1
|
Li D, Zhou H, Ren Z, Xu C, Lee C. Tailoring Light-Matter Interactions in Overcoupled Resonator for Biomolecule Recognition and Detection. NANO-MICRO LETTERS 2024; 17:10. [PMID: 39325238 PMCID: PMC11427657 DOI: 10.1007/s40820-024-01520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Plasmonic nanoantennas provide unique opportunities for precise control of light-matter coupling in surface-enhanced infrared absorption (SEIRA) spectroscopy, but most of the resonant systems realized so far suffer from the obstacles of low sensitivity, narrow bandwidth, and asymmetric Fano resonance perturbations. Here, we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient (μ) (OC-Hμ resonator) by precisely controlling the radiation loss channel, the resonator-oscillator coupling channel, and the frequency detuning channel. We observed a strong dependence of the sensing performance on the coupling state, and demonstrated that OC-Hμ resonator has excellent sensing properties of ultra-sensitive (7.25% nm-1), ultra-broadband (3-10 μm), and immune asymmetric Fano lineshapes. These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules, trace detection, and protein secondary structure analysis using a single array (array size is 100 × 100 µm2). In addition, with the assistance of machine learning, mixture classification, concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%. Finally, we demonstrated the potential of OC-Hμ resonator for SARS-CoV-2 detection. These findings will promote the wider application of SEIRA technology, while providing new ideas for other enhanced spectroscopy technologies, quantum photonics and studying light-matter interactions.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
| |
Collapse
|
2
|
Virmani D, Maciel-Escudero C, Hillenbrand R, Schnell M. Experimental verification of field-enhanced molecular vibrational scattering at single infrared antennas. Nat Commun 2024; 15:6760. [PMID: 39117609 PMCID: PMC11310513 DOI: 10.1038/s41467-024-50869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Surface-enhanced infrared absorption (SEIRA) spectroscopy exploits the field enhancement near nanophotonic structures for highly sensitive characterization of (bio)molecules. The vibrational signature observed in SEIRA spectra is typically interpreted as field-enhanced molecular absorption. Here, we study molecular vibrations in the near field of single antennas and show that the vibrational signature can be equally well explained by field-enhanced molecular scattering. Although the infrared scattering cross section of molecules is negligible compared to their absorption cross section, the interference between the molecular-scattered field and the incident field enhances the spectral signature caused by molecular vibrational scattering by 10 orders of magnitude, thus becoming as large as that of field-enhanced molecular absorption. We provide experimental evidence that field-enhanced molecular scattering can be measured, scales in intensity with the fourth power of the local field enhancement and fully explains the vibrational signature in SEIRA spectra in both magnitude and line shape. Our work may open new paths for developing highly sensitive SEIRA sensors that exploit the presented scattering concept.
Collapse
Affiliation(s)
- Divya Virmani
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain
| | - Carlos Maciel-Escudero
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain
- Materials Physics Center, CSIC-UPV/EHU, 20018, Donostia-San Sebastián, Spain
| | - Rainer Hillenbrand
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
- Department of Electricity and Electronics, UPV/EHU, 20018, Donostia-San Sebastián, Spain.
| | - Martin Schnell
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
3
|
Chang WJ, Roman BJ, Green AM, Truskett TM, Milliron DJ. Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals. ACS NANO 2024. [PMID: 39039957 DOI: 10.1021/acsnano.4c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.
Collapse
Affiliation(s)
- Woo Je Chang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Allison M Green
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Baden N, Watanabe H, Aoyagi M, Ujii H, Fujita Y. Surface-enhanced optical-mid-infrared photothermal microscopy using shortened colloidal silver nanowires: a noble approach for mid-infrared surface sensing. NANOSCALE HORIZONS 2024; 9:1311-1317. [PMID: 38808389 DOI: 10.1039/d4nh00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We propose surface-enhanced optical-mid-infrared photothermal (MIP) microscopy using highly crystalline silver nanowires, acting as a Fabry-Perot resonator, and demonstrate its applicability to enhanced mid-infrared surface sensing of thin polymer layers as thin as 20 nm.
