• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4613498)   Today's Articles (4645)   Subscriber (49388)
For: Newland MJ, Rickard AR, Alam MS, Vereecken L, Muñoz A, Ródenas M, Bloss WJ. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Phys Chem Chem Phys 2016;17:4076-88. [PMID: 25562069 DOI: 10.1039/c4cp04186k] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Number Cited by Other Article(s)
1
Hata H, Tonokura K. Kinetic study of isoprene hydroxy hydroperoxide radicals reacting with sulphur dioxide and their global-scale impact on sulphate formation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024;26:1147-1155. [PMID: 38856669 DOI: 10.1039/d4em00232f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
2
Jiang H, Liu Y, Xiao C, Yang X, Dong W. Reaction Kinetics of CH2OO and syn-CH3CHOO Criegee Intermediates with Acetaldehyde. J Phys Chem A 2024;128:4956-4965. [PMID: 38868987 DOI: 10.1021/acs.jpca.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
3
Qian Y, Nguyen TL, Franke PR, Stanton JF, Lester MI. Nonstatistical Unimolecular Decay of the CH2OO Criegee Intermediate in the Tunneling Regime. J Phys Chem Lett 2024;15:6222-6229. [PMID: 38838341 DOI: 10.1021/acs.jpclett.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
4
Pham TV, Trang HTT. Mechanistic and Kinetic Approach on the Propargyl Radical (C3H3) with the Criegee Intermediate (CH2OO). ACS OMEGA 2023;8:16859-16868. [PMID: 37214685 PMCID: PMC10193399 DOI: 10.1021/acsomega.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
5
Huang M, Wang H, Shan X, Sheng L, Hu C, Gu X, Zhang W. Experimental study on synchrotron radiation photoionization of secondary organic aerosol derived from styrene ozonolysis. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
6
Robinson C, Onel L, Newman J, Lade R, Au K, Sheps L, Heard DE, Seakins PW, Blitz MA, Stone D. Unimolecular Kinetics of Stabilized CH3CHOO Criegee Intermediates: syn-CH3CHOO Decomposition and anti-CH3CHOO Isomerization. J Phys Chem A 2022;126:6984-6994. [PMID: 36146923 PMCID: PMC9549458 DOI: 10.1021/acs.jpca.2c05461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Indexed: 11/30/2022]
7
Zhao H, Wang S, Lu C, Tang Y, Guan J. Theoretical investigations on the reactions of criegee intermediates with SO 2 to form SO 3. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
8
Peltola J, Seal P, Vuorio N, Heinonen P, Eskola A. Solving the discrepancy between the direct and relative-rate determinations of unimolecular reaction kinetics of dimethyl-substituted Criegee intermediate (CH3)2COO using a new photolytic precursor. Phys Chem Chem Phys 2022;24:5211-5219. [PMID: 35167635 DOI: 10.1039/d1cp02270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
9
Vereecken L, Novelli A, Kiendler-Scharr A, Wahner A. Unimolecular and water reactions of oxygenated and unsaturated Criegee intermediates under atmospheric conditions. Phys Chem Chem Phys 2022;24:6428-6443. [DOI: 10.1039/d1cp05877k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Saheb V. Detailed theoretical kinetics studies on the product formation from the reaction of the criegee intermediate CH2OO with H2O molecule. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Wang R, Wen M, Liu S, Lu Y, Makroni L, Muthiah B, Zhang T, Wang Z, Wang Z. The favorable routes for the hydrolysis of CH2OO with (H2O)n (n = 1-4) investigated by global minimum searching combined with quantum chemical methods. Phys Chem Chem Phys 2021;23:12749-12760. [PMID: 34041511 DOI: 10.1039/d0cp00028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
12
Liu J, Liu Y, Yang J, Zeng XC, He X. Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H3O. J Phys Chem Lett 2021;12:3379-3386. [PMID: 33784110 DOI: 10.1021/acs.jpclett.1c00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
13
Wang R, Wen M, Chen X, Mu R, Zeng Z, Chai G, Lily M, Wang Z, Zhang T. Atmospheric Chemistry of CH2OO: The Hydrolysis of CH2OO in Small Clusters of Sulfuric Acid. J Phys Chem A 2021;125:2642-2652. [PMID: 33755485 DOI: 10.1021/acs.jpca.1c02006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
14
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
15
Du B, Zhang W. Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2. Molecules 2020;25:molecules25133041. [PMID: 32635243 PMCID: PMC7412395 DOI: 10.3390/molecules25133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]  Open
16
Newland MJ, Nelson BS, Muñoz A, Ródenas M, Vera T, Tárrega J, Rickard AR. Trends in stabilisation of Criegee intermediates from alkene ozonolysis. Phys Chem Chem Phys 2020;22:13698-13706. [PMID: 32525165 DOI: 10.1039/d0cp00897d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
17
Adame JA, Lope L, Sorribas M, Notario A, Yela M. SO2 measurements in a clean coastal environment of the southwestern Europe: Sources, transport and influence in the formation of secondary aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020;716:137075. [PMID: 32044490 DOI: 10.1016/j.scitotenv.2020.137075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
18
Direct conversion of terminal alkenes to aldehydes via ozonolysis reaction in rotating zigzag bed. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01933-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
19
Stephenson TA, Lester MI. Unimolecular decay dynamics of Criegee intermediates: Energy-resolved rates, thermal rates, and their atmospheric impact. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2020.1688530] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
20
Rapid unimolecular reaction of stabilized Criegee intermediates and implications for atmospheric chemistry. Nat Commun 2019;10:2003. [PMID: 31043594 PMCID: PMC6494847 DOI: 10.1038/s41467-019-09948-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 11/10/2022]  Open
21
Wei WM, Hong S, Fang WJ, Zheng RH, Qin YD. Formation of OH radicals from the simplest Criegee intermediate CH2OO and water. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
22
Rousso AC, Hansen N, Jasper AW, Ju Y. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Phys Chem Chem Phys 2019;21:7341-7357. [DOI: 10.1039/c9cp00473d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Sun C, Xu B, Lv L, Zhang S. Theoretical investigation on the reaction mechanism and kinetics of a Criegee intermediate with ethylene and acetylene. Phys Chem Chem Phys 2019;21:16583-16590. [DOI: 10.1039/c9cp02644d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Giorio C, Campbell SJ, Bruschi M, Archibald AT, Kalberer M. Detection and identification of Criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs: comparison between experimental measurements and theoretical calculations. Faraday Discuss 2018;200:559-578. [PMID: 28580994 PMCID: PMC5708353 DOI: 10.1039/c7fd00025a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Reactive Uptake of Ammonia by Biogenic and Anthropogenic Organic Aerosols. ACTA ACUST UNITED AC 2018. [DOI: 10.1021/bk-2018-1299.ch007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
26
Insights on Aerosol Oxidative Potential from Measurements of Particle Size Distributions. ACTA ACUST UNITED AC 2018. [DOI: 10.1021/bk-2018-1299.ch020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
27
Modeling Heterogeneous Oxidation of NOx, SO2 and Hydrocarbons in the Presence of Mineral Dust Particles under Various Atmospheric Environments. ACTA ACUST UNITED AC 2018. [DOI: 10.1021/bk-2018-1299.ch015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
28
Sun C, Zhang S, Yue J, Zhang S. Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein. J Phys Chem A 2018;122:8729-8737. [DOI: 10.1021/acs.jpca.8b06897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
29
Stone D, Au K, Sime S, Medeiros DJ, Blitz M, Seakins PW, Decker Z, Sheps L. Unimolecular decomposition kinetics of the stabilised Criegee intermediates CH2OO and CD2OO. Phys Chem Chem Phys 2018;20:24940-24954. [PMID: 30238099 DOI: 10.1039/c8cp05332d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Long B, Bao JL, Truhlar DG. Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere. Proc Natl Acad Sci U S A 2018;115:6135-6140. [PMID: 29844185 PMCID: PMC6004451 DOI: 10.1073/pnas.1804453115] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
31
Pfeifle M, Ma YT, Jasper AW, Harding LB, Hase WL, Klippenstein SJ. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation. J Chem Phys 2018;148:174306. [DOI: 10.1063/1.5028117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
32
Lester MI, Klippenstein SJ. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes. Acc Chem Res 2018;51:978-985. [PMID: 29613756 DOI: 10.1021/acs.accounts.8b00077] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
33
Wennberg PO, Bates KH, Crounse JD, Dodson LG, McVay RC, Mertens LA, Nguyen TB, Praske E, Schwantes RH, Smarte MD, St Clair JM, Teng AP, Zhang X, Seinfeld JH. Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chem Rev 2018. [PMID: 29522327 DOI: 10.1021/acs.chemrev.7b00439] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
34
Vereecken L, Novelli A, Taraborrelli D. Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates. Phys Chem Chem Phys 2018;19:31599-31612. [PMID: 29182168 DOI: 10.1039/c7cp05541b] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
35
Sheps L, Rotavera B, Eskola AJ, Osborn DL, Taatjes CA, Au K, Shallcross DE, Khan MAH, Percival CJ. The reaction of Criegee intermediate CH2OO with water dimer: primary products and atmospheric impact. Phys Chem Chem Phys 2018;19:21970-21979. [PMID: 28805226 DOI: 10.1039/c7cp03265j] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
36
Anglada JM, Solé A. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Phys Chem Chem Phys 2018;18:17698-712. [PMID: 27308802 DOI: 10.1039/c6cp02531e] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
37
Liu Y, Yin C, Smith MC, Liu S, Chen M, Zhou X, Xiao C, Dai D, Lin JJM, Takahashi K, Dong W, Yang X. Kinetics of the reaction of the simplest Criegee intermediate with ammonia: a combination of experiment and theory. Phys Chem Chem Phys 2018;20:29669-29676. [DOI: 10.1039/c8cp05920a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
38
Laskin A, Lin P, Laskin J, Fleming LT, Nizkorodov S. Molecular Characterization of Atmospheric Brown Carbon. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1299.ch013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
39
Howes NUM, Mir ZS, Blitz MA, Hardman S, Lewis TR, Stone D, Seakins PW. Kinetic studies of C1 and C2 Criegee intermediates with SO2 using laser flash photolysis coupled with photoionization mass spectrometry and time resolved UV absorption spectroscopy. Phys Chem Chem Phys 2018;20:22218-22227. [DOI: 10.1039/c8cp03115k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Verma V, Sioutas C, Weber RJ. Oxidative Properties of Ambient Particulate Matter - An Assessment of the Relative Contributions from Various Aerosol Components and Their Emission Sources. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1299.ch019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
41
Tadayon SV, Foreman ES, Murray C. Kinetics of the Reactions between the Criegee Intermediate CH2OO and Alcohols. J Phys Chem A 2017;122:258-268. [DOI: 10.1021/acs.jpca.7b09773] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
42
Berndt T, Herrmann H, Kurtén T. Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry. J Am Chem Soc 2017;139:13387-13392. [DOI: 10.1021/jacs.7b05849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
43
Yajima R, Sakamoto Y, Inomata S, Hirokawa J. Relative Reactivity Measurements of Stabilized CH2OO, Produced by Ethene Ozonolysis, Toward Acetic Acid and Water Vapor Using Chemical Ionization Mass Spectrometry. J Phys Chem A 2017;121:6440-6449. [DOI: 10.1021/acs.jpca.7b05065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
44
Taatjes CA. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides. Annu Rev Phys Chem 2017;68:183-207. [DOI: 10.1146/annurev-physchem-052516-050739] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
45
Fang Y, Barber VP, Klippenstein SJ, McCoy AB, Lester MI. Tunneling effects in the unimolecular decay of (CH3)2COO Criegee intermediates to OH radical products. J Chem Phys 2017;146:134307. [DOI: 10.1063/1.4979297] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
46
Enami S, Colussi AJ. Criegee Chemistry on Aqueous Organic Surfaces. J Phys Chem Lett 2017;8:1615-1623. [PMID: 28319398 DOI: 10.1021/acs.jpclett.7b00434] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
47
Giorio C, Campbell SJ, Bruschi M, Tampieri F, Barbon A, Toffoletti A, Tapparo A, Paijens C, Wedlake AJ, Grice P, Howe DJ, Kalberer M. Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection. J Am Chem Soc 2017;139:3999-4008. [PMID: 28201872 DOI: 10.1021/jacs.6b10981] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
48
Smith MC, Chao W, Kumar M, Francisco JS, Takahashi K, Lin JJM. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide. J Phys Chem A 2017;121:938-945. [DOI: 10.1021/acs.jpca.6b12303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
49
Sakamoto Y, Yajima R, Inomata S, Hirokawa J. Water vapour effects on secondary organic aerosol formation in isoprene ozonolysis. Phys Chem Chem Phys 2017;19:3165-3175. [DOI: 10.1039/c6cp04521a] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
50
Yin C, Takahashi K. How does substitution affect the unimolecular reaction rates of Criegee intermediates? Phys Chem Chem Phys 2017;19:12075-12084. [DOI: 10.1039/c7cp01091e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA