1
|
Martynova S, Krisyuk V, Sukhikh A, Benassi E. β-Diketonate Coordination: Vibrational Properties, Electronic Structure, Molecular Topology, and Intramolecular Interactions. Beryllium(II), Copper(II), and Lead(II) as Study Cases. J Phys Chem A 2025; 129:924-945. [PMID: 39824749 DOI: 10.1021/acs.jpca.4c05850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Nine metal complexes formed by three symmetric β-diketonates (viz., acetylacetonate (acac), 1,1,1,3,3,3-hexafluoro-acetylacetonate (hfac), and 2,2,6,6-tetramethylheptane-3,5-dionate (tmhd)) and three metal ions (with three different coordination geometries, viz., BeII - tetrahedral, CuII - square planar, and PbII - "swing" square pyramidal) were investigated. The study combines structural analyses, vibrational spectroscopic techniques, and quantum chemical calculations with the aim of bridging crystal structure, electronic structure, molecular topology, and far-infrared (FIR) spectroscopic characteristics. The effect of intramolecular interactions on the structural, electronic, and spectroscopic features is the center of this study. The crystal structure of Be(tmhd)2 is also reported and discussed for the first time. A complete review of the experimental IR spectra is offered; discrepancies in the assignments of some peaks are revealed among the published works. Anharmonic effects were considered for acac complexes; however, they were negligible for the FIR modes. A systematic comparison between computed and experimentally measured data allowed us to design an inexpensive, yet efficient computational protocol to investigate large polynuclear complexes.
Collapse
Affiliation(s)
- Svetlana Martynova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Akad. Lavrent'yev av. 3, Novosibirsk 630090, Russian Federation
| | - Vladislav Krisyuk
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Akad. Lavrent'yev av. 3, Novosibirsk 630090, Russian Federation
| | - Aleksandr Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Akad. Lavrent'yev av. 3, Novosibirsk 630090, Russian Federation
| | - Enrico Benassi
- Novosibirsk State University, Pirogov str. 1, Novosibirsk 630090, Russian Federation
| |
Collapse
|
2
|
Lao KU. Canonical coupled cluster binding benchmark for nanoscale noncovalent complexes at the hundred-atom scale. J Chem Phys 2024; 161:234103. [PMID: 39679503 DOI: 10.1063/5.0242359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
In this study, we introduce two datasets for nanoscale noncovalent binding, featuring complexes at the hundred-atom scale, benchmarked using coupled cluster with single, double, and perturbative triple [CCSD(T)] excitations extrapolated to the complete basis set (CBS) limit. The first dataset, L14, comprises 14 complexes with canonical CCSD(T)/CBS benchmarks, extending the applicability of CCSD(T)/CBS binding benchmarks to systems as large as 113 atoms. The second dataset, vL11, consists of 11 even larger complexes, evaluated using the local CCSD(T)/CBS method with stringent thresholds, covering systems up to 174 atoms. We compare binding energies obtained from local CCSD(T) and fixed-node diffusion Monte Carlo (FN-DMC), which have previously shown discrepancies exceeding the chemical accuracy threshold of 1 kcal/mol in large complexes, with the new canonical CCSD(T)/CBS results. While local CCSD(T)/CBS agrees with canonical CCSD(T)/CBS within binding uncertainties, FN-DMC consistently underestimates binding energies in π-π complexes by over 1 kcal/mol. Potential sources of error in canonical CCSD(T)/CBS are discussed, and we argue that the observed discrepancies are unlikely to originate from CCSD(T) itself. Instead, the fixed-node approximation in FN-DMC warrants further investigation to elucidate these binding discrepancies. Using these datasets as reference, we evaluate the performance of various electronic structure methods, semi-empirical approaches, and machine learning potentials for nanoscale complexes. Based on computational accuracy and stability across system sizes, we recommend MP2+aiD(CCD), PBE0+D4, and ωB97X-3c as reliable methods for investigating noncovalent interactions in nanoscale complexes, maintaining their promising performance observed in smaller systems.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
3
|
Solorzano ER, Roverso M, Bogialli S, Bortoli M, Orian L, Badocco D, Pettenuzzo S, Favaro G, Pastore P. Antioxidant activity of Zuccagnia-type propolis: A combined approach based on LC-HRMS analysis of bioanalytical-guided fractions and computational investigation. Food Chem 2024; 461:140827. [PMID: 39146684 DOI: 10.1016/j.foodchem.2024.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
This study reports a combined approach to assess the antioxidant activity of Zuccagnia-type propolis. Fractions exhibiting the highest antioxidant activities evidenced by DPPH, a β-carotene bleaching and superoxide radical scavenging activity-non-enzymatic assays, were processed by LC-HRMS/MS to characterize the relevant chemical compounds. A computational protocol based on the DFT calculations was used to rationalize the main outcomes. Among the 28 identified flavonoids, caffeic acids derivatives were in the fraction exhibiting the highest antioxidant activity, with 1-methyl-3-(4'-hydroxyphenyl)-propyl caffeic acid ester and 1-methyl-3-(3',4'-dihydroxyphenyl)-propyl caffeic acid ester as major components. Results clearly showed roles of specific chemical motifs, which can be supported by the computational analysis. This is the first report ascribing the antioxidant ability of Zuccagnia-type propolis to its content in specific caffeic acid derivatives, a potential source of radical scavenging phytochemicals. The proposed protocol can be extended to the study of other plant-products to address the most interesting bioactive compounds.
Collapse
Affiliation(s)
- Eliana Rita Solorzano
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy; Facultad de Bioquimica, Quimica y Farmacia, Instituto de Fisica, Universidad Nacional de Tucuman, Argentina
| | - Marco Roverso
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy.
| | - Marco Bortoli
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy; Hylleraas Centre for Quantum Molecular Sciences and Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Laura Orian
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| | - Silvia Pettenuzzo
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy; Department Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo, 9, 35131, Padova, Italy
| | - Gabriella Favaro
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Li S, Xie Y, Zhang B, Liu Y, Xu S, Wu H, Du R, Wang ZG. A Host-Guest Approach to Engineering Oxidase-Mimetic Assembly with Substrate Selectivity and Dynamic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45319-45326. [PMID: 39145897 DOI: 10.1021/acsami.4c08030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The creation of synthetic materials that emulate the complexity of natural systems, such as enzymes, remains a challenge in biomimicry. Here, we present a simple yet effective strategy to introduce substrate selectivity and dynamic responsiveness into an enzyme-mimetic supramolecular material. We achieved this by anchoring γ-cyclodextrin to a fluorene-modified Lys/Cu2+ assembly, which mimics copper-dependent oxidase. The binding affinity among the components was examined using 1H NMR, isothermal titration calorimetry (ITC), and theoretical simulation. The γ-cyclodextrin acts as a host, forming a complex with the fluorenyl moiety and aromatic substrates of specific sizes. This ensures the proximity of the substrate reactive groups to the copper center, leading to size-selective enhancement of aromatic substrate oxidation, particularly favoring biphenyl substrates. Notably, α- and β-cyclodextrins do not exhibit this effect, and the native oxidase lacks this selectivity. Additionally, the binding affinity of the aromatic substrate to the catalyst can be dynamically tuned by adding α-cyclodextrin or by irradiating with different wavelengths in the presence of competitive azo-guests, resulting in switched oxidative activities. This approach offers a new avenue for designing biomimetic materials with tailorable active site structures and catalytic properties.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Xie
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Koziel A, Bortoli M, Tremblay M, Zhao Y, Orian L, Yang ZJ, Schley ND, Macdonald JE. Five Hypotheses on the Origins of Temperature Dependence of 77Se NMR Shifts in Diselenides. Inorg Chem 2024; 63:12063-12072. [PMID: 38874835 PMCID: PMC11220761 DOI: 10.1021/acs.inorgchem.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Notable thermal shifts in diselenides have been documented in 77Se NMR for more than 50 years, but no satisfactory explanation has been found. Here, five hypotheses are considered as possible explanations for the large temperature dependence of the 77Se chemical shifts of diaryl and dialkyl diselenides compared to monoselenides and selenols. Density functional theory calculations are provided to bolster hypotheses and better understand the effects of barrier height and dipole energies. It is proposed that the temperature dependence of diselenide 77Se NMR chemical shifts is due to rotation around the Se-Se bond and sampling of twisted conformers at higher temperatures. The molecular twisting is solvent dependent; here, DMSO-d6 and toluene-d8 were evaluated. No correlation was established between para-substituents on diaryl diselenides and the magnitude of the change in the 77Se NMR shift (Δδ) with temperature.
Collapse
Affiliation(s)
- Alexandra
C. Koziel
- Department
of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
| | - Marco Bortoli
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Matthew Tremblay
- Department
of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
| | - Yilun Zhao
- Department
of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
| | - Laura Orian
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
| | - Nathan D. Schley
- Department
of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
| | - Janet E. Macdonald
- Department
of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
| |
Collapse
|
6
|
Hermann J, Stöhr M, Góger S, Chaudhuri S, Aradi B, Maurer RJ, Tkatchenko A. libMBD: A general-purpose package for scalable quantum many-body dispersion calculations. J Chem Phys 2023; 159:174802. [PMID: 37933783 DOI: 10.1063/5.0170972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Many-body dispersion (MBD) is a powerful framework to treat van der Waals (vdW) dispersion interactions in density-functional theory and related atomistic modeling methods. Several independent implementations of MBD with varying degree of functionality exist across a number of electronic structure codes, which both limits the current users of those codes and complicates dissemination of new variants of MBD. Here, we develop and document libMBD, a library implementation of MBD that is functionally complete, efficient, easy to integrate with any electronic structure code, and already integrated in FHI-aims, DFTB+, VASP, Q-Chem, CASTEP, and Quantum ESPRESSO. libMBD is written in modern Fortran with bindings to C and Python, uses MPI/ScaLAPACK for parallelization, and implements MBD for both finite and periodic systems, with analytical gradients with respect to all input parameters. The computational cost has asymptotic cubic scaling with system size, and evaluation of gradients only changes the prefactor of the scaling law, with libMBD exhibiting strong scaling up to 256 processor cores. Other MBD properties beyond energy and gradients can be calculated with libMBD, such as the charge-density polarization, first-order Coulomb correction, the dielectric function, or the order-by-order expansion of the energy in the dipole interaction. Calculations on supramolecular complexes with MBD-corrected electronic structure methods and a meta-review of previous applications of MBD demonstrate the broad applicability of the libMBD package to treat vdW interactions.
Collapse
Affiliation(s)
- Jan Hermann
- Department of Mathematics and Computer Science, FU Berlin, 14195 Berlin, Germany
| | - Martin Stöhr
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Szabolcs Góger
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Shayantan Chaudhuri
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
7
|
Comparative DFT-D3 assessment of fluorogenic supramolecular interaction of naphthalene moiety location on new dibenzodiaza-crown ether macrocycles with C60. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Hübler C. Analysing binding stoichiometries in NMR titration experiments using Monte Carlo simulation and resampling techniques. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The application of Monte Carlo simulation and resampling techniques to analyse possible binding stoichiometries in NMR titration experiments is presented. Four simulated NMR titration experiments having complex species with 1:1, 2:1 and 1:2 stoichiometries were each analysed using a 1:1, 2:1/1:1, 1:1/1:2 and a 2:1/1:1/1:2 model as implemented in SupraFit. Each best-fit model was inspected using Monte Carlo simulation (MC), Cross Validation (CV) and a new protocol termed Reduction Analysis (RA). The results of the statistical post-processes were used to calculate characteristic descriptors that are the base of the judgment for both, the models and individual stability constants. The results indicate promising approaches to correctly identify 1:1, 2:1/1:1 and 1:1/1:2 models, however with some limitations in case of the 2:1/1:1/1:2 model. All simulations and post-processing protocols were performed with the newly presented SupraFit.
Collapse
Affiliation(s)
- Conrad Hübler
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Freiberg, Saxony, Germany
| |
Collapse
|
9
|
Karton A. π–π interactions between benzene and graphene by means of large-scale DFT-D4 calculations. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Masuda R, Kuwano S, Sase S, Bortoli M, Madabeni A, Orian L, Goto K. Model Study on the Catalytic Cycle of Glutathione Peroxidase Utilizing Selenocysteine-Containing Tripeptides: Elucidation of the Protective Bypass Mechanism Involving Selenocysteine Selenenic Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryosuke Masuda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Satoru Kuwano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shohei Sase
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Marco Bortoli
- Institut de Química Computacional i Catàlisi (IQCC) i Departament de Química, Facultat de Ciències, Universitat de Girona, C/M. A. Capmany 69, 17003 Girona, Spain
| | - Andrea Madabeni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Kei Goto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
11
|
Canty AJ, Ariafard A, Malinakova HC. DFT characterisation of a Pd II → I III adduct, and a Pd II complex formed after oxidative alkenylation of Pd II by [Ph(alkenyl)I III] +, in Pd-mediated synthesis of benzofurans involving Pd IV, annulation and chain-walking. Dalton Trans 2022; 51:9377-9384. [PMID: 35674152 DOI: 10.1039/d2dt00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of benzofurans by the reaction of the palladium(II) complex Pd{1-C6H4-2-OCH(CO2Et)-C,C}(bipy) (bipy = 2,2'-bipyridine) with hypervalent iodine(III) reagents [Ph(CHCHR)I]+ has been examined by Density Functional Theory. Results highlight the role of oxidative alkenylation to form PdIV intermediates and the role of initial adduct formation in this process, an annulation process facilitated by PdII, and the role of 'chain-walking' at PdII centres to allow formation of the lowest energy product. Computation (R = Me) allows assignment of an initially formed adduct with a 'PdII → IIII' interaction at -50 °C, and, after oxidative alkenylation of PdII and reductive elimination from a PdIV centre via Ar⋯Alkenyl coupling, formation of a second intermediate with a structure consistent with NMR detection (R = n-hexyl) at -30 °C is obtained. This PdII complex, containing a coordinated alkene group in Pd{1-(RHCγCβ)C6H4-2-OCαH(CO2Et)-η2-CαCβ,C}(bipy), undergoes a 5-exo-trig annulation by forming a Cα-Cβ bond to give a complex with a bicyclic carbon skeleton suitable for subsequent formation of benzofurans. A series of facile rearrangements including chain-walking results in formation of a lowest energy complex of three feasible hydrido(alkene)palladium(II) species, leading to decomposition and release of the observed benzofuran isomer isolated under synthesis conditions. The computational study allows reinterpretation of the NMR data reported previously, in particular the determination of barriers in the reaction pathway allowing assignment of structure for key intermediates.
Collapse
Affiliation(s)
- Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75. Hobart, Tasmania 7001, Australia.
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75. Hobart, Tasmania 7001, Australia.
| | - Helena C Malinakova
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA
| |
Collapse
|
12
|
Prasad VK, Otero-de-la-Roza A, DiLabio GA. Small-Basis Set Density-Functional Theory Methods Corrected with Atom-Centered Potentials. J Chem Theory Comput 2022; 18:2913-2930. [PMID: 35412817 DOI: 10.1021/acs.jctc.2c00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Density functional theory (DFT) is currently the most popular method for modeling noncovalent interactions and thermochemistry. The accurate calculation of noncovalent interaction energies, reaction energies, and barrier heights requires choosing an appropriate functional and, typically, a relatively large basis set. Deficiencies of the density-functional approximation and the use of a limited basis set are the leading sources of error in the calculation of noncovalent and thermochemical properties in molecular systems. In this article, we present three new DFT methods based on the BLYP, M06-2X, and CAM-B3LYP functionals in combination with the 6-31G* basis set and corrected with atom-centered potentials (ACPs). ACPs are one-electron potentials that have the same form as effective-core potentials, except they do not replace any electrons. The ACPs developed in this work are used to generate energy corrections to the underlying DFT/basis-set method such that the errors in predicted chemical properties are minimized while maintaining the low computational cost of the parent methods. ACPs were developed for the elements H, B, C, N, O, F, Si, P, S, and Cl. The ACP parameters were determined using an extensive training set of 118655 data points, mostly of complete basis set coupled-cluster level quality. The target molecular properties for the ACP-corrected methods include noncovalent interaction energies, molecular conformational energies, reaction energies, barrier heights, and bond separation energies. The ACPs were tested first on the training set and then on a validation set of 42567 additional data points. We show that the ACP-corrected methods can predict the target molecular properties with accuracy close to complete basis set wavefunction theory methods, but at a computational cost of double-ζ DFT methods. This makes the new BLYP/6-31G*-ACP, M06-2X/6-31G*-ACP, and CAM-B3LYP/6-31G*-ACP methods uniquely suited to the calculation of noncovalent, thermochemical, and kinetic properties in large molecular systems.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Alberto Otero-de-la-Roza
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, MALTA Consolider Team, Oviedo E-33006, Spain
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
13
|
Prasad S, Tantillo DJ. Roads Not Taken: Mechanism and Origins of Regio- and Chemoselectivity of Directed Co III-Catalyzed Alkenylation of N-Pyridyl 2-Pyridone. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Supreeth Prasad
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| |
Collapse
|
14
|
Prasad VK, Otero-de-la-Roza A, DiLabio GA. Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree-Fock Methods Corrected with Atom-Centered Potentials. J Chem Theory Comput 2022; 18:2208-2232. [PMID: 35313106 DOI: 10.1021/acs.jctc.1c01128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There has been significant interest in developing fast and accurate quantum mechanical methods for modeling large molecular systems. In this work, by utilizing a machine learning regression technique, we have developed new low-cost quantum mechanical approaches to model large molecular systems. The developed approaches rely on using one-electron Gaussian-type functions called atom-centered potentials (ACPs) to correct for the basis set incompleteness and the lack of correlation effects in the underlying minimal or small basis set Hartree-Fock (HF) methods. In particular, ACPs are proposed for ten elements common in organic and bioorganic chemistry (H, B, C, N, O, F, Si, P, S, and Cl) and four different base methods: two minimal basis sets (MINIs and MINIX) plus a double-ζ basis set (6-31G*) in combination with dispersion-corrected HF (HF-D3/MINIs, HF-D3/MINIX, HF-D3/6-31G*) and the HF-3c method. The new ACPs are trained on a very large set (73 832 data points) of noncovalent properties (interaction and conformational energies) and validated additionally on a set of 32 048 data points. All reference data are of complete basis set coupled-cluster quality, mostly CCSD(T)/CBS. The proposed ACP-corrected methods are shown to give errors in the tenths of a kcal/mol range for noncovalent interaction energies and up to 2 kcal/mol for molecular conformational energies. More importantly, the average errors are similar in the training and validation sets, confirming the robustness and applicability of these methods outside the boundaries of the training set. In addition, the performance of the new ACP-corrected methods is similar to complete basis set density functional theory (DFT) but at a cost that is orders of magnitude lower, and the proposed ACPs can be used in any computational chemistry program that supports effective-core potentials without modification. It is also shown that ACPs improve the description of covalent and noncovalent bond geometries of the underlying methods and that the improvement brought about by the application of the ACPs is directly related to the number of atoms to which they are applied, allowing the treatment of systems containing some atoms for which ACPs are not available. Overall, the ACP-corrected methods proposed in this work constitute an alternative accurate, economical, and reliable quantum mechanical approach to describe the geometries, interaction energies, and conformational energies of systems with hundreds to thousands of atoms.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Alberto Otero-de-la-Roza
- MALTA Consolider Team, Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
15
|
Reactivity and Fe-complexation investigation by computational simulation studies on phenyltetrazole derivatives as mild steel corrosion inhibitors in aqueous acidic medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Hamza A, Moock D, Schlepphorst C, Schneidewind J, Baumann W, Glorius F. Unveiling a key catalytic pocket for the ruthenium NHC-catalysed asymmetric heteroarene hydrogenation. Chem Sci 2022; 13:985-995. [PMID: 35211263 PMCID: PMC8790799 DOI: 10.1039/d1sc06409f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The chiral ruthenium(ii)bis-SINpEt complex is a versatile and powerful catalyst for the hydrogenation of a broad range of heteroarenes. This study aims to provide understanding of the active form of this privileged catalyst as well as the reaction mechanism, and to identify the factors which control enantioselectivity. To this end we used computational methods and in situ NMR spectroscopy to study the hydrogenation of 2-methylbenzofuran promoted by this system. The high flexibility and conformational freedom of the carbene ligands in this complex lead to the formation of a chiral pocket interacting with the substrate in a "lock-and-key" fashion. The non-covalent stabilization of the substrate in this particular pocket is an exclusive feature of the major enantiomeric pathway and is preserved throughout the mechanism. Substrate coordination leading to the minor enantiomer inside this pocket is inhibited by steric repulsion. Rather, the catalyst exhibits a "flat" interaction surface with the substrate in the minor enantiomer pathway. We probe this concept by computing transition states of the rate determining step of this reaction for a series of different substrates. Our findings open up a new approach for the rational design of chiral catalysts.
Collapse
Affiliation(s)
- Andrea Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar Tudósok Körútja 2 H-1117 Budapest Hungary
| | - Daniel Moock
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Christoph Schlepphorst
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Jacob Schneidewind
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
17
|
Kroeger AA, Karton A. Perylene Bisimide Cyclophanes as Biaryl Enantiomerization Catalysts─Explorations into π–π Catalysis and Host–Guest Chirality Transfer. J Org Chem 2022; 87:5485-5496. [DOI: 10.1021/acs.joc.1c02719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Asja A. Kroeger
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
18
|
Janiak A, Gajewy J, Szymkowiak J, Gierczyk B, Kwit M. Specific Noncovalent Association of Truncated exo-Functionalized Triangular Homochiral Isotrianglimines through Head-to-Head, Tail-to-Tail, and Honeycomb Supramolecular Motifs. J Org Chem 2022; 87:2356-2366. [PMID: 35029991 PMCID: PMC8902749 DOI: 10.1021/acs.joc.1c02238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral isotrianglimines were synthesized by the [3 + 3] cyclocondensation of (R,R)-1,2-diaminocyclohexane with C5-substituted isophthalaldehyde derivatives. The substituent's steric and electronic demands and the guest molecules' nature have affected the conformation of individual macrocycles and their propensity to form supramolecular architectures. In the crystal, the formation of a honeycomb-like packing arrangement of the simplest isotrianglimine was promoted by the presence of toluene or para-xylene molecules. A less symmetrical solvent molecule might force this arrangement to change. Polar substituents present in the macrocycle skeleton have enforced the self-association of isotrianglimines in the form of tail-to-tail dimers. These dimers could be further arranged in higher-order structures of the head-to-head type, which were held together by the solvent molecules. Non-associating isotrianglimine formed a container that accommodated acetonitrile molecules in its cavity. The calculated dimerization energies have indicated a strong preference for the formation of tail-to-tail dimers over those of the capsule type.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| | - Jadwiga Gajewy
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| | - Joanna Szymkowiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| | - Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| | - Marcin Kwit
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| |
Collapse
|
19
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
20
|
Why 2,6-di-methyl-β-cyclodextrin can encapsulate OH-substituted naphthalenes better than β-cyclodextrin: Binding pose, non-covalent interaction and solvent effect. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Fuller RO, Taylor MR, Duggin M, Bissember AC, Canty AJ, Judd MM, Cox N, Moggach SA, Turner GF. Enhanced synthesis of oxo-verdazyl radicals bearing sterically-and electronically-diverse C3-substituents. Org Biomol Chem 2021; 19:10120-10138. [PMID: 34757372 DOI: 10.1039/d1ob01946e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic viability of the hydrazine- and phosgene-free synthesis of 1,5-dimethyl oxo-verdazyl radicals has been improved via a detailed study investigating the influence of the aryl substituent on tetrazinanone ring formation. Although it is well established that functionalisation at the C3 position of the tetrazinanone ring does not influence the nature of the radical, it is crucial in applications development. The synthetic route involves a 4-step sequence: Schiff base condensation of a carbohydrazide with an arylaldehyde, alkylation, ring closure then subsequent oxidation to the radical. We found that the presence of strong electron-donating substituents and electron rich heterocycles, result in a significant reduction in yield during both the alkylation and ring closure steps. This can, in part, be alleviated by milder alkylation conditions and further substitution of the aryl group. In comparison, more facile formation of the tetrazine ring was observed with examples containing electron-withdrawing groups and with meta- or para-substitution. Density functional theory suggests that the ring closure proceeds via the formation of an ion pair. Electron paramagnetic resonance spectroscopy provides insight into the precise electronic structure of the radical with small variations in hyperfine coupling constants revealing subtle differences.
Collapse
Affiliation(s)
- Rebecca O Fuller
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Madeleine R Taylor
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Margot Duggin
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Martyna M Judd
- Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia
| | - Nicholas Cox
- Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia
| | - Stephen A Moggach
- School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gemma F Turner
- School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
22
|
Canty AJ, Ariafard A, van Koten G. Computational Study of Bridge Splitting, Aryl Halide Oxidative Addition to Pt II , and Reductive Elimination from Pt IV : Route to Pincer-Pt II Reagents with Chemical and Biological Applications. Chemistry 2021; 27:15426-15433. [PMID: 34473849 DOI: 10.1002/chem.202102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/06/2022]
Abstract
Density functional theory computation indicates that bridge splitting of [PtII R2 (μ-SEt2 )]2 proceeds by partial dissociation to form R2 Pta (μ-SEt2 )Ptb R2 (SEt2 ), followed by coordination of N-donor bromoarenes (L-Br) at Pta leading to release of Ptb R2 (SEt2 ), which reacts with a second molecule of L-Br, providing two molecules of PtR2 (SEt2 )(L-Br-N). For R=4-tolyl (Tol), L-Br=2,6-(pzCH2 )2 C6 H3 Br (pz=pyrazol-1-yl) and 2,6-(Me2 NCH2 )2 C6 H3 Br, subsequent oxidative addition assisted by intramolecular N-donor coordination via PtII Tol2 (L-N,Br) and reductive elimination from PtIV intermediates gives mer-PtII (L-N,C,N)Br and Tol2 . The strong σ-donor influence of Tol groups results in subtle differences in oxidative addition mechanisms when compared with related aryl halide oxidative addition to palladium(II) centres. For R=Me and L-Br=2,6-(pzCH2 )2 C6 H3 Br, a stable PtIV product, fac-PtIV Me2 {2,6-(pzCH2 )2 C6 H3 -N,C,N)Br is predicted, as reported experimentally, acting as a model for undetected and unstable PtIV Tol2 {L-N,C,N}Br undergoing facile Tol2 reductive elimination. The mechanisms reported herein enable the synthesis of PtII pincer reagents with applications in materials and bio-organometallic chemistry.
Collapse
Affiliation(s)
- Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Gerard van Koten
- Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
23
|
Robust fluorogenic non-porphyrin interaction of Zn(II) and Hg(II) naphthadiaza-crown macrocyclic complexes with C60: Spectroscopic and dispersion-corrected DFT study. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat Commun 2021; 12:3927. [PMID: 34168142 PMCID: PMC8225865 DOI: 10.1038/s41467-021-24119-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Quantum-mechanical methods are used for understanding molecular interactions throughout the natural sciences. Quantum diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] are state-of-the-art trusted wavefunction methods that have been shown to yield accurate interaction energies for small organic molecules. These methods provide valuable reference information for widely-used semi-empirical and machine learning potentials, especially where experimental information is scarce. However, agreement for systems beyond small molecules is a crucial remaining milestone for cementing the benchmark accuracy of these methods. We show that CCSD(T) and DMC interaction energies are not consistent for a set of polarizable supramolecules. Whilst there is agreement for some of the complexes, in a few key systems disagreements of up to 8 kcal mol-1 remain. These findings thus indicate that more caution is required when aiming at reproducible non-covalent interactions between extended molecules.
Collapse
|
25
|
Prusinowska N, Czapik A, Kwit M. Chiral Triphenylacetic Acid Esters: Residual Stereoisomerism and Solid-State Variability of Molecular Architectures. J Org Chem 2021; 86:6433-6448. [PMID: 33908243 PMCID: PMC8279475 DOI: 10.1021/acs.joc.1c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/29/2022]
Abstract
We have proven the usability and versatility of chiral triphenylacetic acid esters, compounds of high structural diversity, as chirality-sensing stereodynamic probes and as molecular tectons in crystal engineering. The low energy barrier to stereoisomer interconversion has been exploited to sense the chirality of an alkyl substituent in the esters. The structural information are cascaded from the permanently chiral alcohol (inducer) to the stereodynamic chromophoric probe through cooperative interactions. The ECD spectra of triphenylacetic acid esters are highly sensitive to very small structural differences in the inducer core. The tendencies to maximize the C-H···O hydrogen bonds, van der Waals interactions, and London dispersion forces determine the way of packing molecules in the crystal lattice. The phenyl embraces of trityl groups allowed, to some extent, the control of molecular organization in the crystal. However, the spectrum of possible molecular arrangements is very broad and depends on the type of substituent, the optical purity of the sample, and the presence of a second trityl group in the proximity. Racemates crystallize as the solid solution of enantiomers, where the trityl group acts as a protecting group for the stereogenic center. Therefore, the absolute configuration of the inducer is irrelevant to the packing mode of molecules in the crystal.
Collapse
Affiliation(s)
- Natalia Prusinowska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61 614 Poznań, Poland
| | - Agnieszka Czapik
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
| | - Marcin Kwit
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61 614 Poznań, Poland
| |
Collapse
|
26
|
Canty AJ, Ariafard A. Computational Study of Intramolecular Coordination Enhanced Oxidative Addition to form PdIV-Pincer Complexes, and Selectivity in Aryloxide Attack at PdIVCH2CRR′ Motifs in Palladium-Mediated Organic Synthesis. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Allan J. Canty
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
27
|
Spicher S, Grimme S. Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. J Chem Theory Comput 2021; 17:1701-1714. [DOI: 10.1021/acs.jctc.0c01306] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
28
|
Salthammer T, Monegel F, Schulz N, Uhde E, Grimme S, Seibert J, Hohm U, Palm W. Sensory Perception of Non-Deuterated and Deuterated Organic Compounds. Chemistry 2021; 27:1046-1056. [PMID: 33058253 PMCID: PMC7839723 DOI: 10.1002/chem.202003754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/10/2020] [Indexed: 11/24/2022]
Abstract
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6 -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15 -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.
Collapse
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor ChemistryFraunhofer WKI38108BraunschweigGermany
| | - Friederike Monegel
- Department of Material Analysis and Indoor ChemistryFraunhofer WKI38108BraunschweigGermany
| | - Nicole Schulz
- Department of Material Analysis and Indoor ChemistryFraunhofer WKI38108BraunschweigGermany
| | - Erik Uhde
- Department of Material Analysis and Indoor ChemistryFraunhofer WKI38108BraunschweigGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Jakob Seibert
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Uwe Hohm
- Institute of Physical and Theoretical ChemistryUniversity of Braunschweig—Institute of Technology38106BraunschweigGermany
| | - Wolf‐Ulrich Palm
- Institute of Sustainable and Environmental ChemistryLeuphana University Lüneburg21335LüneburgGermany
| |
Collapse
|
29
|
Henderson WR, Kumar A, Abboud KA, Castellano RK. Influence of Amide Connectivity on the Hydrogen‐Bond‐Directed Self‐Assembly of [n.n]Paracyclophanes. Chemistry 2020; 26:17588-17597. [DOI: 10.1002/chem.202003909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Will R. Henderson
- George & Josephine Butler Polymer Research Laboratory Center for Macromolecular Science & Engineering Department of Chemistry University of Florida, P.O. Box 117200 Gainesville Florida 32611 USA
| | - Ajeet Kumar
- George & Josephine Butler Polymer Research Laboratory Center for Macromolecular Science & Engineering Department of Chemistry University of Florida, P.O. Box 117200 Gainesville Florida 32611 USA
| | - Khalil A. Abboud
- George & Josephine Butler Polymer Research Laboratory Center for Macromolecular Science & Engineering Department of Chemistry University of Florida, P.O. Box 117200 Gainesville Florida 32611 USA
| | - Ronald K. Castellano
- George & Josephine Butler Polymer Research Laboratory Center for Macromolecular Science & Engineering Department of Chemistry University of Florida, P.O. Box 117200 Gainesville Florida 32611 USA
| |
Collapse
|
30
|
Canty AJ, Ariafard A, van Koten G. Computational Analysis of Mesomerism in para-Substituted mer-NCN Pincer Platinum(II) Complexes, Including its Relationships with Hammett σ p Substituent Parameters. Chemistry 2020; 26:15629-15635. [PMID: 32696509 DOI: 10.1002/chem.202003023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Density Functional Theory studies of square-planar PtII pincer structures, (4-Z-NCN)PtCl ([4-Z-NCN]- =[4-Z-2,6-(Me2 NCH2 )2 C6 H2 -N,C,N]- , Z=H, NO2 , CF3 , CO2 H, CHO, Cl, Br, I, F, SMe, SiMe3 , tBu, OH, NH2 , NMe2 ), enable characterisation of mesomerism for the pincer-Pt interaction. Relationships between Hammett σp substituent parameters of Z and DFT data obtained from NBO6 and AOMix computation are used to probe the interaction of the 5dyz orbital of platinum with π-orbitals of the arene ring. Analogous computation for 2,6-(Me2 CH2 )2 C6 H3 Z (Z=H, CF3 , CHO, Cl, Br, I, F, SMe, SiMe3 , tBu, OH, NH2 ) and (4-H-NCN)PtZ allows an estimation of the relative substituent effects of "(CH2 NMe2 )2 PtZ" on π-delocalisation in the pincer system.
Collapse
Affiliation(s)
- Allan J Canty
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Gerard van Koten
- Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
31
|
Pérez‐Jiménez ÁJ, Sancho‐García JC. Theoretical Insights for Materials Properties of Cyclic Organic Nanorings. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Zheng J, Lu Z, Wu K, Ning GH, Li D. Coinage-Metal-Based Cyclic Trinuclear Complexes with Metal-Metal Interactions: Theories to Experiments and Structures to Functions. Chem Rev 2020; 120:9675-9742. [PMID: 32786416 DOI: 10.1021/acs.chemrev.0c00011] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the d10 coinage metal complexes, cyclic trinuclear complexes (CTCs) or trinuclear metallocycles with intratrimer metal-metal interactions are fascinating and important metal-organic or organometallic π-acids/bases. Each CTC of characteristic planar or near-planar trimetal nine-membered rings consists of Au(I)/Ag(I)/Cu(I) cations that linearly coordinate with N and/or C atoms in ditopic anionic bridging ligands. Since the first discovery of Au(I) CTC in the 1970s, research of CTCs has involved several fundamental areas, including noncovalent and metallophilic interaction, excimer/exciplex, acid-base chemistry, metalloaromaticity, supramolecular assemblies, and host/guest chemistry. These allow CTCs to be embraced in a wide range of innovative potential applications that include chemical sensing, semiconducting, gas and liquid adsorption/separation, catalysis, full-color display, and solid-state lighting. This review aims to provide a historic and comprehensive summary on CTCs and their extension to higher nuclearity complexes and coordination polymers from the perspectives of synthesis, structure, theoretical insight, and potential applications.
Collapse
Affiliation(s)
- Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhou Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
33
|
Affiliation(s)
- Md. Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, India
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
34
|
Martínez-Aguirre MA, Flores-Alamo M, Medrano F, Yatsimirsky AK. Examination of pinanediol-boronic acid ester formation in aqueous media: relevance to the relative stability of trigonal and tetrahedral boronate esters. Org Biomol Chem 2020; 18:2716-2726. [PMID: 32211727 DOI: 10.1039/d0ob00201a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The interaction of pinanediol with 2-fluorophenylboronic acid and several other substituted phenylboronic acids was studied in 40% vol. aqueous acetonitrile by 1H and 11B NMR, potentiometric and spectrophotometric titrations at variable pH values. The experimental results reveal the formation of a very stable trigonal ester (Ktrig ≈ 2 × 104 M-1) and a significantly less stable tetrahedral hydroxocomplex (Ktet ≈ 5 × 103 M-1) in contrast to the traditionally observed inverted order of stabilities Ktrig < Ktet. Comparison of the crystal structure of the trigonal ester isolated from aqueous acetonitrile with the DFT simulated structure of the respective hydroxocomplex shows that an unusual order of stabilities Ktrig > Ktet is observed in spite of the existence of the usual strain release effect in the O-B-O angle considered responsible for the typically observed increased stability of the tetrahedral hydroxocomplex. A complementary study of the stability of the six-membered cyclic boronate esters of chromotropic acid demonstrated the order Ktrig ≪ Ktet although the strain was absent in these esters. The results for m-, p-substituted phenylboronic acids show that the stability of both five- and six-membered trigonal esters formed with pinanediol and chromotropic acid, respectively, is insensitive to electronic effects but the electron accepting substituents stabilize the hydroxocomplexes. It follows from the whole set of results that Ktet can be much larger than Ktrig in the absence of the strain, but with a sufficiently acidic diol, and that the presence of the strain does not necessarily make Ktet larger than Ktrig for a less acidic diol with a purely saturated hydrocarbon backbone. Thus, the electronic effects manifested in the acidity of the diol appear to be more significant than the strain release effect in determining the Ktet/Ktrig ratio.
Collapse
Affiliation(s)
| | - Marcos Flores-Alamo
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico.
| | - Felipe Medrano
- Departamento de Ciencias químico-biológicas, Universidad de Sonora, Rosales y Luis Encinas Johnson s/n, Centro 83000, Hermosillo, Sonora, Mexico
| | - Anatoly K Yatsimirsky
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico.
| |
Collapse
|
35
|
Ismahan L, Leila N, Fatiha M, Abdelkrim G, Mouna C, Nada B, Brahim H. Computational study of inclusion complex of l-Glutamine/beta-Cycldextrin: Electronic and intermolecular interactions investigations. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Grishaeva TN, Masliy AN, Kuznetsov AM. Structural Features of the Inclusion Compound Based on the trans-[Co(en)2Cl2]+ Complex and Cucurbit[8]Uril: A DFT Study. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476619120035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Canty AJ, Ariafard A, Puddephatt RJ. DFT studies of two-electron oxidation, photochemistry, and radical transfer between metal centres in the formation of platinum( iv) and palladium( iv) selenolates from diphenyldiselenide and metal( ii) reactants. Dalton Trans 2020; 49:13566-13572. [DOI: 10.1039/d0dt02978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitation by light to the M–M antibonding orbital of [MIIIMe2(2,2′-bipyridine)(SePh)]2 releases 2[MIIIMe2(bipy)(SePh)]˙; the doublets react to give MIVMe2(bipy)(SePh)2 and MIIMe2(bipy).
Collapse
Affiliation(s)
- Allan J. Canty
- School of Natural Sciences – Chemistry
- University of Tasmania
- Hobart
- Australia
| | - Alireza Ariafard
- School of Natural Sciences – Chemistry
- University of Tasmania
- Hobart
- Australia
| | | |
Collapse
|
38
|
Wang N, Huang X, Chen L, Yang J, Li X, Ma J, Bao Y, Li F, Yin Q, Hao H. Consistency and variability of cocrystals containing positional isomers: the self-assembly evolution mechanism of supramolecular synthons of cresol-piperazine. IUCRJ 2019; 6:1064-1073. [PMID: 31709062 PMCID: PMC6830220 DOI: 10.1107/s2052252519012363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The disposition of functional groups can induce variations in the nature and type of interactions and hence affect the molecular recognition and self-assembly mechanism in cocrystals. To better understand the formation of cocrystals on a molecular level, the effects of disposition of functional groups on the formation of cocrystals were systematically and comprehensively investigated using cresol isomers (o-, m-, p-cresol) as model compounds. Consistency and variability in these cocrystals containing positional isomers were found and analyzed. The structures, molecular recognition and self-assembly mechanism of supramolecular synthons in solution and in their corresponding cocrystals were verified by a combined experimental and theoretical calculation approach. It was found that the heterosynthons (heterotrimer or heterodimer) combined with O-H⋯N hydrogen bonding played a significant role. Hirshfeld surface analysis and computed interaction energy values were used to determine the hierarchical ordering of the weak interactions. The quantitative analyses of charge transfers and molecular electrostatic potential were also applied to reveal and verify the reasons for consistency and variability. Finally, the molecular recognition, self-assembly and evolution process of the supramolecular synthons in solution were investigated. The results confirm that the supramolecular synthon structures formed initially in solution would be carried over to the final cocrystals, and the supramolecular synthon structures are the precursors of cocrystals and the information memory of the cocrystallization process, which is evidence for classical nucleation theory.
Collapse
Affiliation(s)
- Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Lihang Chen
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- Key Laboratory for Green Chemical Technology of the Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jinyue Yang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xin Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jiayuan Ma
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ying Bao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Fei Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Qiuxiang Yin
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| |
Collapse
|
39
|
Nora M, Ismahan L, Abdelkrim G, Mouna C, Leila N, Fatiha M, Nada B, Brahim H. Interactions in inclusion complex of β-cyclodextrin/l-Metheonine: DFT computational studies. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00948-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Toyota S, Yamamoto Y, Wakamatsu K, Tsurumaki E, Muñoz-Castro A. Nano-Saturn with an Ellipsoidal Body: Anthracene Macrocyclic Ring–C70 Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yuta Yamamoto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares Universidad Autonoma de Chile, Llano Subercaceaux, 2801 San Miguel, Santiago, Chile
| |
Collapse
|
41
|
Affiliation(s)
- Youzhi Xu
- Institut für Organische Chemie und Neue MaterialienUniversität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Max Delius
- Institut für Organische Chemie und Neue MaterialienUniversität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
42
|
Xu Y, von Delius M. The Supramolecular Chemistry of Strained Carbon Nanohoops. Angew Chem Int Ed Engl 2019; 59:559-573. [PMID: 31190449 DOI: 10.1002/anie.201906069] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 01/24/2023]
Abstract
Since 1996, a growing number of strained macrocycles, comprising only sp2 - or sp-hybridized carbon atoms within the ring, have become synthetically accessible, with the [n]cycloparaphenyleneacetylenes (CPPAs) and the [n]cycloparaphenylenes (CPPs) being the most prominent examples. Now that robust and relatively general synthetic routes toward a diverse range of nanohoop structures have become available, the research focus is beginning to shift towards the exploration of their properties and applications. From a supramolecular chemistry perspective, these macrocycles offer unique opportunities as a result of their near-perfect circular shape, the unusually high degree of shape-persistence, and the presence of both convex and concave π-faces. In this Minireview, we give an overview on the use of strained carbon-rich nanohoops in host-guest chemistry, the preparation of mechanically interlocked architectures, and crystal engineering.
Collapse
Affiliation(s)
- Youzhi Xu
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
43
|
Major Depressive Disorder and Oxidative Stress: In Silico Investigation of Fluoxetine Activity against ROS. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major depressive disorder is a psychiatric disease having approximately a 20% lifetime prevalence in adults in the United States (U.S.), as reported by Hasin et al. in JAMA Psichiatry 2018 75, 336–346. Symptoms include low mood, anhedonia, decreased energy, alteration in appetite and weight, irritability, sleep disturbances, and cognitive deficits. Comorbidity is frequent, and patients show decreased social functioning and a high mortality rate. Environmental and genetic factors favor the development of depression, but the mechanisms by which stress negatively impacts on the brain are still not fully understood. Several recent works, mainly published during the last five years, aim at investigating the correlation between treatment with fluoxetine, a non-tricyclic antidepressant drug, and the amelioration of oxidative stress. In this work, the antioxidant activity of fluoxetine was investigated using a computational protocol based on the density functional theory approach. Particularly, the scavenging of five radicals (HO•, HOO•, CH3OO•, CH2=CHOO•, and CH3O•) was considered, focusing on hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. Thermodynamic as well as kinetic aspects are discussed, and, for completeness, two metabolites of fluoxetine and serotonin, whose extracellular concentration is enhanced by fluoxetine, are included in our analysis. Indeed, fluoxetine may act as a radical scavenger, and exhibits selectivity for HO• and CH3O•, but is inefficient toward peroxyl radicals. In contrast, the radical scavenging efficiency of serotonin, which has been demonstrated in vitro, is significant, and this supports the idea of an indirect antioxidant efficiency of fluoxetine.
Collapse
|
44
|
Bauer CA. How to Model Inter- and Intramolecular Hydrogen Bond Strengths with Quantum Chemistry. J Chem Inf Model 2019; 59:3735-3743. [DOI: 10.1021/acs.jcim.9b00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Cacelli I, Lipparini F, Greff da Silveira L, Jacobs M, Livotto PR, Prampolini G. Accurate interaction energies by spin component scaled Möller-Plesset second order perturbation theory calculations with optimized basis sets (SCS-MP2mod): Development and application to aromatic heterocycles. J Chem Phys 2019; 150:234113. [DOI: 10.1063/1.5094288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ivo Cacelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Leandro Greff da Silveira
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Brazil
| | - Matheus Jacobs
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
- IRIS Adelrshof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Paolo Roberto Livotto
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Brazil
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
46
|
Zheng J, Yang H, Xie M, Li D. The π-acidity/basicity of cyclic trinuclear units (CTUs): from a theoretical perspective to potential applications. Chem Commun (Camb) 2019; 55:7134-7146. [PMID: 31134237 DOI: 10.1039/c9cc02969a] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclic trinuclear units (CTUs) based on Au(i), Ag(i) and Cu(i) cations, featuring near planar nine-membered coordination rings, represent an important class of metal-organic π-acids/bases with highly adjustable π-acidity/basicity. Their superior π-acidity/basicity coupled with Lewis-acidic and metalmetal bonding sites offers excellent attraction for a wide range of acidic/basic species, and usually followed by noticeable changes of luminescence or charge transfer behaviors. A series of representative cases from the past two decades have been selected herein for such cyclic trinuclear units in both oligomeric and polymeric systems. Their fascinating and profound potential applications related to π-acidity/basicity are highlighted, including molecular absorption and separation, luminescence sensing and detection, organic light-emitting diodes (OLEDs), metal-organic field-effect transistors (MOFETs), molecular wires, and catalysis. The challenges in improving the performance for practical application will also be discussed.
Collapse
Affiliation(s)
- Ji Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Hu Yang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Mo Xie
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
47
|
Young Lee G, Bay KL, Houk KN. Evaluation of DFT Methods and Implicit Solvation Models for Anion‐Binding Host‐Guest Systems. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ga Young Lee
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| | - Katherine L. Bay
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| | - Kendall N. Houk
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| |
Collapse
|
48
|
Caldararu O, Manzoni F, Oksanen E, Logan DT, Ryde U. Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Acta Crystallogr D Struct Biol 2019; 75:368-380. [PMID: 30988254 PMCID: PMC6465982 DOI: 10.1107/s205979831900175x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Neutron crystallography is a powerful method to determine the positions of H atoms in macromolecular structures. However, it is sometimes hard to judge what would constitute a chemically reasonable model, and the geometry of H atoms depends more on the surroundings (for example the formation of hydrogen bonds) than heavy atoms, so that the empirical geometry information for the H atoms used to supplement the experimental data is often less accurate. These problems may be reduced by using quantum-mechanical calculations. A method has therefore been developed to combine quantum-mechanical calculations with joint crystallographic refinement against X-ray and neutron data. A first validation of this method is provided by re-refining the structure of the galectin-3 carbohydrate-recognition domain in complex with lactose. The geometry is improved, in particular for water molecules, for which the method leads to better-resolved hydrogen-bonding interactions. The method has also been applied to the active copper site of lytic polysaccharide monooxygenase and shows that the protonation state of the amino-terminal histidine residue can be determined.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Francesco Manzoni
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Instruments Division, European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
49
|
Toyota S, Tsurumaki E. Exploration of Nano-Saturns: A Spectacular Sphere-Ring Supramolecular System. Chemistry 2019; 25:6878-6890. [DOI: 10.1002/chem.201900039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Shinji Toyota
- Department of Chemistry, School of Science; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
50
|
Bortoli M, Dalla Tiezza M, Muraro C, Pavan C, Ribaudo G, Rodighiero A, Tubaro C, Zagotto G, Orian L. Psychiatric Disorders and Oxidative Injury: Antioxidant Effects of Zolpidem Therapy disclosed In Silico. Comput Struct Biotechnol J 2019; 17:311-318. [PMID: 30867894 PMCID: PMC6396081 DOI: 10.1016/j.csbj.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 01/09/2023] Open
Abstract
Zolpidem (N,N-Dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide) is a well-known drug for the treatment of sleeping disorders. Recent literature reports on positive effects of zolpidem therapy on improving renal damage after cisplatin and on reducing akinesia without sleep induction. This has been ascribed to the antioxidant and neuroprotective capacity of this molecule, and tentatively explained according to a generic structural similarity between zolpidem and melatonin. In this work, we investigate in silico the antioxidant potential of zolpidem as scavenger of five ROSs, acting via hydrogen atom transfer (HAT) mechanism; computational methodologies based on density functional theory are employed. For completeness, the analysis is extended to six metabolites. Thermodynamic and kinetic results disclose that indeed zolpidem is an efficient radical scavenger, similarly to melatonin and Trolox, supporting the biomedical evidence that the antioxidant potential of zolpidem therapy may have a beneficial effect against oxidative injury, which is emerging as an important etiopathogenesis in numerous severe diseases, including psychiatric disorders.
Collapse
Key Words
- Antioxidant activity
- DFT calculations
- DFT, Density Functional Theory
- HAT, Hydrogen Atom Transfer (mechanism)
- M06-2X, Minnesota Hybrid functional with 54% Hartree-Fock exchange
- NBO, Natural Bond Orbitals
- NPA, Natural Population Analysis
- Oxidative stress
- PC, Product Complex
- Psychiatric disorders
- RAF, Radical Adduct Formation (mechanism)
- RC, Reactant Complex
- ROS, Reactive Oxygen Species
- Radical scavenging
- SMD, Solvation Model based on Density
- TS, Transition State
- Zolpidem
Collapse
Affiliation(s)
- Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Dalla Tiezza
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Cecilia Muraro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Chiara Pavan
- Dipartimento di Medicina, Università degli Studi di Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Anna Rodighiero
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|