given the interest of BN-doped polyaromatic hydrocarbons in supramolecular and materials chemistry, it is expected that these findings will open new possibilities to design novel materials, where the H-bonding properties of peripheral NH hydrogens could serve as anchors to tailor the organizational properties of PAHs.
Collapse
Affiliation(s)
- Jonathan Tasseroul
- Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, Namur B-5000, Belgium
| | - Maria Mercedes Lorenzo-Garcia
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.,Department of Chemical and Pharmaceutical Science, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Jacopo Dosso
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K
| | - François Simon
- Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, Namur B-5000, Belgium
| | - Simone Velari
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Alessandro De Vita
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy.,Department of Physics, King's College London, Strand, London WC2R 2LS, U.K
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Science, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Davide Bonifazi
- Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, Namur B-5000, Belgium.,School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K
| |
Collapse
|
11
|
Limberti S, Emmett L, Trandafir A, Kociok-Köhn G, Pantoş GD. Borazatruxenes. Chem Sci 2019; 10:9565-9570. [PMID: 32055329 PMCID: PMC6979502 DOI: 10.1039/c9sc02489a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
We report the synthesis and characterization of a series of arene-borazine hybrids called borazatruxenes. These molecules are BN-isosteres of truxene whereby the central benzene core has been replaced by a borazine ring. The straightforward three step synthesis, stability and their chiroptical and electronic properties recommend them as new scaffolds for BN-carbon hybrid materials. Computational studies at DFT level, closely matching the experimental data, provided insights in the electronic structure of these molecules.
Collapse
Affiliation(s)
- Simone Limberti
- Department of Chemistry , University of Bath , Bath , BA2 7AY , UK .
| | - Liam Emmett
- Department of Chemistry , University of Bath , Bath , BA2 7AY , UK .
| | | | | | - G Dan Pantoş
- Department of Chemistry , University of Bath , Bath , BA2 7AY , UK .
| |
Collapse
|
12
|
Zhou Z, Wang X, Wei Z, Müllen K, Petrukhina MA. Charging OBO-Fused Double [5]Helicene with Electrons. Angew Chem Int Ed Engl 2019; 58:14969-14973. [PMID: 31430019 PMCID: PMC6916263 DOI: 10.1002/anie.201908658] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/20/2022]
Abstract
Chemical reduction of OBO-fused double[5]helicene with Group 1 metals (Na and K) has been investigated for the first time. Two doubly-reduced products have been isolated and structurally characterized by single-crystal X-ray diffraction, revealing a solvent-separated ion triplet (SSIT) with Na+ ions and a contact-ion pair (CIP) with K+ ion. As the key structural outcome, the X-ray crystallographic analysis discloses the consequences of adding two electrons to the double helicene core in the SSIT without metal binding and reveals the preferential binding site in the CIP with K+ counterions. In both products, an increase in the twisting of the double helicene core upon charging was observed. The negative charge localization at the central core has been identified by theoretical calculations, which are in full agreement with X-ray crystallographic and NMR spectroscopic results. Notably, it was confirmed that the two-electron reduction of OBO-fused double[5]helicene is reversible.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of ChemistryUniversity at Albany, State University of New York1400 Washington Ave.AlbanyNY12222USA
| | - Xiao‐Ye Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Zheng Wei
- Department of ChemistryUniversity at Albany, State University of New York1400 Washington Ave.AlbanyNY12222USA
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Marina A. Petrukhina
- Department of ChemistryUniversity at Albany, State University of New York1400 Washington Ave.AlbanyNY12222USA
| |
Collapse
|
13
|
Zhou Z, Wang X, Wei Z, Müllen K, Petrukhina MA. Charging OBO‐Fused Double [5]Helicene with Electrons. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zheng Zhou
- Department of Chemistry University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Xiao‐Ye Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Zheng Wei
- Department of Chemistry University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Marina A. Petrukhina
- Department of Chemistry University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| |
Collapse
|
14
|
Kaehler T, Bolte M, Lerner H, Wagner M. Introducing Perylene as a New Member to the Azaborine Family. Angew Chem Int Ed Engl 2019; 58:11379-11384. [DOI: 10.1002/anie.201905823] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/24/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Tanja Kaehler
- Institut für Anorganische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
15
|
Kaehler T, Bolte M, Lerner H, Wagner M. Introducing Perylene as a New Member to the Azaborine Family. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tanja Kaehler
- Institut für Anorganische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
16
|
|
17
|
Photoactive Boron–Nitrogen–Carbon Hybrids: From Azo-borazines to Polymeric Materials. J Org Chem 2019; 84:9101-9116. [DOI: 10.1021/acs.joc.9b01046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Chakraborty S, Kayastha P, Ramakrishnan R. The chemical space of B, N-substituted polycyclic aromatic hydrocarbons: Combinatorial enumeration and high-throughput first-principles modeling. J Chem Phys 2019; 150:114106. [PMID: 30902009 DOI: 10.1063/1.5088083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Combinatorial introduction of heteroatoms in the two-dimensional framework of aromatic hydrocarbons opens up possibilities to design compound libraries exhibiting desirable photovoltaic and photochemical properties. Exhaustive enumeration and first-principles characterization of this chemical space provide indispensable insights for rational compound design strategies. Here, for the smallest seventy-seven Kekulean-benzenoid polycyclic systems, we reveal combinatorial substitution of C atom pairs with the isosteric and isoelectronic B, N pairs to result in 7 453 041 547 842 (7.4 tera) unique molecules. We present comprehensive frequency distributions of this chemical space, analyze trends, and discuss a symmetry-controlled selectivity manifestable in synthesis product yield. Furthermore, by performing high-throughput ab initio density functional theory calculations of over thirty-three thousand (33k) representative molecules, we discuss quantitative trends in the structural stability and inter-property relationships across heteroarenes. Our results indicate a significant fraction of the 33k molecules to be electronically active in the 1.5-2.5 eV region, encompassing the most intense region of the solar spectrum, indicating their suitability as potential light-harvesting molecular components in photo-catalyzed solar cells.
Collapse
Affiliation(s)
- Sabyasachi Chakraborty
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Prakriti Kayastha
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Raghunathan Ramakrishnan
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|
19
|
Noda H, Asada Y, Shibasaki M, Kumagai N. Neighboring Protonation Unveils Lewis Acidity in the B3NO2 Heterocycle. J Am Chem Soc 2019; 141:1546-1554. [DOI: 10.1021/jacs.8b10336] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yasuko Asada
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
20
|
Yang DT, Nakamura T, He Z, Wang X, Wakamiya A, Peng T, Wang S. Doping Polycyclic Arenes with Nitrogen–Boron–Nitrogen (NBN) Units. Org Lett 2018; 20:6741-6745. [DOI: 10.1021/acs.orglett.8b02850] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Deng-Tao Yang
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Zhechang He
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Xiang Wang
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tai Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, People’s Republic of China
| | - Suning Wang
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, People’s Republic of China
| |
Collapse
|
21
|
Garcia AA, Rayevski A, Andrade-Jorge E, Trujillo-Ferrara JG. Structural and biological overview of Boron-containing amino acids in the medicinal chemistry field. Curr Med Chem 2018; 26:5077-5089. [PMID: 30259808 DOI: 10.2174/0929867325666180926150403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
Amino acids are the basic structural units of proteins as well as the precursors of many compounds with biological activity. The addition of boron reportedly induces changes in the chemical-biological profile of amino acids. METHODS We compiled information on the biological effect of some compounds and discuss the structure-activity relationship of the addition of boron. The specific focus presently is on borinic derivatives of α-amino acids, the specific changes in biological activity caused by the addition of a boron-containing moiety, and the identification of some attractive compounds for testing as potential new drugs. RESULTS Borinic derivatives of α-amino acids have been widely synthesized and tested as potential new therapeutic tools. The B-N (1.65 A°) or B-C (1.61 A°) or B-O (1.50 A°) bond is often key for the stability at different pHs and temperatures and activity of these compounds. The chemical features of synthesized derivatives, such as the specific moieties and the logP, polarizability and position of the boron atom are clearly linked to their pharmacodynamic and pharmacokinetic profiles. Some mechanisms of action have been suggested or demonstrated, while those responsible for other effects remain unknown. CONCLUSION The increasing number of synthetic borinic derivatives of α-amino acids as well as the recently reported crystal structures are providing new insights into the stability of these compounds at different pHs and temperatures, their interactions on drug targets, and the ring formation of five-membered heterocycles. Further research is required to clarify the ways to achieve specific synthesis, the mechanisms involved in the observed biological effect, and the toxicological profile of this type of boron-containing compounds (BCCs).