Collapse
Affiliation(s)
- Naoki Baden
- Nihon Thermal Consulting, Co., Ltd, 3-9-2 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan
| | - Hirohmi Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Masaru Aoyagi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroshi Ujii
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiko Fujita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
5
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Probing the Local Near-Field Intensity of Plasmonic Nanoparticles in the Mid-infrared Spectral Region. J Phys Chem Lett 2024; 15:5390-5396. [PMID: 38739421 DOI: 10.1021/acs.jpclett.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
6
|
Izquierdo-López R, Fandan R, Boscá A, Calle F, Pedrós J. Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit. Biosens Bioelectron 2023; 237:115498. [PMID: 37423065 DOI: 10.1016/j.bios.2023.115498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.
Collapse
Affiliation(s)
- Raúl Izquierdo-López
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain.
| | - Rajveer Fandan
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Alberto Boscá
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Fernando Calle
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Jorge Pedrós
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain.
| |
Collapse
|
7
|
Chen Z, Li D, Zhou H, Liu T, Mu X. A hybrid graphene metamaterial absorber for enhanced modulation and molecular fingerprint retrieval. NANOSCALE 2023; 15:14100-14108. [PMID: 37581407 DOI: 10.1039/d3nr02830e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) has proven its ability to improve the detection performance of traditional infrared spectroscopy at unprecedented levels. However, the resonant frequency of the metamaterial absorber (MA) lacks tunability once the structure is fabricated, which poses a challenge for broadband fingerprint retrieval of molecules. Here, we propose a pixelated and electric tunable hybrid graphene MA with a broadband response for molecular fingerprint retrieval. Loss engineering is employed to optimize the sensing sensitivity of MA. The resonant frequency of MA is approximately linearly modulated with a change in the graphene Fermi level. This design allows a meta-pixel to match multiple characteristic absorption spectra, thereby establishing a one-to-many mapping relationship between spatial and spectral information. The one-to-many mapping relationship greatly reduces the number of meta-pixels. As a concept demonstration, we integrate 9 meta-pixels to achieve full spectral coverage from 1000 cm-1 to 2000 cm-1. Based on the broadband spectral properties of the sensor, we demonstrate its potential for multi-fingerprint detection, quantitative detection, chemical identification, and compositional analysis. Our proposed hybrid graphene MA can be easily integrated with other on-chip devices, providing a potential platform for optical sensing, infrared spectroscopy, and photodetection.
Collapse
Affiliation(s)
- Ziwei Chen
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| | - Hong Zhou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| | - Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Li D, Zhou H, Chen Z, Ren Z, Xu C, He X, Liu T, Chen X, Huang H, Lee C, Mu X. Ultrasensitive Molecular Fingerprint Retrieval Using Strongly Detuned Overcoupled Plasmonic Nanoantennas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301787. [PMID: 37204145 DOI: 10.1002/adma.202301787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Tailoring light-matter interactions via plasmonic nanoantennas (PNAs) has emerged as a breakthrough technology for spectroscopic applications. The detuning between molecular vibrations and plasmonic resonances, as a fundamental and inevitable optical phenomenon in light-matter interactions, reduces the interaction efficiency, resulting in a weak molecule sensing signal at the strong detuning state. Here, it is demonstrated that the low interaction efficiency from detuning can be tackled by overcoupled PNAs (OC-PNAs) with a high ratio of the radiative to intrinsic loss rates, which can be used for ultrasensitive spectroscopy at strong plasmonic-molecular detuning. In OC-PNAs, the ultrasensitive molecule signals are achieved within a wavelength detuning range of 248 cm-1 , which is 173 cm-1 wider than previous works. Meanwhile, the OC-PNAs are immune to the distortion of molecular signals and maintain a lineshape consistent with the molecular signature fingerprint. This strategy allows a single device to enhance and capture the full and complex fingerprint vibrations in the mid-infrared range. In the proof-of-concept demonstration, 13 kinds of molecules with some vibration fingerprints strongly detuning by the OC-PNAs are identified with 100% accuracy with the assistance of machine-learning algorithms. This work gains new insights into detuning-state nanophotonics for potential applications including spectroscopy and sensors.
Collapse
Affiliation(s)
- Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Ziwei Chen
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Xianming He
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xin Chen
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - He Huang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
9
|
John-Herpin A, Tittl A, Kühner L, Richter F, Huang SH, Shvets G, Oh SH, Altug H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2110163. [PMID: 35638248 DOI: 10.1002/adma.202110163] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced infrared spectroscopy, a broad palette of resonator geometries, materials, and arrangements for realizing highly sensitive metadevices is showcased, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, advanced sensor functionalities of metasurface-based infrared spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis are highlighted.
Collapse
Affiliation(s)
- Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Felix Richter
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
10
|
Wagner M, Seifert A, Liz-Marzán LM. Towards multi-molecular surface-enhanced infrared absorption using metal plasmonics. NANOSCALE HORIZONS 2022; 7:1259-1278. [PMID: 36047407 DOI: 10.1039/d2nh00276k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) leads to a largely improved detection of polar molecules, compared to standard infrared absorption. The enhancement principle is based on localized surface plasmon resonances of the substrate, which match the frequency of molecular vibrations in the analyte of interest. Therefore, in practical terms, the SEIRA sensor needs to be tailored to each specific analyte. We review SEIRA sensors based on metal plasmonics for the detection of biomolecules such as DNA, proteins, and lipids. We further focus this review on chemical SEIRA sensors, with potential applications in quality control, as well as on the improvement in sensor geometry that led to the development of multiresonant SEIRA substrates as sensors for multiple analytes. Finally, we give an introduction into the integration of SEIRA sensors with surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- Marita Wagner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
| | - Andreas Seifert
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
11
|
Predicting Concentrations of Mixed Sugar Solutions with a Combination of Resonant Plasmon-Enhanced SEIRA and Principal Component Analysis. SENSORS 2022; 22:s22155567. [PMID: 35898072 PMCID: PMC9329749 DOI: 10.3390/s22155567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
The detection and quantification of glucose concentrations in human blood or in the ocular fluid gain importance due to the increasing number of diabetes patients. A reliable determination of these low concentrations is hindered by the complex aqueous environments in which various biomolecules are present. In this study, we push the detection limit as well as the discriminative power of plasmonic nanoantenna-based sensors towards the physiological limit. We utilize plasmonic surface-enhanced infrared absorption spectroscopy (SEIRA) to study aqueous solutions of mixtures of up to five different physiologically relevant saccharides, namely the monosaccharides glucose, fructose, and galactose, as well as the disaccharides maltose and lactose. Resonantly tuned plasmonic nanoantennas in a reflection flow cell geometry allow us to enhance the specific vibrational fingerprints of the mono- and disaccharides. The obtained spectra are analyzed via principal component analysis (PCA) using a machine learning algorithm. The high performance of the sensor together with the strength of PCA allows us to detect concentrations of aqueous mono- and disaccharides solutions down to the physiological levels of 1 g/L. Furthermore, we demonstrate the reliable discrimination of the saccharide concentrations, as well as compositions in mixed solutions, which contain all five mono- and disaccharides simultaneously. These results underline the excellent discriminative power of plasmonic SEIRA spectroscopy in combination with the PCA. This unique combination and the insights gained will improve the detection of biomolecules in different complex environments.
Collapse
|
12
|
Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids. Molecules 2021; 27:molecules27010062. [PMID: 35011296 PMCID: PMC8746598 DOI: 10.3390/molecules27010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Surface enhanced infrared absorption spectroscopic studies (SEIRAS) as a technique to study biological molecules in extremely low concentrations is greatly evolving. In order to use the technique for identification of the structure and interactions of such biological molecules, it is necessary to identify the effects of the plasmonic electric-field enhancement on the spectral signature. In this study the spectral properties of 1,2-Dipalmitoyl-sn-glycero-3 phosphothioethanol (DPPTE) phospholipid immobilized on gold nanoantennas, specifically designed to enhance the vibrational fingerprints of lipid molecules were studied. An AFM study demonstrates an organization of the DPPTE phospholipid in bilayers on the nanoantenna structure. The spectral data were compared to SEIRAS active gold surfaces based on nanoparticles, plain gold and plain substrate (Si) for different temperatures. The shape of the infrared signals, the peak positions and their relative intensities were found to be sensitive to the type of surface and the presence of an enhancement. The strongest shifts in position and intensity were seen for the nanoantennas, and a smaller effect was seen for the DPPTE immobilized on gold nanoparticles. This information is crucial for interpretation of data obtained for biological molecules measured on such structures, for future application in nanodevices for biologically or medically relevant samples.
Collapse
|
13
|
Li D, Zhou H, Hui X, He X, Huang H, Zhang J, Mu X, Lee C, Yang Y. Multifunctional Chemical Sensing Platform Based on Dual-Resonant Infrared Plasmonic Perfect Absorber for On-Chip Detection of Poly(ethyl cyanoacrylate). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101879. [PMID: 34423591 PMCID: PMC8529490 DOI: 10.1002/advs.202101879] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Indexed: 05/05/2023]
Abstract
Multifunctional chemical sensing is highly desirable in industry, agriculture, and environmental sciences, but remains challenging due to the diversity of chemical substances and reactions. Surface-enhanced infrared absorption (SEIRA) spectroscopy can potentially address the above problems by ultra-sensitive detection of molecular fingerprint vibrations. Here, a multifunctional chemical sensing platform based on dual-resonant SEIRA device for sensitive and multifunctional on-chip detection of poly(ethyl cyanoacrylate) (PECA) is reported. It is experimentally demonstrated that the SEIRA sensing platform achieves multiple functions required by the PECA glue industry, including vibrational detection, thickness measurement, and in situ observation of polymerization and curing, which are usually realized by separately using a spectrometer, a viscometer, and an ellipsometer in the past. Specifically, the all-in-one sensor offers a dual-band fingerprint vibration identification, sub-nm level detection limit, and ultrahigh sensitivity of 0.76%/nm in thickness measurement, and second-level resolution in real-time observation of polymerization and curing. This work not only provides a valuable toolkit for ultra-sensitive and multifunctional on-chip detection of PECA, but also gives new insights into the SEIRA technology for multi-band, multi-functional, and on-chip chemical sensing.
Collapse
Affiliation(s)
- Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Hong Zhou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
- Department of Electrical and Computer EngineeringCenter for Intelligent Sensors and MEMS (CISM)and NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117576Singapore
| | - Xindan Hui
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Xianming He
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - He Huang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Jiajia Zhang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringCenter for Intelligent Sensors and MEMS (CISM)and NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117576Singapore
| | - Ya Yang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
14
|
Armelles G, Bergamini L, Cebollada A, González MU, Álvaro R, Torné L, Zabala N, Aizpurua J. Magnetic modulation of far- and near-field IR properties in rod-slit complementary spintronic metasurfaces. OPTICS EXPRESS 2020; 28:32584-32600. [PMID: 33114941 DOI: 10.1364/oe.404046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Complementary metasurfaces composed of randomly-placed arrays of aligned rods or slits are fabricated out of giant magnetoresistance Ni81Fe19/Au multilayers (MLs), a material whose optical properties change under the application of an external static magnetic field. The two metasurfaces are studied from both the experimental and theoretical viewpoints. The induced magnetic modulation (MM) of both the far-field signal and the resonant near field, at the rod/slit localized surface plasmon frequency, are found to obey the Babinet's principle. Furthermore, the near-field MM is found to be higher than the far-field counterpart. At resonance, both arrays show spots with high values of the magnetic modulated intensity of the electric near field (MM hot-spots). We show that this high magnetic modulation of the near-field intensity is very promising for the future development of high sensitivity molecular sensing platforms in the Mid- and Far-IR, using Magnetic-Modulation of Surface-Enhanced Infrared Absorption (MM-SEIRA) spectroscopy.
Collapse
|
15
|
Omeis F, Santos Seica AF, Bernard R, Javahiraly N, Majjad H, Moss D, Hellwig P. Following the Chemical Immobilization of Membrane Proteins on Plasmonic Nanoantennas Using Infrared Spectroscopy. ACS Sens 2020; 5:2191-2197. [PMID: 32586089 DOI: 10.1021/acssensors.0c00824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmonic nanoantennas are promising sensing platforms for detecting chemical and biological molecules in the infrared region. However, integrating fragile biological molecules such as proteins on plasmonic nanoantennas is an essential requirement in the detection procedure. It is crucial to preserve the structural integrity and functionality of proteins while attaching them. In this study, we attached lactose permease, a large membrane protein, onto plasmonic nanoantennas by means of the nickel-nitrile triacetic acid immobilization technique. We followed the individual steps of the immobilization procedure for different lengths of the nanoantennas. The impact of varying the length of the nanoantennas on the shape of the vibrational signal of the chemical layers and on the protein spectrum was studied. We showed that these large proteins are successfully attached onto the nanoantennas, while the chemical spectra of the immobilization monolayers show a shape deformation which is an effect of the coupling between the vibrational mode and the plasmonic resonance.
Collapse
Affiliation(s)
- Fatima Omeis
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Studies (USIAS), F-67083 Strasbourg, France
| | - Ana Filipa Santos Seica
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Romain Bernard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Nicolas Javahiraly
- Laboratoire ICube, UMR 7357, Université de Strasbourg, CNRS, 23 rue du Loess, 67037 Strasbourg, France
| | - Hicham Majjad
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - David Moss
- Institute for Beam Physics and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Studies (USIAS), F-67083 Strasbourg, France
| |
Collapse
|
16
|
Giordano MC, Tzschoppe M, Barelli M, Vogt J, Huck C, Canepa F, Pucci A, Buatier de Mongeot F. Self-Organized Nanorod Arrays for Large-Area Surface-Enhanced Infrared Absorption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11155-11162. [PMID: 32049480 DOI: 10.1021/acsami.9b19719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capabilities of highly sensitive surface-enhanced infrared absorption (SEIRA) spectroscopy are demonstrated by exploiting large-area templates (cm2) based on self-organized (SO) nanorod antennas. We engineered highly dense arrays of gold nanorod antennas featuring polarization-sensitive localized plasmon resonances, tunable over a broadband near- and mid-infrared (IR) spectrum, in overlap with the so-called "functional group" window. We demonstrate polarization-sensitive SEIRA activity, homogeneous over macroscopic areas and stable in time, by exploiting prototype self-assembled monolayers of IR-active octadecanthiol (ODT) molecules. The strong coupling between the plasmonic excitation and molecular stretching modes gives rise to characteristic Fano resonances in SEIRA. The SO engineering of the active hotspots in the arrays allows us to achieve signal amplitude improved up to 5.7%. This figure is competitive to the response of lithographic nanoantennas and is stable when the optical excitation spot varies from the micro- to macroscale, thus enabling highly sensitive SEIRA spectroscopy with cost-effective nanosensor devices.
Collapse
Affiliation(s)
- M C Giordano
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - M Tzschoppe
- Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - M Barelli
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - J Vogt
- Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - C Huck
- Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - F Canepa
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - A Pucci
- Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - F Buatier de Mongeot
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
17
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
18
|
Wallace GQ, McRae DM, Lagugné-Labarthet F. Probing mid-infrared plasmon resonances in extended radial fractal structures. OPTICS LETTERS 2019; 44:3865-3868. [PMID: 31368988 DOI: 10.1364/ol.44.003865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Infrared (IR) antennas made of metallic nanostructures are widely tunable from the near- to the far-IR range. They can be utilized for a variety of applications such as light harvesting and photonic filters, and their structural linear or circular anisotropy can be exploited to further enhance the sensitivity of spectroscopic measurements. Here gold dendritic fractal structures that were optimized to exhibit multiple resonances in the mid-IR range were characterized using a scattering-type scanning near-field optical IR microscope. The spatially resolved IR maps associated with the individual modes serve as a basis to understand the mode evolution between each fractal generation.
Collapse
|
19
|
Maß TWW, Nguyen VH, Schnakenberg U, Taubner T. Tailoring grating strip widths for optimizing infrared absorption signals of an adsorbed molecular monolayer. OPTICS EXPRESS 2019; 27:10524-10532. [PMID: 31052910 DOI: 10.1364/oe.27.010524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Metal structures with resonances in the mid-infrared spectral range enable an increased sensitivity for detecting molecular vibrational signals. 1D gold strip gratings have already proven potential in surface-enhanced infrared absorption (SEIRA) experiments, as grating resonances and local electric field enhancement can be spectrally tuned by changing the grating period. Here, we identify the grating strip width as another important design parameter, which is investigated for further optimization of molecular absorption signal enhancement in SEIRA experiments. Previous literature used gratings to increase light absorption in relatively thick polymer layers. Here, we demonstrate the capability of gold strip gratings fabricated on a CaF2 substrate to enhance the CH2 vibrational modes of a thiol-based monolayer of MHDA. An optimal choice of the strip width w = 1.33 μm enables a maximum vibrational signal enhancement factor of around 84, when normalized to microscopic GIR measurements of an MHDA monolayer on an extended gold surface. Numerical simulations demonstrate the broadband local field enhancement of gold strip gratings, which are suitable for enhancing multiple vibrational modes in a large hot-spot volume.
Collapse
|
20
|
Refractive Index Sensing of Monolayer Molecules Using Both Local and Propagating Surface Plasmons in Mid-Infrared Metagrating. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface-enhanced infrared absorption spectroscopy (SEIRA) is attractive for molecular sensing due to its high sensitivity and access to molecular fingerprint absorptions. In this paper, we report on refractive index sensing of monolayer molecules in a spectral band outside the molecular fingerprint region. In a metagrating composed of a three-layer metal-insulator-metal structure, both propagating surface plasmon resonances (PSPs) and local surface plasmon resonances (LSPRs) are exited from free-space in a broad band of 3 to 9 µm, and their sensing properties are characterized. In response to a self-assembled monolayer of octadecanethiol (ODT) molecules, both PSPs and LSPRs exhibit redshifts in wavelength. The shifts of LSPRs are larger than those of PSPs, as originated from their stronger spatial confinement and larger field enhancement. Our proposed mid-infrared molecular sensor is immune to frequency variations of plasmon resonance and more tolerant to sample feature size variation.
Collapse
|
21
|
He D, Guo S, Liu L, Zhang T, Jiang Y, Xu J, Liu Z. Amplified molecular detection sensitivity in passive dielectric cavity. OPTICS EXPRESS 2018; 26:32026-32036. [PMID: 30650781 DOI: 10.1364/oe.26.032026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Vibrational absorption spectroscopy presents an effective and direct way for molecular detection and identification. In this paper, we propose and demonstrate a simple strategy and structure to amplify molecular detection sensitivity via the example of a monolayer octadecanethiol (ODT). The underlying amplification mechanism operates on both the enhanced surface field in and the coupled-oscillators' energy transfer between the molecules and the cavity underneath. The structure is designed to be simple and free of lithography or patterning with the potential for large-scale uses. It is made of just a quarter wavelength thick dielectric (ZnSe) layer atop a metallic reflecting base. Both angle and polarization dependent reflection spectra reveal signatures of CH2 and CH3 vibrations in theory and experiment. A vibrational signal intensity of 8.54% reached in s-polarization at a large incident angle is comparable to those reported in plasmonic nanostructures with greater sophistications in structure.
Collapse
|
22
|
Wei W, Chen N, Nong J, Lan G, Wang W, Yi J, Tang L. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy. OPTICS EXPRESS 2018; 26:16903-16916. [PMID: 30119509 DOI: 10.1364/oe.26.016903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
A graphene-assisted vertical multilayer structure is proposed for high performance surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) spectroscopies on a single substrate, employing simultaneous localized surface plasmon in the visible region and magnetic plasmon resonance in the mid-infrared region. Such multilayer structure consists of a monolayer graphene sandwiched between Ag nanoparticles (NPs) and a metal-insulator-metal (MIM) microstructure, which can be easily fabricated by a standard surface micromachining process. Benefiting from the large near field enhancement by the hybrid plasmons in both visible and mid-infrared regions, a high enhancement factor of up to 107 for SERS and 105 for SEIRA can be achieved. Additionally, the strong magnetic resonance of the MIM microstructure can be tuned in broadband to selectively enhance the desired vibration modes of molecules. The strong SERS and SEIRA enhancement together with easy fabrication provides new opportunities for developing integrated plasmonic devices for multispectral detection of molecules on the same substrate.
Collapse
|
23
|
Becucci M, Bracciali M, Ghini G, Lofrumento C, Pietraperzia G, Ricci M, Tognaccini L, Trigari S, Gellini C, Feis A. Silver nanowires as infrared-active materials for surface-enhanced Raman scattering. NANOSCALE 2018; 10:9329-9337. [PMID: 29738000 DOI: 10.1039/c8nr00537k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is increasing in significance as a bioanalytical tool. Novel nanostructured metal substrates are required to improve performances and versatility of SERS spectroscopy. In particular, as biological tissues are relatively transparent in the infrared wavelength range, SERS-active materials suitable for infrared laser excitation are needed. Nanowires appear interesting in this respect as they show a very broad localized surface plasmon resonance band, ranging from near UV to near infrared wavelengths. The SERS activity of silver nanowires has been tested at three wavelengths and a fair enhancement at 1064 and 514 nm has been observed, whereas a very weak enhancement was present when exciting close to the nanowire extinction maximum. These experimentally measured optical properties have been contrasted with finite element method simulations. Furthermore, laser-induced optoacoustic spectroscopy measurements have shown that the extinction at 1064 nm is completely due to scattering. This result has an important implication that no heating occurs when silver nanowires are utilized as SERS-active substrates, thereby preventing possible thermal damage.
Collapse
Affiliation(s)
- Maurizio Becucci
- Dipartimento di Chimica "Ugo Schiff", University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xi M, Reinhard BM. Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:5698-5704. [PMID: 30344836 PMCID: PMC6191050 DOI: 10.1021/acs.jpcc.8b01283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sn-doped indium oxide (ITO) nanocrystals (NC) provide tunable localized surface plasmon resonance in the mid-infrared. To evaluate the applicability of these n-doped plasmonic semiconductors in field-enhanced spectroscopies, it is necessary to assess how the low, free-electron density affects the E-field localization and plasmon coupling in NC films when compared to metal nanoparticles (NP). In this article, we investigate plasmon coupling between approximate 6 nm diameter ITO NC on the collective resonance and quantify the effect of the electromagnetic field enhancement on the absorbance signal of surface-attached ligands in NC films and monolayers with different ratios of doped and undoped indium oxide NC.
Collapse
|
25
|
Chen X, Wang C, Yao Y, Wang C. Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing. ACS NANO 2017; 11:8034-8046. [PMID: 28693314 DOI: 10.1021/acsnano.7b02687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Here we report an infrared plasmonic nanosensor for label-free, sensitive, specific, and quantitative identification of nanometer-sized molecules. The device design is based on vertically coupled complementary antennas (VCCAs) with densely patterned hot-spots. The elevated metallic nanobars and complementary nanoslits in the substrate strongly couple at vertical nanogaps between them, resulting in dual-mode sensing dependent on the light polarization parallel or perpendicular to the nanobars. We demonstrate experimentally that a monolayer of octadecanethiol (ODT) molecules (thickness 2.5 nm) leads to significant antenna resonance wavelength shift over 136 nm in the parallel mode, corresponding to 7.5 nm for each carbon atom in the molecular chain or 54 nm for each nanometer in analyte thickness. Additionally, all four characteristic vibrational fingerprint signals, including the weak CH3 modes, are clearly delineated experimentally in both sensing modes. Such a dual-mode sensing with a broad wavelength design range (2.5 to 4.5 μm) is potentially useful for multianalyte detection. Additionally, we create a mathematical algorithm to design gold nanoparticles on VCCA sensors in simulation with their morphologies statistically identical to those in experiments and systematically investigate the impact of the nanoparticle morphology on the nanosensor performance. The nanoparticles form dense hot-spots, promote molecular adsorption, enhance near-field intensity 103 to 104 times, and improve ODT refractometric and fingerprint sensitivities. Our VCCA sensor structure offers a great design flexibility, dual-mode operation, and high detection sensitivity, making it feasible for broad applications from biomarker detection to environment monitoring and energy harvesting.
Collapse
Affiliation(s)
- Xiahui Chen
- School of Electrical, Computer and Energy Engineering, ‡The Center for Photonics Innovation, and §Biodesign Center for Molecular Design & Biomimetics, Arizona State University , Tempe, Arizona 85287, United States
| | - Chu Wang
- School of Electrical, Computer and Energy Engineering, ‡The Center for Photonics Innovation, and §Biodesign Center for Molecular Design & Biomimetics, Arizona State University , Tempe, Arizona 85287, United States
| | - Yu Yao
- School of Electrical, Computer and Energy Engineering, ‡The Center for Photonics Innovation, and §Biodesign Center for Molecular Design & Biomimetics, Arizona State University , Tempe, Arizona 85287, United States
| | - Chao Wang
- School of Electrical, Computer and Energy Engineering, ‡The Center for Photonics Innovation, and §Biodesign Center for Molecular Design & Biomimetics, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
26
|
Kühner L, Hentschel M, Zschieschang U, Klauk H, Vogt J, Huck C, Giessen H, Neubrech F. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging. ACS Sens 2017; 2:655-662. [PMID: 28723169 DOI: 10.1021/acssensors.7b00063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.
Collapse
Affiliation(s)
- Lucca Kühner
- 4th
Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Mario Hentschel
- 4th
Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Jochen Vogt
- Kirchhoff
Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Christian Huck
- Kirchhoff
Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Harald Giessen
- 4th
Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Frank Neubrech
- 4th
Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Kirchhoff
Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Neubrech F, Huck C, Weber K, Pucci A, Giessen H. Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. Chem Rev 2017; 117:5110-5145. [PMID: 28358482 DOI: 10.1021/acs.chemrev.6b00743] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infrared spectroscopy is a powerful tool widely used in research and industry for a label-free and unambiguous identification of molecular species. Inconveniently, its application to spectroscopic analysis of minute amounts of materials, for example, in sensing applications, is hampered by the low infrared absorption cross-sections. