1
|
Botte E, Vagaggini P, Zanoni I, Guazzelli N, Faccani L, Gardini D, Costa AL, Ahluwalia A. Cell-nanoparticle stickiness and dose delivery in a multi-model in silico platform: DosiGUI. Part Fibre Toxicol 2024; 21:45. [PMID: 39444027 PMCID: PMC11515606 DOI: 10.1186/s12989-024-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND It is well-known that nanoparticles sediment, diffuse and aggregate when dispersed in a fluid. Once they approach a cell monolayer, depending on the affinity or "stickiness" between cells and nanoparticles, they may adsorb instantaneously, settle slowly - in a time- and concentration-dependent manner - or even encounter steric hindrance and rebound. Therefore, the dose perceived by cells in culture may not necessarily be that initially administered. Methods for quantifying delivered dose are difficult to implement, as they require precise characterization of nanoparticles and exposure scenarios, as well as complex mathematical operations to handle the equations governing the system dynamics. Here we present a pipeline and a graphical user interface, DosiGUI, for application to the accurate nano-dosimetry of engineered nanoparticles on cell monolayers, which also includes methods for determining the parameters characterising nanoparticle-cell stickiness. RESULTS We evaluated the stickiness for 3 industrial nanoparticles (TiO2 - NM-105, CeO2 - NM-212 and BaSO4 - NM-220) administered to 3 cell lines (HepG2, A549 and Caco-2) and subsequently estimated corresponding delivered doses. Our results confirm that stickiness is a function of both nanoparticle and cell type, with the stickiest combination being BaSO4 and Caco-2 cells. The results also underline that accurate estimations of the delivered dose cannot prescind from a rigorous evaluation of the affinity between the cell type and nanoparticle under investigation. CONCLUSION Accurate nanoparticle dose estimation in vitro is crucial for in vivo extrapolation, allowing for their safe use in medical and other applications. This study provides a computational platform - DosiGUI - for more reliable dose-response characterization. It also highlights the importance of cell-nanoparticle stickiness for better risk assessment of engineered nanomaterials.
Collapse
Affiliation(s)
- Ermes Botte
- Research Centre "E. Piaggio", University of Pisa, Largo Lucio Lazzarino 1, Pisa, 56125, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Pietro Vagaggini
- Research Centre "E. Piaggio", University of Pisa, Largo Lucio Lazzarino 1, Pisa, 56125, Italy
| | - Ilaria Zanoni
- Institute of Science, Technology and Sustainability for Ceramics, CNR-ISSMC, National Research Council of Italy, Faenza, Italy
| | - Nicole Guazzelli
- Research Centre "E. Piaggio", University of Pisa, Largo Lucio Lazzarino 1, Pisa, 56125, Italy
| | - Lara Faccani
- Institute of Science, Technology and Sustainability for Ceramics, CNR-ISSMC, National Research Council of Italy, Faenza, Italy
| | - Davide Gardini
- Institute of Science, Technology and Sustainability for Ceramics, CNR-ISSMC, National Research Council of Italy, Faenza, Italy
| | - Anna L Costa
- Institute of Science, Technology and Sustainability for Ceramics, CNR-ISSMC, National Research Council of Italy, Faenza, Italy
| | - Arti Ahluwalia
- Research Centre "E. Piaggio", University of Pisa, Largo Lucio Lazzarino 1, Pisa, 56125, Italy.
- Department of Information Engineering, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Fu F, Crespy D, Landfester K, Jiang S. In situ characterization techniques of protein corona around nanomaterials. Chem Soc Rev 2024. [PMID: 39291461 DOI: 10.1039/d4cs00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.
Collapse
Affiliation(s)
- Fangqin Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
González-García D, Tapia O, Évora C, García-García P, Delgado A. Conventional and microfluidic methods: Design and optimization of lipid-polymeric hybrid nanoparticles for gene therapy. Drug Deliv Transl Res 2024:10.1007/s13346-024-01644-4. [PMID: 38872047 DOI: 10.1007/s13346-024-01644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
Gene therapy holds significant promise as a therapeutic approach for addressing a diverse range of diseases through the suppression of overexpressed proteins and the restoration of impaired cell functions. Developing a nanocarrier that can efficiently load and release genetic material into cells remains a challenge. The primary goal of this study is to develop formulations aimed to enhance the therapeutic potential of GapmeRs through technological approaches. To this end, lipid-polymeric hybrid nanoparticles (LPHNPs) with PLGA, DC-cholesterol, and DOPE-mPEG2000 were produced by conventional single-step nanoprecipitation (SSN) and microfluidic (MF) methods. The optimized nanoparticles by SSN have a size of 149.9 ± 18.07 nm, a polydispersity index (PdI) of 0.23 ± 0.02, and a zeta potential of (ZP) of 29.34 ± 2.44 mV, while by MF the size was 179.8 ± 6.3, a PdI of 0.24 ± 0.01, and a ZP of 32.25 ± 1.36 mV. Furthermore, LPHNPs prepared with GapmeR-protamine by both methods exhibit a high encapsulation efficiency of approximately 90%. The encapsulated GapmeR is completely released in 24 h. The LPHNP suspensions are stable for up to 6 h in 10% FBS at pH 5.4 and 7.4. By contrast, LPHNPs remain stable in suspension in 4.5% albumin at pH 7.4 for 24 h. Additionally, LPHNPs were successfully freeze-dried using trehalose in the range of 2.5-5% as cryoprotectant The LPHNPs produced by MF and SSN increase, 6 and 12 fold respectively, GapmeR cell uptake, and both of them reduce by 60-70% expression of Tob1 in 48 h.Our study demonstrates the efficacy of the developed LPHNPs as carriers for oligonucleotide delivery, offering valuable insights for their scale up production from a conventional bulk methodology to a high-throughput microfluidic technology.
Collapse
Affiliation(s)
- Daniel González-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, 38200, Spain
- Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, La Laguna, 38200, Spain
| | - Olga Tapia
- Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, La Laguna, 38200, Spain
- Department of Basic Medical Sciences, Universidad de La Laguna, La Laguna, 38200, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, 38200, Spain
- Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, La Laguna, 38200, Spain
| | - Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, 38200, Spain.
- Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, La Laguna, 38200, Spain.
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, 38200, Spain.
- Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, La Laguna, 38200, Spain.
| |
Collapse
|
4
|
Choi MH, Hong L, Chamorro LP, Edwards B, Timperman AT. Measuring the electrophoretic mobility and size of single particles using microfluidic transverse AC electrophoresis (TrACE). LAB ON A CHIP 2023; 24:20-33. [PMID: 37937351 DOI: 10.1039/d3lc00413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability to measure the charge and size of single particles is essential to understanding particle adhesion and interaction with their environment. Characterizing the physical properties of biological particles, like cells, can be a powerful tool in studying the association between the changes in physical properties and disease development. Currently, measuring charge via the electrophoretic mobility (μep) of individual particles remains challenging, and there is only one prior report of simultaneously measuring μep and size. We introduce microfluidic transverse AC electrophoresis (TrACE), a novel technique that combines particle tracking velocimetry (PTV) and AC electrophoresis. In TrACE, electric waves with 0.75 to 1.5 V amplitude are applied transversely to the bulk flow and cause the particles to oscillate. PTV records the particles' oscillating trajectories as pressure drives bulk flow through the microchannel. A simple quasi-equilibrium model agrees well with experimental measurements of frequency, amplitude, and phase, indicating that particle motion is largely described by DC electrophoresis. The measured μep of polystyrene particles (0.53, 0.84, 1, and 2 μm diameter) are consistent with ELS measurements, and precision is enhanced by averaging ∼100 measurements per particle. Particle size is simultaneously measured from Brownian motion quantified from the trajectory for particles <2 μm or image analysis for particles ≥2 μm. Lastly, the ability to analyze intact mammalian cells is demonstrated with B cells. TrACE systems are expected to be highly suitable as fieldable tools to measure the μep and size of a broad range of individual particles.
Collapse
Affiliation(s)
- M Hannah Choi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Liu Hong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leonardo P Chamorro
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Boyd Edwards
- Department of Physics, Utah State University, Logan, UT 84322, USA
| | - Aaron T Timperman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Nienhaus K, Nienhaus GU. Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301663. [PMID: 37010040 DOI: 10.1002/smll.202301663] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Although a wide variety of nanoparticles (NPs) have been engineered for use as disease markers or drug delivery agents, the number of nanomedicines in clinical use has hitherto remained small. A key obstacle in nanomedicine development is the lack of a deep mechanistic understanding of NP interactions in the bio-environment. Here, the focus is on the biomolecular adsorption layer (protein corona), which quickly enshrouds a pristine NP exposed to a biofluid and modifies the way the NP interacts with the bio-environment. After a brief introduction of NPs for nanomedicine, proteins, and their mutual interactions, research aimed at addressing fundamental properties of the protein corona, specifically its mono-/multilayer structure, reversibility and irreversibility, time dependence, as well as its role in NP agglomeration, is critically reviewed. It becomes quite evident that the knowledge of the protein corona is still fragmented, and conflicting results on fundamental issues call for further mechanistic studies. The article concludes with a discussion of future research directions that should be taken to advance the understanding of the protein corona around NPs. This knowledge will provide NP developers with the predictive power to account for these interactions in the design of efficacious nanomedicines.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76049, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76049, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Yin L, Li H, Shi L, Chen K, Pan H, Han W. Research advances in nanomedicine applied to the systemic treatment of colorectal cancer. Int J Cancer 2023; 152:807-821. [PMID: 35984398 DOI: 10.1002/ijc.34256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/06/2023]
Abstract
The systematic treatment of colorectal cancer (CRC) still has room for improvement. The efficacy of chemotherapy, that of anti-vascular therapy, and that of immunotherapy have been unsatisfactory. In recent years, nanomaterials have been used as carriers to improve the bioavailability of anticancer drugs. For the treatment of colorectal cancer, nanodrugs increase the possibility of more precise targeted delivery. However, the actual benefits may cover more aspects. Nanocarriers can produce synergistic effects with anticancer drugs, including the scavenging of reactive oxygen species and co-delivery of a variety of drugs. Currently, immunotherapy has very limited clinical applications in CRC. Modified nanocarriers can activate the immune microenvironment, which can be used for staging antigen recognition or the immune response. Cancer vaccines based on nanomaterials and modified immune checkpoint inhibitors have shown therapeutic potential in animal models. Considering the direct or indirect relationship between the intestinal microflora and CRC, a variety of nanodrugs that regulate microbial function have been explored as an anticancer strategy, and the special structure of microorganisms can also be used as a basis for improving the delivery of traditional nanoparticles (NPs). This review summarizes recent research performed on nanocarriers in in vivo and in vitro models and the synergistic anticancer effects of nanocarriers, focusing on the interaction between NPs and the body, resulting in enhanced efficacy and immune activation. Furthermore, this review describes the current trend of NPs used in the treatment of CRC.
Collapse
Affiliation(s)
- Luxi Yin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haozhe Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Shi
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
8
|
Wang H, Nienhaus K, Shang L, Nienhaus GU. Highly luminescent positively charged quantum dots interacting with proteins and cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haixia Wang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Li Shang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Department of Physics University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| |
Collapse
|
9
|
Luiz MT, Dutra JAP, Ribeiro TDC, Carvalho GC, Sábio RM, Marchetti JM, Chorilli M. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Tuguntaev RG, Hussain A, Fu C, Chen H, Tao Y, Huang Y, Liu L, Liang XJ, Guo W. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnology 2022; 20:236. [PMID: 35590412 PMCID: PMC9118863 DOI: 10.1186/s12951-022-01451-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines (NMs) have emerged as an efficient approach for developing novel treatment strategies against a variety of diseases. Over the past few decades, NM formulations have received great attention, and a large number of studies have been performed in this field. Despite this, only about 60 nano-formulations have received industrial acceptance and are currently available for clinical use. Their in vivo pharmaceutical behavior is considered one of the main challenges and hurdles for the effective clinical translation of NMs, because it is difficult to monitor the pharmaceutic fate of NMs in the biological environment using conventional pharmaceutical evaluations. In this context, non-invasive imaging modalities offer attractive solutions, providing the direct monitoring and quantification of the pharmacokinetic and pharmacodynamic behavior of labeled NMs in a real-time manner. Imaging evaluations have great potential for revealing the relationship between the physicochemical properties of NMs and their pharmaceutical profiles in living subjects. In this review, we introduced imaging techniques that can be used for in vivo NM evaluations. We also provided an overview of various studies on the influence of key parameters on the in vivo pharmaceutical behavior of NMs that had been visualized in a non-invasive and real-time manner.
Collapse
Affiliation(s)
- Ruslan G Tuguntaev
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecular Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
11
|
Wu R, Ou X, Zhang L, Wang F, Liu L. Interfacial Interactions within Amyloid Protein Corona Based on 2D MoS 2 Nanosheets. Chembiochem 2021; 23:e202100581. [PMID: 34708897 DOI: 10.1002/cbic.202100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/21/2022]
Abstract
The interfacial interaction within the amyloid protein corona based on MoS2 nanomaterial is crucial, both for understanding the biological effects of MoS2 nanomaterial and the evolution of amyloid diseases. The specific nano-bio interface phenomenon of human islet amyloid peptide (hIAPP) and MoS2 nanosheet was investigated by using theoretical and experimental methods. The MoS2 nanosheet enables the attraction of hIAPP monomer, dimer, and oligomer on its surface through van der Waals forces. Especially, the means of interaction between two hIAPP peptides might be changed by MoS2 nanosheet. In addition, it is interesting to find that the hIAPP oligomer can stably interact with the MoS2 nanosheet in one unique "standing" binding mode with an entire exposed β-sheet surface. All the interaction modes on the surface of MoS2 nanosheet can be the essence of amyloid protein corona that may provide the venue to facilitate the fibrillation of hIAPP proteins. Further, it was verified experimentally that MoS2 nanosheets could accelerate the fibrillation of hIAPP at a certain concentration mainly based on the newly formed nano-bio interface. In general, our results provide insight into the molecular interaction mechanism of the nano-bio interface within the amyloid protein corona, and shed light on the pathway of amyloid protein aggregation that is related to the evolution of amyloid diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Xuefu Road 301, Zhenjiang, 212000, P. R. China
| | - Xinwen Ou
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Liwei Zhang
- Institute for Advanced Materials, Jiangsu University, Xuefu Road 301, Zhenjiang, 212000, P. R. China
| | - Fenghua Wang
- Institute for Advanced Materials, Jiangsu University, Xuefu Road 301, Zhenjiang, 212000, P. R. China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Xuefu Road 301, Zhenjiang, 212000, P. R. China
| |
Collapse
|
12
|
Ajala TO, Abraham A, Keck CM, Odeku OA, Elufioye TO, Olopade JO. Shea butter (Vitellaria paradoxa) and Pentaclethra macrophylla oil as lipids in the formulation of Nanostructured lipid carriers. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Sjöberg M, Mapar M, Armanious A, Zhdanov VP, Agnarsson B, Höök F. Time-Resolved and Label-Free Evanescent Light-Scattering Microscopy for Mass Quantification of Protein Binding to Single Lipid Vesicles. NANO LETTERS 2021; 21:4622-4628. [PMID: 34003003 PMCID: PMC8289281 DOI: 10.1021/acs.nanolett.1c00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In-depth understanding of the intricate interactions between biomolecules and nanoparticles is hampered by a lack of analytical methods providing quantitative information about binding kinetics. Herein, we demonstrate how label-free evanescent light-scattering microscopy can be used to temporally resolve specific protein binding to individual surface-bound (∼100 nm) lipid vesicles. A theoretical model is proposed that translates protein-induced changes in light-scattering intensity into bound mass. Since the analysis is centered on individual lipid vesicles, the signal from nonspecific protein binding to the surrounding surface is completely avoided, offering a key advantage over conventional surface-based techniques. Further, by averaging the intensities from less than 2000 lipid vesicles, the sensitivity is shown to increase by orders of magnitude. Taken together, these features provide a new avenue in studies of protein-nanoparticle interaction, in general, and specifically in the context of nanoparticles in medical diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mattias Sjöberg
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Mokhtar Mapar
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Antonius Armanious
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Vladimir P. Zhdanov
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Björn Agnarsson
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Fredrik Höök
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
14
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
15
|
Biodistribution of surfactant-free poly(lactic-acid) nanoparticles and uptake by endothelial cells and phagocytes in zebrafish: Evidence for endothelium to macrophage transfer. J Control Release 2021; 331:228-245. [PMID: 33444668 DOI: 10.1016/j.jconrel.2021.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
In the development of therapeutic nanoparticles (NP), there is a large gap between in vitro testing and in vivo experimentation. Despite its prominence as a model, the mouse shows severe limitations for imaging NP and the cells with which they interact. Recently, the transparent zebrafish larva, which is well suited for high-resolution live-imaging, has emerged as a powerful alternative model to investigate the in vivo behavior of NP. Poly(D,L lactic acid) (PLA) is widely accepted as a safe polymer to prepare therapeutic NP. However, to prevent aggregation, many NP require surfactants, which may have undesirable biological effects. Here, we evaluate 'safe-by-design', surfactant-free PLA-NP that were injected intravenously into zebrafish larvae. Interaction of fluorescent NPs with different cell types labelled in reporter animals could be followed in real-time at high resolution; furthermore, by encapsulating colloidal gold into the matrix of PLA-NP we could follow their fate in more detail by electron microscopy, from uptake to degradation. The rapid clearance of fluorescent PLA-NP from the circulation coincided with internalization by endothelial cells lining the whole vasculature and macrophages. After 30 min, when no NP remained in circulation, we observed that macrophages continued to internalize significant amounts of NP. More detailed video-imaging revealed a new mechanism of NP transfer where NP are transmitted along with parts of the cytoplasm from endothelial cells to macrophages.
Collapse
|
16
|
Trusova EA, Klimenko IV, Afzal AM, Shchegolikhin AN, Jurina LV. Comparison of oxygen-free graphene sheets obtained in DMF and DMF-aqua media. NEW J CHEM 2021. [DOI: 10.1039/d1nj01015h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In pure DMF, the graphene layering is mainly limited to 5 layers; in the aqua presence, partial association of the lightest graphene sheets with the highest surface energy occurs.
Collapse
Affiliation(s)
- Elena A. Trusova
- Institution of Russian Academy of Sciences
- A. A. Baikov Institute of Metallurgy and Materials Science of RAS
- Moscow 119334
- Russia
| | - Inna V. Klimenko
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
- Moscow 119334
- Russia
| | - Asya M. Afzal
- Institution of Russian Academy of Sciences
- A. A. Baikov Institute of Metallurgy and Materials Science of RAS
- Moscow 119334
- Russia
| | | | - Lyubov V. Jurina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
- Moscow 119334
- Russia
| |
Collapse
|
17
|
Brownian motion-based nanoparticle sizing-A powerful approach for in situ analysis of nanoparticle-protein interactions. Biointerphases 2020; 15:061201. [PMID: 33356335 DOI: 10.1116/6.0000438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A key hurdle toward effective application of nanoparticles (NPs) in biomedicine is still the incomplete understanding of the biomolecular adsorption layer, the so-called protein corona, which inevitably forms around NPs when they are immersed in a biofluid. NP sizing techniques via the analysis of Brownian motions offer a powerful way to measure the thickness of the protein corona in situ. Here, the fundamentals of three techniques, dynamic light scattering, fluorescence correlation spectroscopy, and nanoparticle tracking analysis are briefly summarized. Then, experimental procedures for the determination of binding curves are presented in a tutorial fashion. Nanoparticle sizing experiments are illustrated with a selection of recent results on the interactions of transferrin with hydrophilic and hydrophobic polystyrene nanoparticles, and key insights gained from this work are discussed.
Collapse
|
18
|
Büyüktiryaki S, Keçili R, Hussain CM. Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115893] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Liu N, Tang M, Ding J. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. CHEMOSPHERE 2020; 245:125624. [PMID: 31864050 DOI: 10.1016/j.chemosphere.2019.125624] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Once nanoparticles (NPs) contact with the biological fluids, the proteins immediately adsorb onto their surface, forming a layer called protein corona (PC), which bestows the biological identity on NPs. Importantly, the NPs-PC complex is the true identity of NPs in physiological environment. Based on the affinity and the binding and dissociation rate, PC is classified into soft protein corona, hard protein corona, and interfacial protein corona. Especially, the hard PC, a protein layer relatively stable and closer to their surface, plays particularly important role in the biological effects of the complex. However, the abundant corona proteins rarely correspond to the most abundant proteins found in biological fluids. The composition profile, formation and conformational change of PC can be affected by many factors. Here, the influence factors, not only the nature of NPs, but also surface chemistry and biological medium, are discussed. Likewise, the formed PC influences the interaction between NPs and cells, and the associated subsequent cellular uptake and cytotoxicity. The uncontrolled PC formation may induce undesirable and sometimes opposite results: increasing or inhibiting cellular uptake, hindering active targeting or contributing to passive targeting, mitigating or aggravating cytotoxicity, and stimulating or mitigating the immune response. In the present review, we discuss these aspects and hope to provide a valuable reference for controlling protein adsorption, predicting their behavior in vivo experiments and designing lower toxicity and enhanced targeting nanomedical materials for nanomedicine.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| | - Jiandong Ding
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| |
Collapse
|
20
|
Quenching of tryptophan fluorescence by colloidal Cu2S nanoparticles through static and dynamic modes under different solution pH. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zheng H, Wan P, Qi S, Chen H, Zhai H. Investigating the interaction between DNA-templated gold nanoclusters and HSA via spectroscopy. NEW J CHEM 2020. [DOI: 10.1039/d0nj02075c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoclusters (AuNCs) have attracted great attention in bioimaging and drug transportation due to their biocompatibility, but a few studies have shown their potential toxicity.
Collapse
Affiliation(s)
- Huanhuan Zheng
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Pengfei Wan
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Shengda Qi
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Hongli Chen
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
22
|
Ilett M, Wills J, Rees P, Sharma S, Micklethwaite S, Brown A, Brydson R, Hondow N. Application of automated electron microscopy imaging and machine learning to characterise and quantify nanoparticle dispersion in aqueous media. J Microsc 2019; 279:177-184. [PMID: 31823372 PMCID: PMC7496512 DOI: 10.1111/jmi.12853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
Abstract
For many nanoparticle applications it is important to understand dispersion in liquids. For nanomedicinal and nanotoxicological research this is complicated by the often complex nature of the biological dispersant and ultimately this leads to severe limitations in the analysis of the nanoparticle dispersion by light scattering techniques. Here we present an alternative analysis and associated workflow which utilises electron microscopy. The need to collect large, statistically relevant datasets by imaging vacuum dried, plunge frozen aliquots of suspension was accomplished by developing an automated STEM imaging protocol implemented in an SEM fitted with a transmission detector. Automated analysis of images of agglomerates was achieved by machine learning using two free open‐source software tools: CellProfiler and ilastik. The specific results and overall workflow described enable accurate nanoparticle agglomerate analysis of particles suspended in aqueous media containing other potential confounding components such as salts, vitamins and proteins. Lay Description In order to further advance studies in both nanomedicine and nanotoxicology, we need to continue to understand the dispersion of nanoparticles in biological fluids. These biological environments often contain a number of components such as salts, vitamins and proteins which can lead to difficulties when using traditional techniques to monitor dispersion. Here we present an alternative analysis which utilises electron microscopy. In order to use this approach statistically relevant large image datasets were collected from appropriately prepared samples of nanoparticle suspensions by implementing an automated imaging protocol. Automated analysis of these images was achieved through machine learning using two readily accessible freeware; CellProfiler and ilastik. The workflow presented enables accurate nanoparticle dispersion analysis of particles suspended in more complex biological media.
Collapse
Affiliation(s)
- M Ilett
- School of Chemical and Process Engineering, University of Leeds, Leeds, U.K
| | - J Wills
- Department of Veterinary Medicine, University of Cambridge, Cambridge, U.K
| | - P Rees
- Centre for Nanohealth, Swansea University, College of Engineering, Swansea, U.K
| | - S Sharma
- School of Chemical and Process Engineering, University of Leeds, Leeds, U.K
| | - S Micklethwaite
- School of Chemical and Process Engineering, University of Leeds, Leeds, U.K
| | - A Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds, U.K
| | - R Brydson
- School of Chemical and Process Engineering, University of Leeds, Leeds, U.K
| | - N Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, U.K
| |
Collapse
|
23
|
Petry R, Saboia VM, Franqui LS, Holanda CDA, Garcia TR, de Farias MA, de Souza Filho AG, Ferreira OP, Martinez DS, Paula AJ. On the formation of protein corona on colloidal nanoparticles stabilized by depletant polymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110080. [DOI: 10.1016/j.msec.2019.110080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
|
24
|
Rego GNDA, Mamani JB, Souza TKF, Nucci MP, Silva HRD, Gamarra LF. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. EINSTEIN-SAO PAULO 2019; 17:eAO4786. [PMID: 31390427 PMCID: PMC6668731 DOI: 10.31744/einstein_journal/2019ao4786] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/28/2019] [Indexed: 11/21/2022] Open
Abstract
Objective: To evaluate the potential of magnetic hyperthermia using aminosilane-coated superparamagnetic iron oxide nanoparticles in glioblastoma tumor model. Methods: The aminosilane-coated superparamagnetic iron oxide nanoparticles were analyzed as to their stability in aqueous medium and their heating potential through specific absorption rate, when submitted to magnetic hyperthermia with different frequencies and intensities of alternating magnetic field. In magnetic hyperthermia in vitro assays, the C6 cells cultured and transduced with luciferase were analyzed by bioluminescence in the absence/presence of alternating magnetic field, and also with and without aminosilane-coated superparamagnetic iron oxide nanoparticles. In the in vivo study, the measurement of bioluminescence was performed 21 days after glioblastoma induction with C6 cells in rats. After 24 hours, the aminosilane-coated superparamagnetic iron oxide nanoparticles were implanted in animals, and magnetic hyperthermia was performed for 40 minutes, using the best conditions of frequency and intensity of alternating magnetic field tested in the in vitro study (the highest specific absorption rate value) and verified the difference of bioluminescence before and after magnetic hyperthermia. Results: The aminosilane-coated superparamagnetic iron oxide nanoparticles were stable, and their heating capacity increased along with higher frequency and intensity of alternating magnetic field. The magnetic hyperthermia application with 874kHz and 200 Gauss of alternating magnetic field determined the best value of specific absorption rate (194.917W/g). When these magnetic hyperthermia parameters were used in in vitro and in vivo analysis, resulted in cell death of 52.0% and 32.8%, respectively, detected by bioluminescence. Conclusion: The magnetic hyperthermia was promissing for the therapeutical process of glioblastoma tumors in animal model, using aminosilane-coated superparamagnetic iron oxide nanoparticles, which presented high specific absorption rate.
Collapse
Affiliation(s)
| | | | | | - Mariana Penteado Nucci
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
25
|
Nienhaus K, Nienhaus GU. Towards a molecular-level understanding of the protein corona around nanoparticles – Recent advances and persisting challenges. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Wang H, Ma R, Nienhaus K, Nienhaus GU. Formation of a Monolayer Protein Corona around Polystyrene Nanoparticles and Implications for Nanoparticle Agglomeration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900974. [PMID: 31021510 DOI: 10.1002/smll.201900974] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Indexed: 05/23/2023]
Abstract
Nanoparticle (NP) interactions with cells and organisms are mediated by a biomolecular adsorption layer, the so-called "protein corona." An in-depth understanding of the corona is a prerequisite to successful and safe application of NPs in biology and medicine. In this work, earlier in situ investigations on small NPs are extended to large polystyrene (PS) NPs of up to 100 nm diameter, using human transferrin (Tf) and human serum albumin (HSA) as model proteins. Direct NP sizing experiments reveal a reversibly bound monolayer protein shell (under saturating conditions) on hydrophilic, carboxyl-functionalized (PS-COOH) NPs, as was earlier observed for much smaller NPs. In contrast, protein binding on hydrophobic, sulfated (PS-OSO3 H) NPs in solvent of low ionic strength is completely irreversible; nevertheless, the thickness of the observed protein corona again corresponds to a protein monolayer. Under conditions of reduced charge repulsion (higher ionic strength), the NPs are colloidally unstable and form large clusters below a certain protein-NP stoichiometric ratio, indicating that the adsorbed proteins induce NP agglomeration. This comprehensive characterization of the persistent protein corona on PS-OSO3 H NPs by nanoparticle sizing and quantitative fluorescence microscopy/nanoscopy reveals mechanistic aspects of molecular interactions occurring during exposure of NPs to biofluids.
Collapse
Affiliation(s)
- Haixia Wang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Rui Ma
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
27
|
Gaiser A, Hafner S, Schmiech M, Büchele B, Schäfer P, Arnim CA, Calzia E, Feuring‐Buske M, Buske C, Vick B, Jeremias I, Syrovets T, Simmet T. Gold Nanoparticles with Selective Antileukemic Activity In Vitro and In Vivo Target Mitochondrial Respiration. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ann‐Kathrin Gaiser
- Institute of Pharmacology of Natural Products and Clinical PharmacologyUlm University D‐89081 Ulm Germany
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical PharmacologyUlm University D‐89081 Ulm Germany
| | - Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical PharmacologyUlm University D‐89081 Ulm Germany
| | - Berthold Büchele
- Institute of Pharmacology of Natural Products and Clinical PharmacologyUlm University D‐89081 Ulm Germany
| | | | | | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process EngineeringUlm University D‐89081 Ulm Germany
| | - Michaela Feuring‐Buske
- Institute of Experimental Cancer ResearchComprehensive Cancer CenterDepartment of Internal Medicine IIIUniversity Hospital Ulm D‐89081 Ulm Germany
| | - Christian Buske
- Institute of Experimental Cancer ResearchComprehensive Cancer CenterDepartment of Internal Medicine IIIUniversity Hospital Ulm D‐89081 Ulm Germany
| | - Binje Vick
- Department of Apoptosis in Hematopoietic Stem CellsHelmholtz Center MunichGerman Center for Environmental Health (HMGU) D‐81377 Munich Germany
| | - Irmela Jeremias
- Department of Apoptosis in Hematopoietic Stem CellsHelmholtz Center MunichGerman Center for Environmental Health (HMGU) D‐81377 Munich Germany
- Department of PediatricsDr. von Hauner Children's HospitalLudwig Maximilians University D‐80539 Munich Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical PharmacologyUlm University D‐89081 Ulm Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical PharmacologyUlm University D‐89081 Ulm Germany
| |
Collapse
|
28
|
Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, Thyssen C, Schilling O, Hasenberg M, Pang C, Docter D, Knauer SK, Stauber RH, Strieth S. Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials 2018; 192:551-559. [PMID: 30530244 DOI: 10.1016/j.biomaterials.2018.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus, Klebsiella pneumoniae or Enterococcus faecalis. Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentially bind to Gram-positive pathogens, such as Listeria monocytogenes, S. aureus or Streptococcus pyrogenes, correlating with enhanced antibacterial activity. Bacterial resistance to metal-based nanoparticles was mediated by biomolecule coronas acquired in pathophysiological environments, such as wounds, the lung, or the blood system. Biomolecule corona formation reduced nanoparticles' binding to pathogens, but did not impact nanoparticle dissolution. Our results provide a mechanistic explanation why nano-sized antibiotics may show reduced activity in clinically relevant environments, and may inspire future nanoantibiotic designs with improved and potentially pathogen-specific activity.
Collapse
Affiliation(s)
- Svenja Siemer
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Dana Westmeier
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Matthias Barz
- Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, D-55099, Mainz, Germany
| | - Jonas Eckrich
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Désirée Wünsch
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Christof Seckert
- Institute for Medical Microbiology and Hygiene, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Christian Thyssen
- Biofilm Centre, University Duisburg-Essen, Universitätsstraße 5, 45117, Essen, Germany
| | - Oliver Schilling
- Institute of Institute of Surgical Pathology/Translational Proteomics, University of Freiburg, Breisacher Strasse 115a, 79106, Freiburg, Germany
| | - Mike Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | - Chengfang Pang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 115, 2800, Kgs. Lyngby, Denmark
| | - Dominic Docter
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB)/CENIDE, University Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany
| | - Roland H Stauber
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| | - Sebastian Strieth
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| |
Collapse
|
30
|
Liao C, Xu D, Liu X, Fang Y, Yi J, Li X, Guo B. Iridium (III) complex-loaded liposomes as a drug delivery system for lung cancer through mitochondrial dysfunction. Int J Nanomedicine 2018; 13:4417-4431. [PMID: 30104875 PMCID: PMC6071621 DOI: 10.2147/ijn.s170035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background and aim Iridium (Ir)-based complex is a potential antitumor ingredient, but its poor physicochemical properties such as hydrophobicity and low biocompatibility hamper further application. Liposome provides a potential delivery approach for improving the poor physicochemical property and reducing the side effects of antitumor drug. In this study, we aimed at incorporating Ir ([Ir(ppy)2(BTCP)]PF6) into liposomes to enhance the biocompatibility and sustained release of Ir for intravenous administration and to elucidate the mechanism in A549 cells. Materials and methods Ir-loaded PEGylated liposomes (Lipo-Ir) were formulated by thin-film dispersion and ultrasonic method. Morphology, size distribution, and zeta potential of Lipo-Ir were examined by transmission electron microscopy (TEM) and Zetasizer. The released profile and biocompatibility were investigated by dialysis method and hemolysis test, respectively. Additionally, the cytotoxic activity and mechanism of Lipo-Ir and Ir inducing apoptosis in A549 cells were evaluated. Results Lipo-Ir can keep sustained release, excellent biocompatibility, and physical stability. The average particle size, polydispersity index, zeta potential, encapsulation efficiency, and drug loading are 112.57±1.15 nm, 0.19±0.02, −10.66±0.61 mV, 94.71%±3.21%, and 4.71%±0.41%, respectively. 3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide (MTT) assay show that Lipo-Ir and Ir display high cytotoxicity against selected cancer cells. Furthermore, the apoptotic features of morphology, depolarization of mitochondrial membrane potential, increase in the reactive oxygen species (ROS) levels, and disorder of Ca2+ homeostasis are observed after treating A549 cells with Ir and Lipo-Ir. Besides, Lipo-Ir can arrest the cell growth in G0/G1 phase. Conclusion The studies demonstrate that Lipo-Ir can trigger apoptosis in A549 cells via ROS-mediated mitochondrial dysfunctions, and the biocompatible and sustained Lipo-Ir will be a promising drug delivery system.
Collapse
Affiliation(s)
- Cancheng Liao
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Danqiao Xu
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Xiaohong Liu
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Yuqi Fang
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Jun Yi
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Xiaofang Li
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Bohong Guo
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| |
Collapse
|
31
|
Bohórquez AC, Unni M, Belsare S, Chiu-Lam A, Rice L, Pampo C, Siemann D, Rinaldi C. Stability and Mobility of Magnetic Nanoparticles in Biological Environments Determined from Dynamic Magnetic Susceptibility Measurements. Bioconjug Chem 2018; 29:2793-2805. [PMID: 30011185 DOI: 10.1021/acs.bioconjchem.8b00419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low tumor accumulation following systemic delivery remains a key challenge for advancing many cancer nanomedicines. One obstacle in engineering nanoparticles for high tumor accumulation is a lack of techniques to monitor their stability and mobility in situ. One way to monitor the stability and mobility of magnetic nanoparticles biological fluids in situ is through dynamic magnetic susceptibility measurements (DMS), which under certain conditions provide a measure of the particle's rotational diffusivity. For magnetic nanoparticles modified to have commonly used biomedical surface coatings, we describe a systematic comparison of DMS measurements in whole blood and tumor tissue explants. DMS measurements clearly demonstrated that stability and mobility changed over time and from one medium to another for each different coating. It was found that nanoparticles coated with covalently grafted, dense layers of PEG were the only ones to show good stability and mobility in all settings tested. These studies illustrate the utility of DMS measurements to estimate the stability and mobility of nanoparticles in situ, and which can provide insights that lead to engineering better nanoparticles for in vivo use.
Collapse
Affiliation(s)
- Ana C Bohórquez
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States
| | - Mythreyi Unni
- Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| | - Sayali Belsare
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States
| | - Andreina Chiu-Lam
- Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| | - Lori Rice
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Christine Pampo
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Dietmar Siemann
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States.,Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| |
Collapse
|
32
|
Toma CC, Aloisi A, Bordoni V, Di Corato R, Rauner M, Cuniberti G, Delogu LG, Rinaldi R. Immune Profiling of Polysaccharide Submicron Vesicles. Biomacromolecules 2018; 19:3560-3571. [DOI: 10.1021/acs.biomac.8b00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chiara C. Toma
- CNR-NANO (ECMT) Institute of Nanoscience,
Via Arnesano, 73100 Lecce, Italy
| | - Alessandra Aloisi
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, A3 Building, 73100 Lecce, Italy
- CNR-NANO (ECMT) Institute of Nanoscience,
Via Arnesano, 73100 Lecce, Italy
| | - Valentina Bordoni
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23, 07100 Sassari, Italy
| | | | | | | | - Lucia G. Delogu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23, 07100 Sassari, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgeri 1, 34134 Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, corso Stati Uniti 4 35127 Padova, Italy
| | - Rosaria Rinaldi
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, A3 Building, 73100 Lecce, Italy
| |
Collapse
|
33
|
Senapati VA, Kansara K, Shanker R, Dhawan A, Kumar A. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona. Mutagenesis 2018; 32:479-490. [PMID: 29048576 DOI: 10.1093/mutage/gex028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Engineered nanoparticles (ENPs) possess different physical and chemical properties compared to their bulk counterparts. These unique properties have found application in various products in the area of therapeutics, consumer goods, environmental remediation, optical and electronic fields. This has also increased the likelihood of their release into the environment thereby affecting human health and ecosystem. ENPs, when in contact with the biological system have various physical and chemical interactions with cellular macromolecules including proteins. These interactions lead to the formation of protein corona around the ENPs. Consequently, living systems interact with the protein-coated ENP rather than with a bare ENP. This ENP-protein interaction influences uptake, accumulation, distribution and clearance and thereby affecting the cytotoxic and genotoxic responses. Although there are few studies which discussed the fate of ENPs, there is a need for extensive research in the field of ENPs, to understand the interaction of ENPs with biological systems for their safe and productive application.
Collapse
Affiliation(s)
- Violet Aileen Senapati
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India
| | - Krupa Kansara
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India
| | - Rishi Shanker
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, PO Box 80, Lucknow 226001, Uttar Pradesh, India
| | - Alok Dhawan
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, PO Box 80, Lucknow 226001, Uttar Pradesh, India
| | - Ashutosh Kumar
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
34
|
Espinasse BP, Geitner NK, Schierz A, Therezien M, Richardson CJ, Lowry GV, Ferguson L, Wiesner MR. Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4072-4078. [PMID: 29505250 DOI: 10.1021/acs.est.7b06142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During nanoparticle environmental exposure, presence in the water column is expected to dominate long distance transport as well as initial aquatic organism exposure. Much work has been done to understand potential ecological and toxicological effects of these particles. However, little has been done to date to understand the comparative persistence of engineered particles in realistic environmental systems. Presented here is a study of the water column lifetimes of 3 different classes of nanoparticles prepared with a combination of surface chemistries in wetland mesocosms. We find that, when introduced as a single pulse, all tested nanoparticles persist in the water column for periods ranging from 36 h to 10 days. Specifically, we found a range of nanoparticle residence times in the order Ag > TiO2 > SWCNT > CeO2. We further explored the hypothesis that heteroaggregation was the primary driving factor for nanoparticle removal from the water column in all but one case, and that values of surface affinity (α) measured in the laboratory appear to predict relative removal rates when heteroaggregation dominates. Though persistence in the water column was relatively short in all cases, differences in persistence may play a role in determining nanoparticle fate and impacts and were poorly predicted by currently prevailing benchmarks such as particle surface preparation.
Collapse
Affiliation(s)
- Benjamin P Espinasse
- Civil and Environmental Engineering Department , Duke University , Durham , 27708 North Carolina , United States
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , 27708 North Carolina , United States
| | - Nicholas K Geitner
- Civil and Environmental Engineering Department , Duke University , Durham , 27708 North Carolina , United States
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , 27708 North Carolina , United States
| | - Ariette Schierz
- Civil and Environmental Engineering Department , Duke University , Durham , 27708 North Carolina , United States
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , 27708 North Carolina , United States
| | - Mathieu Therezien
- Civil and Environmental Engineering Department , Duke University , Durham , 27708 North Carolina , United States
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , 27708 North Carolina , United States
| | - Curtis J Richardson
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , 27708 North Carolina , United States
- Nicholas School of the Environment , Duke University , Durham , 27708 North Carolina , United States
| | - Gregory V Lowry
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , 27708 North Carolina , United States
- Civil & Environmental Engineering , Carnegie Mellon University , Pittsburgh , 15213 Pennsylvania , United States
| | - Lee Ferguson
- Civil and Environmental Engineering Department , Duke University , Durham , 27708 North Carolina , United States
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , 27708 North Carolina , United States
| | - Mark R Wiesner
- Civil and Environmental Engineering Department , Duke University , Durham , 27708 North Carolina , United States
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , 27708 North Carolina , United States
| |
Collapse
|
35
|
Di Francesco T, Borchard G. A robust and easily reproducible protocol for the determination of size and size distribution of iron sucrose using dynamic light scattering. J Pharm Biomed Anal 2018; 152:89-93. [DOI: 10.1016/j.jpba.2018.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022]
|
36
|
Rial R, Tichnell B, Latimer B, Liu Z, Messina PV, Ruso JM. Structural and Kinetic Visualization of the Protein Corona on Bioceramic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2471-2480. [PMID: 29361824 DOI: 10.1021/acs.langmuir.7b03573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioceramic nanoparticles exhibit excellent features that enable them to function as an ideal material for hard tissue engineering. However, to fully understand their behavior, it is of crucial importance to understand their behavior within the fluids of the human body. To achieve this goal, we have studied the interaction between hydroxyapatite nanorods (HA) and bovine serum albumin (BSA). First, we describe the surface morphology of the nanoparticle. Then, the main characteristics of the physiological interplay of BSA and the hydroxyapatite nanoparticle are presented by using a battery of techniques: ITC, zeta potential, UV-vis, fluorescence, and CD. Experimental data was analyzed by developing specific approaches to determining important parameters such as rates, affinities, and stochiometries of protein associated with the nanoparticles. ITC has been confirmed as a powerful technique for determining the affinity, binding, and thermodynamics of BSA-nanoparticle interactions. Careful quantitative assessment of the kinetic properties of the adsorption were revealed by UV-vis and fluorescence measurements. Finally, CD measurements highlight the important role of protein flexibility in these kinds of systems.
Collapse
Affiliation(s)
- Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Brandon Tichnell
- Department of Physics and Engineering, Frostburg State University , Frostburg, Maryland 21532, United States
| | - Brendan Latimer
- Department of Physics and Engineering, Frostburg State University , Frostburg, Maryland 21532, United States
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University , Frostburg, Maryland 21532, United States
| | - Paula V Messina
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR-CONICET , B8000CP, Bahía Blanca, Argentina
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela , 15782 Santiago de Compostela, Spain
| |
Collapse
|
37
|
Li Y, Xu Y, Fleischer CC, Huang J, Lin R, Yang L, Mao H. Impact of Anti-Biofouling Surface Coatings on the Properties of Nanomaterials and Their Biomedical Applications. J Mater Chem B 2018; 6:9-24. [PMID: 29479429 PMCID: PMC5821433 DOI: 10.1039/c7tb01695f] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding and subsequently controlling non-specific interactions between engineered nanomaterials and biological environment have become increasingly important for further developing and advancing nanotechnology for biomedical applications. Such non-specific interactions, also known as the biofouling effect, mainly associate with the adsorption of biomolecules (such as proteins, DNAs, RNAs, and peptides) onto the surface of nanomaterials and the adhesion or uptake of nanomaterials by various cells. By altering the surface properties of nanomaterials the biofouling effect can lead to in situ changes of physicochemical properties, pharmacokinetics, functions, and toxicity of nanomaterials. This review provides discussions on the current understanding of the biofouling effect, the factors that affect the non-specific interactions associated with biofouling, and the impact of the biofouling effect on the performances and functions of nanomaterials. An overview of the development and applications of various anti-biofouling coating materials to preserve and improve the properties and functions of engineered nanomaterials for intended biomedical applications is also provided.
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Run Lin
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
38
|
Westmeier D, Hahlbrock A, Reinhardt C, Fröhlich-Nowoisky J, Wessler S, Vallet C, Pöschl U, Knauer SK, Stauber RH. Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological consequences. Chem Soc Rev 2018; 47:5312-5337. [DOI: 10.1039/c6cs00691d] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NPs’ characteristics impact their spontaneous binding to microbes, which may affect the (patho)biological identity of both NP and microbes.
Collapse
Affiliation(s)
- D. Westmeier
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| | - A. Hahlbrock
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| | - C. Reinhardt
- Center for Thrombosis and Hemostasis
- University Medical Center Mainz
- 55101 Mainz
- Germany
| | - J. Fröhlich-Nowoisky
- Multiphase Chemistry Department
- Max Planck Institute for Chemistry
- 55128 Mainz
- Germany
| | - S. Wessler
- Department of Molecular Biology
- Paris-Lodron University of Salzburg
- A-5020 Salzburg
- Austria
| | - C. Vallet
- Institute for Molecular Biology
- CENIDE
- University Duisburg-Essen
- 45117 Essen
- Germany
| | - U. Pöschl
- Multiphase Chemistry Department
- Max Planck Institute for Chemistry
- 55128 Mainz
- Germany
| | - S. K. Knauer
- Institute for Molecular Biology
- CENIDE
- University Duisburg-Essen
- 45117 Essen
- Germany
| | - R. H. Stauber
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| |
Collapse
|
39
|
Balasubramanian V, Liu Z, Hirvonen J, Santos HA. Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Adv Healthc Mater 2018; 7. [PMID: 28570787 DOI: 10.1002/adhm.201700432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Explosive growth of nanomedicines continues to significantly impact the therapeutic strategies for effective cancer treatment. Despite the significant progress in the development of advanced nanomedicines, successful clinical translation remains challenging. As cancer nanomedicine is a multidisciplinary field, the fundamental problem is that the knowledge gaps stem from different vantage points in the understanding of cancer nanomedicines. The complexities and heterogenecity of both nanomedicines and cancer are further demanding the integration of highly diverse expertise to develop clinically translatable cancer nanomedicines. This progress report aims to discuss the current understanding of cancer nanomedicines between different research areas in terms of nanoparticle engineering, formulation, tumor patho-physiology and clinical medicine, as well as to identify the knowledge gaps lying at the interface between the different fields of research in nanomedicine. Here we also highlight for the necessity to harmonize the multidisciplinary effort in the research of nanomedicines in order to bridge the knowledge and to advance the full understanding in cancer nanomedicines. A paradigm shift is needed in the strategic development of disease specific nanomedicines in order to foster the successful translation into clinic of future cancer nanomedicines.
Collapse
Affiliation(s)
- Vimalkumar Balasubramanian
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Zehua Liu
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Hélder A. Santos
- Helsinki Institute of Life Science; HiLIFE; University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
40
|
Single particle extinction and scattering optical method unveils in real time the influence of the blood components on polymeric nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2597-2603. [DOI: 10.1016/j.nano.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022]
|
41
|
Davidson AM, Brust M, Cooper DL, Volk M. Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Centrifugal Sedimentation. Anal Chem 2017; 89:6807-6814. [PMID: 28513153 PMCID: PMC5480231 DOI: 10.1021/acs.analchem.7b01229] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
It
is demonstrated that the adsorption of bovine serum albumin
(BSA) to aqueous gold colloids can be quantified with molecular resolution
by differential centrifugal sedimentation (DCS). This method separates
colloidal particles of comparable density by mass. When proteins adsorb
to the nanoparticles, both their mass and their effective density
change, which strongly affects the sedimentation time. A straightforward
analysis allows quantification of the adsorbed layer. Most importantly,
unlike many other methods, DCS can be used to detect chemisorbed proteins
(“hard corona”) as well as physisorbed proteins (“soft
corona”). The results for BSA on gold colloid nanoparticles
can be modeled in terms of Langmuir-type adsorption isotherms (Hill
model). The effects of surface modification with small thiol-PEG ligands
on protein adsorption are also demonstrated.
Collapse
Affiliation(s)
- Adam M Davidson
- Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| | - Mathias Brust
- Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| | - David L Cooper
- Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| | - Martin Volk
- Surface Science Research Centre, Department of Chemistry, University of Liverpool , Abercromby Square, Liverpool L69 3BX, U.K
| |
Collapse
|
42
|
Chutipaijit S, Sutjaritvorakul T. Application of nanomaterials in plant regeneration of rice ( Oryza sativa L.). ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.06.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Bhattacharya A, Das S, Mukherjee TK. Insights into the Thermodynamics of Polymer Nanodot-Human Serum Albumin Association: A Spectroscopic and Calorimetric Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12067-12077. [PMID: 27794621 DOI: 10.1021/acs.langmuir.6b02658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With the advent of newer luminescent nanoparticles for bioimaging applications, their complex interactions with individual biomolecules need to be understood in great detail, before their direct application into cellular environments. Here, we have presented a systematic and detailed study on the interaction between luminescent polymer nanodots (PNDs) and human serum albumin (HSA) in its free and ligand-bound state with the help of spectrophotometric and calorimetric techniques. At physiological pH (pH = 7.4), PNDs quench the intrinsic fluorescence of HSA as a consequence of ground-state complex formation. The binding stoichiometry and various thermodynamic parameters have been evaluated by using isothermal titration calorimetry and the van't Hoff equation. It has been found that the association of PNDs with HSA is spontaneous (ΔG0 = -32.48 ± 1.24 kJ mol-1) and is driven by a favorable negative standard enthalpy change (ΔH0 = -52.86 ± 2.12 kJ mol-1) and an unfavorable negative standard entropy change (ΔS0 = -68.38 ± 2.96 J mol-1 K-1). These results have been explained by considering hydrogen bonding interactions between amino and hydroxyl groups (-NH2 and -OH) of PNDs and carboxylate groups (-COO-) of glutamate (Glu) and aspartate (Asp) residues of HSA. The binding constant of PNDs with HSA is estimated to be 4.90 ± 0.19 × 105 M-1. Moreover, it has been observed that warfarin-bound HSA (war-HSA) shows a significantly lower binding affinity (Kb = 1.15 ± 0.19 × 105 M-1) toward PNDs, whereas ibuprofen-bound HSA (ibu-HSA) shows a slightly lower affinity (Kb = 3.47 ± 0.13 × 105 M-1) compared with the free HSA. In addition, our results revealed that PNDs displace warfarin from site I (subdomain IIA) of HSA because of the partial unfolding of war-HSA. We hope that the present study will be helpful to understand the fundamental interactions of these biocompatible PNDs with various biological macromolecules.
Collapse
Affiliation(s)
- Arpan Bhattacharya
- Discipline of Chemistry, Indian Institute of Technology Indore , Simrol, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Somnath Das
- Discipline of Chemistry, Indian Institute of Technology Indore , Simrol, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Indore , Simrol, Khandwa Road, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
44
|
Leopold K, Philippe A, Wörle K, Schaumann GE. Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Decrop D, Brans T, Gijsenbergh P, Lu J, Spasic D, Kokalj T, Beunis F, Goos P, Puers R, Lammertyn J. Optical Manipulation of Single Magnetic Beads in a Microwell Array on a Digital Microfluidic Chip. Anal Chem 2016; 88:8596-603. [PMID: 27448015 DOI: 10.1021/acs.analchem.6b01734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The detection of single molecules in magnetic microbead microwell array formats revolutionized the development of digital bioassays. However, retrieval of individual magnetic beads from these arrays has not been realized until now despite having great potential for studying captured targets at the individual level. In this paper, optical tweezers were implemented on a digital microfluidic platform for accurate manipulation of single magnetic beads seeded in a microwell array. Successful optical trapping of magnetic beads was found to be dependent on Brownian motion of the beads, suggesting a 99% chance of trapping a vibrating bead. A tailor-made experimental design was used to screen the effect of bead type, ionic buffer strength, surfactant type, and concentration on the Brownian activity of beads in microwells. With the optimal conditions, the manipulation of magnetic beads was demonstrated by their trapping, retrieving, transporting, and repositioning to a desired microwell on the array. The presented platform combines the strengths of digital microfluidics, digital bioassays, and optical tweezers, resulting in a powerful dynamic microwell array system for single molecule and single cell studies.
Collapse
Affiliation(s)
- Deborah Decrop
- Department of Biosystems, MEBIOS-Biosensors, KU Leuven , Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Toon Brans
- Department of Electronics and Information Systems (ELIS) and Center for Nano and Biophotonics (NB-Photonics), UGent , Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Pieter Gijsenbergh
- Department of Electrotechnical Engineering (ESAT-MICAS), KU Leuven , Kasteelpark Arenberg 10 Postbus 2440, 3001 Leuven, Belgium
| | - Jiadi Lu
- Department of Biosystems, MEBIOS-Biosensors, KU Leuven , Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department of Biosystems, MEBIOS-Biosensors, KU Leuven , Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Tadej Kokalj
- Department of Biosystems, MEBIOS-Biosensors, KU Leuven , Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Filip Beunis
- Department of Electronics and Information Systems (ELIS) and Center for Nano and Biophotonics (NB-Photonics), UGent , Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Peter Goos
- Department of Biosystems, MEBIOS-Biosensors, KU Leuven , Willem de Croylaan 42, 3001 Leuven, Belgium.,Faculty of Applied Economics, University of Antwerp, Stadscampus , Prinsstraat 13, 2000 Antwerp, Belgium
| | - Robert Puers
- Department of Electrotechnical Engineering (ESAT-MICAS), KU Leuven , Kasteelpark Arenberg 10 Postbus 2440, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, MEBIOS-Biosensors, KU Leuven , Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
46
|
Winzen S, Koynov K, Landfester K, Mohr K. Fluorescence labels may significantly affect the protein adsorption on hydrophilic nanomaterials. Colloids Surf B Biointerfaces 2016; 147:124-128. [PMID: 27497932 DOI: 10.1016/j.colsurfb.2016.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/24/2023]
Abstract
Fluorescently labelled proteins are often used to study processes in vitro, e.g. the binding of proteins to cell surfaces or the adsorption of plasma proteins on drug nanocarriers. However, the fact that the fluorescent labelling may affect the protein properties is frequently neglected. On the example of a simple model system, we reiterate the importance of this issue by showing that even a single label may perturb interactions between hydrophilic starch-based nanocapsules and serum albumin and thus prevent binding.
Collapse
Affiliation(s)
- Svenja Winzen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | - Kristin Mohr
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| |
Collapse
|
47
|
Silge A, Bocklitz T, Ossig R, Schnekenburger J, Rösch P, Popp J. The interaction of an amino-modified ZrO2 nanomaterial with macrophages-an in situ investigation by Raman microspectroscopy. Anal Bioanal Chem 2016; 408:5935-5943. [PMID: 27329500 DOI: 10.1007/s00216-016-9710-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023]
Abstract
Metal oxide nanoparticles (NP) are applied in the fields of biomedicine, pharmaceutics, and in consumer products as textiles, cosmetics, paints, or fuels. In this context, the functionalization of the NP surface is a common method to modify and modulate the product performance. A chemical surface modification of NP such as an amino-functionalization can be used to achieve a positively charged and hydrophobic surface. Surface functionalization is known to affect the interaction of nanomaterials (NM) with cellular macromolecules and the responses of tissues or cells, like the uptake of particles by phagocytic cells. Therefore, it is important to assess the possible risk of those modified NP for human health and environment. By applying Raman microspectroscopy, we verified in situ the interaction of amino-modified ZrO2 NP with cultivated macrophages. The results demonstrated strong adhesion properties of the NP to the cell membrane and internalization into the cells. The intracellular localization of the NP was visualized via Raman depth scans of single cells. After the cells were treated with sodium azide (NaN3) and 2-deoxy-glucose to inhibit the phagocytic activity, NP were still detected inside cells to comparable percentages. The observed tendency of amino-modified ZrO2 NP to interact with the cultivated macrophages may influence membrane integrity and cellular functions of alveolar macrophages in the respiratory system. Graphical abstract Detection of ZrO2 NM at subcellular level.
Collapse
Affiliation(s)
- Anja Silge
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743, Jena, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743, Jena, Germany
| | - Rainer Ossig
- Biomedical Technology Center, Westfälische Wilhelms-Universität Münster, Mendelstr. 17, 48149, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Westfälische Wilhelms-Universität Münster, Mendelstr. 17, 48149, Münster, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany.
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743, Jena, Germany.
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07702, Jena, Germany.
| |
Collapse
|
48
|
Bhattacharjee S. DLS and zeta potential - What they are and what they are not? J Control Release 2016; 235:337-351. [PMID: 27297779 DOI: 10.1016/j.jconrel.2016.06.017] [Citation(s) in RCA: 1876] [Impact Index Per Article: 234.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Adequate characterization of NPs (nanoparticles) is of paramount importance to develop well defined nanoformulations of therapeutic relevance. Determination of particle size and surface charge of NPs are indispensable for proper characterization of NPs. DLS (dynamic light scattering) and ZP (zeta potential) measurements have gained popularity as simple, easy and reproducible tools to ascertain particle size and surface charge. Unfortunately, on practical grounds plenty of challenges exist regarding these two techniques including inadequate understanding of the operating principles and dealing with critical issues like sample preparation and interpretation of the data. As both DLS and ZP have emerged from the realms of physical colloid chemistry - it is difficult for researchers engaged in nanomedicine research to master these two techniques. Additionally, there is little literature available in drug delivery research which offers a simple, concise account on these techniques. This review tries to address this issue while providing the fundamental principles of these techniques, summarizing the core mathematical principles and offering practical guidelines on tackling commonly encountered problems while running DLS and ZP measurements. Finally, the review tries to analyze the relevance of these two techniques from translatory perspective.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
49
|
David CA, Owen A, Liptrott NJ. Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine (Lond) 2016; 11:1447-64. [PMID: 27171671 DOI: 10.2217/nnm-2016-0017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The growing wealth of information regarding the influence that physicochemical characteristics play on nanoparticle biocompatibility and safety is allowing improved design and rationale for their development and preclinical assessment. Accurate and appropriate measurement of these characteristics accompanied by informed toxicological assessment is a necessity for the development of safe and effective nanomedicines. While particle type, formulation and mode of administration dictate the individual causes for concern through development, the benefits of nanoformulation for treatment of the diseased state are great. Here we have proposed certain considerations and suggestions, which could lead to better-informed preclinical assessment of nanomaterials for nanomedicine, as well as how this information can and should be extrapolated to the physiological state of the end user.
Collapse
Affiliation(s)
- Christopher Aw David
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Andrew Owen
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Neill J Liptrott
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| |
Collapse
|
50
|
Solveyra EG, Szleifer I. What is the role of curvature on the properties of nanomaterials for biomedical applications? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:334-54. [PMID: 26310432 PMCID: PMC4769694 DOI: 10.1002/wnan.1365] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022]
Abstract
The use of nanomaterials for drug delivery and theranostics applications is a promising paradigm in nanomedicine, as it brings together the best features of nanotechnolgy, molecular biology, and medicine. To fully exploit the synergistic potential of such interdisciplinary strategy, a comprehensive description of the interactions at the interface between nanomaterials and biological systems is not only crucial, but also mandatory. Routine strategies to engineer nanomaterial-based drugs comprise modifying their surface with biocompatible and targeting ligands, in many cases resorting to modular approaches that assume additive behavior. However, emergent behavior can be observed when combining confinement and curvature. The final properties of functionalized nanomaterials become dependent not only on the properties of their constituents but also on the geometry of the nano-bio interface, and on the local molecular environment. Modularity no longer holds, and the coupling between interactions, chemical equilibrium, and molecular organization has to be directly addressed in order to design smart nanomaterials with controlled spatial functionalization envisioning optimized biomedical applications. Nanoparticle's curvature becomes an integral part of the design strategy, enabling to control and engineer the chemical and surface properties with molecular precision. Understanding how nanoparticle size, morphology, and surface chemistry are interrelated will put us one step closer to engineering nanobiomaterials capable of mimicking biological structures and their behaviors, paving the way into applications and the possibility to elucidate the use of curvature by biological systems. WIREs Nanomed Nanobiotechnol 2016, 8:334-354. doi: 10.1002/wnan.1365 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Estefania Gonzalez Solveyra
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University
| | - Igal Szleifer
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University
| |
Collapse
|