Collapse
Affiliation(s)
- Antonio Abad Garcia
- Departamento de Bioquimica y Seccion de Estudios de Posgrado e Investigación. Escuela Superior de Medicina. Plan de San Luis y Diaz Miron s/n, 11340, Mexico City. Mexico
| | - Alexey Rayevski
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukranie. 17 Generala Naumova St., 03164, Kyiv. Ukraine
| | - Erik Andrade-Jorge
- Departamento de Bioquimica y Seccion de Estudios de Posgrado e Investigacion. Escuela Superior de Medicina. Plan de San Luis y Diaz Miron s/n, 11340, Mexico City. Mexico
| | - Jose G Trujillo-Ferrara
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina. Plan de San Luis y Diaz Mirón s/n, 11340, Mexico City. Mexico
| |
Collapse
|
22
|
Hahn J, Biswas S, Maichle-Mössmer C, Schrenk C, Schnepf A, Bettinger HF. Borenium and boronium ions of 5,6-dihydro-dibenzo[c,e][1,2]azaborinine and the reaction with non-nucleophilic base: trapping of a dimer and a trimer of BN-phenanthryne by 4,4′-di-tert-butyl-2,2′-bipyridine. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-1103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
6-Chloro-5,6-dihydro-dibenzo[c,e][1,2]azaborinine (1) reacts with pyridine derivatives to borenium or boronium ions. The boronium ion obtained from reaction with an excess of pyridine could be characterized structurally and transforms into the borenium ion in solution. The reaction of 1 with 2,2′-bipyridine (a) and derivatives (b: 6,6′-dimethyl; c: 4,4′-di-tert-butyl) results in spirocyclic boronium ions 8a–c of which 8b could be characterized by X-ray crystallography. Despite the chelate effect, the spirocyclic boronium ions readily undergo hydrolysis or alcoholysis. Treatment of the spirocyclic boronium ion 8c with potassium hexamethyl disilazide (KHMDS) results in neutral products that are monomers, dimers, or trimers of dibenzo[c,e][1,2]azaborinine (“BN-phenanthryne”) trapped with 4,4′-di-tert-butyl-2,2′-bipyridine by formation of B–C, B–N, or dative B–N bonds, indicative of deprotonation of NH and CH bonds of the boronium ion by KHMDS.
Collapse
Affiliation(s)
- Jennifer Hahn
- Institut für Organische Chemie , Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Sunanda Biswas
- Institut für Organische Chemie , Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie , Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Claudio Schrenk
- Institut für Anorganische Chemie , Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Andreas Schnepf
- Institut für Anorganische Chemie , Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Holger F. Bettinger
- Institut für Organische Chemie , Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| |
Collapse
|
23
|
Snyder JA, Grüninger P, Bettinger HF, Bragg AE. BN Doping and the Photochemistry of Polyaromatic Hydrocarbons: Photocyclization of Hexaphenyl Benzene and Hexaphenyl Borazine. J Phys Chem A 2017; 121:8359-8367. [PMID: 28949535 DOI: 10.1021/acs.jpca.7b08190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Boron-nitrogen doping of polyaromatic hydrocarbon (PAH) materials can be used to tune their electronic properties while preserving the structural characteristics of pure hydrocarbons. Many multicycle PAHs can be synthesized photochemically; in contrast, very little is known about the photochemistry of their BN-doped counterparts. We present results of fs, ns, and μs time-resolved spectroscopic studies on the photoinduced dynamics of hexaphenyl benzene and hexaphenyl borazine in order to examine how BN doping alters photochemical C-C bond formation via 6π electrocyclization as well as the stability of resulting cyclized structures. Ultrafast measurements reveal photoinduced behaviors reflecting differences in excited-state decay pathways for the two molecules, with hexaphenyl borazine relaxing from its excited state with a rate that is 2 orders of magnitude faster than that of hexaphenyl benzene (3.0 vs 428 ps). Tetraphenyl dihydrotriphenylene generated from hexaphenyl benzene is observed to reopen with a ∼2 μs lifetime controlled by entropic stabilization of the cyclized structure; in contrast, photoinduced dynamics appear to be complete within 100 ps after excitation of hexaphenyl borazine. This significant difference in photochemical dynamics is reflected in the cyclodehydrogentation yields obtained for the two reactants (25 vs 0% for hexaphenyl benzene and borazine, respectively). Quantum-chemical computations predict that BN doping gives rise to energetic destabilization and increased singlet diradical character in cyclized structures. These findings indicate that the polarized BN bonds of the borazine core adversely impact photochemical bond formation relative to analogous hydrocarbons.
Collapse
Affiliation(s)
- Joshua A Snyder
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Peter Grüninger
- Institut für Organische Chemie, Universität Tübingen , Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Holger F Bettinger
- Institut für Organische Chemie, Universität Tübingen , Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Fingerle M, Maichle-Mössmer C, Schundelmeier S, Speiser B, Bettinger HF. Synthesis and Characterization of a Boron–Nitrogen−Boron Zigzag-Edged Benzo[fg]tetracene Motif. Org Lett 2017; 19:4428-4431. [DOI: 10.1021/acs.orglett.7b01873] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michael Fingerle
- Institut
für Organische Chemie, Universität Tübingen, Auf
der Morgenstelle 18, 72076 Tübingen, Germany
| | - Cäcilia Maichle-Mössmer
- Institut
für Anorganische Chemie, Universität Tübingen, Auf
der Morgenstelle 18, 72076 Tübingen, Germany
| | - Simon Schundelmeier
- Institut
für Organische Chemie, Universität Tübingen, Auf
der Morgenstelle 18, 72076 Tübingen, Germany
| | - Bernd Speiser
- Institut
für Organische Chemie, Universität Tübingen, Auf
der Morgenstelle 18, 72076 Tübingen, Germany
| | - Holger F. Bettinger
- Institut
für Organische Chemie, Universität Tübingen, Auf
der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Snyder JA, Grüninger P, Bettinger HF, Bragg AE. Excited-State Deactivation Pathways and the Photocyclization of BN-Doped Polyaromatics. J Phys Chem A 2017. [PMID: 28625051 DOI: 10.1021/acs.jpca.7b04878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boron-nitrogen doping of polyaromatic hydrocarbons (PAH), such as borazine-core hexabenzocoronene, presents possibilities for tuning the properties of organic electronics and nanographene materials while preserving structural characteristics of pure hydrocarbons. Previous photochemical studies have demonstrated extension of a borazine-core PAH network (1,2:3,4:5,6-tris(o,o'-biphenylylene)borazine, 1) by photoinduced cyclodehydrogenation. We present steady-state and femtosecond-to-microsecond resolved spectroscopic studies of the photophysics of 1 and a related borazine-core PAH in order to characterize competing excited-state relaxation pathways that determine the efficacy of bond formation by photocyclization. Transient spectra evolve on time scales consistent with S1 fluorescence lifetimes (1-3 ns) to features that persist onto microsecond time scales. Nanosecond-resolved oxygen-quenching measurements reveal that long-lived metastable states are triplets rather than cyclized products. Determination of fluorescence and triplet quantum yields reveal that photochemical bond formation is a minor channel in the relaxation of 1 (∼5% or less), whereas highly efficient fluorescence and intersystem crossing result in negligible photoinduced bond formation in more extended borazine-core networks. Results of computational investigations at the RICC2 level reveal sizable barriers to cyclization on the S1 potential energy surfaces consistent with quantum yields deduced from experiment. Together these barriers and competing photophysical pathways limit the efficiency of photochemical synthesis of BN-doped polyaromatics.
Collapse
Affiliation(s)
- Joshua A Snyder
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Peter Grüninger
- Institut für Organische Chemie, Universität Tübingen , Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Holger F Bettinger
- Institut für Organische Chemie, Universität Tübingen , Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Morgan MM, Patrick EA, Rautiainen JM, Tuononen HM, Piers WE, Spasyuk DM. Zirconocene-Based Methods for the Preparation of BN-Indenes: Application to the Synthesis of 1,5-Dibora-4a,8a-diaza-1,2,3,5,6,7-hexaaryl-4,8-dimethyl-s-indacenes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Matthew M. Morgan
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Evan A. Patrick
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - J. Mikko Rautiainen
- Department
of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| | - Heikki M. Tuononen
- Department
of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| | - Warren E. Piers
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Denis M. Spasyuk
- Canadian Light Source Inc. 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3,Canada
| |
Collapse
|
27
|
Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nat Chem 2017; 9:571-577. [DOI: 10.1038/nchem.2708] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
|
28
|
Stępień M, Gońka E, Żyła M, Sprutta N. Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chem Rev 2016; 117:3479-3716. [PMID: 27258218 DOI: 10.1021/acs.chemrev.6b00076] [Citation(s) in RCA: 908] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two-dimensionally extended, polycyclic heteroaromatic molecules (heterocyclic nanographenes) are a highly versatile class of organic materials, applicable as functional chromophores and organic semiconductors. In this Review, we discuss the rich chemistry of large heteroaromatics, focusing on their synthesis, electronic properties, and applications in materials science. This Review summarizes the historical development and current state of the art in this rapidly expanding field of research, which has become one of the key exploration areas of modern heterocyclic chemistry.
Collapse
Affiliation(s)
- Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Elżbieta Gońka
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marika Żyła
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Natasza Sprutta
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
29
|
Morgan MM, Piers WE. Efficient synthetic methods for the installation of boron–nitrogen bonds in conjugated organic molecules. Dalton Trans 2016; 45:5920-4. [DOI: 10.1039/c5dt03991f] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New synthetic methods for preparing gram quantities BN analogs of polycyclic aromatic hydrocarbons are highlighted. Such methods are key to proper evaluation of these materials in device applications.
Collapse
|
30
|
Wang BJ, Groziak MP. Recent Developments in the Chemistry of Boron Heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/bs.aihch.2015.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Bonifazi D, Fasano F, Lorenzo-Garcia MM, Marinelli D, Oubaha H, Tasseroul J. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives. Chem Commun (Camb) 2015; 51:15222-36. [PMID: 26411675 DOI: 10.1039/c5cc06611e] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discovered by Stock and Pohland in 1926, borazine is the isoelectronic and isostructural inorganic analogue of benzene, where the C[double bond, length as m-dash]C bonds are substituted by B-N bonds. The strong polarity of such heteroatomic bonds widens the HOMO-LUMO gap of the molecule, imparting strong UV-emitting/absorption and electrical insulating properties. These properties make borazine and its derivatives valuable molecular scaffolds to be inserted as doping units in graphitic-based carbon materials to tailor their optoelectronic characteristics, and specifically their semiconducting properties. By guiding the reader through the most significant examples in the field, in this feature paper we describe the past and recent developments in the organic synthesis and functionalisation of borazine and its derivatives. These boosted the production of a large variety of tailored derivatives, broadening their use in optoelectronics, H2 storage and supramolecular functional architectures, to name a few.
Collapse
Affiliation(s)
- Davide Bonifazi
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, Namur, 5000, Belgium.
| | | | | | | | | | | |
Collapse
|
32
|
Wang XY, Narita A, Feng X, Müllen K. B2N2-Dibenzo[a,e]pentalenes: Effect of the BN Orientation Pattern on Antiaromaticity and Optoelectronic Properties. J Am Chem Soc 2015; 137:7668-71. [DOI: 10.1021/jacs.5b05056] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao-Ye Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xinliang Feng
- Center
for Advancing Electronics Dresden (cfaed) and Department of Chemistry
and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
33
|
Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor MJ, Schaub R, Bettinger HF. Construction of an Internally B3N3-Doped Nanographene Molecule. Angew Chem Int Ed Engl 2015; 54:8284-6. [DOI: 10.1002/anie.201412165] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 11/05/2022]
|
34
|
Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor MJ, Schaub R, Bettinger HF. Aufbau eines intern B3N3-dotierten Nanographenmoleküls. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412165] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Wang XY, Zhuang FD, Wang XC, Cao XY, Wang JY, Pei J. Synthesis, structure and properties of C3-symmetric heterosuperbenzene with three BN units. Chem Commun (Camb) 2015; 51:4368-71. [PMID: 25598035 DOI: 10.1039/c4cc10105g] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The parent skeleton of BN heterocoronene with three BN units and C3 symmetry was synthesized as a model compound of BN-doped graphene. Further investigation of this graphene-type molecule revealed the important role of BN doping in opening the bandgap and modulating the electronic properties.
Collapse
Affiliation(s)
- Xiao-Ye Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Wang XY, Yang DC, Zhuang FD, Liu JJ, Wang JY, Pei J. Postfunctionalization of BN-Embedded Polycyclic Aromatic Compounds for Fine-Tuning of Their Molecular Properties. Chemistry 2015; 21:8867-73. [DOI: 10.1002/chem.201501161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/09/2022]
|
37
|
Abstract
Replacement of C=C unit with its isoelectronic B-N unit in aromatics provides a new class of molecules with appealing properties, which have attracted great attention recently. In this Concept, we focus on BN-substituted polycyclic aromatics with fused structures, and review their synthesis, photophysical, and redox properties, as well as their applications in organic electronics. We also present challenging synthetic targets, large BN- substituted polycyclic aromatics, such as regioregular BN heterosuperbenzenes, which can be viewed as BN-doped nanographenes. Finally, we propose an atomically precise bottom-up synthesis of structurally well-defined BN-doped graphenes.
Collapse
Affiliation(s)
- Xiao-Ye Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
| | | | | |
Collapse
|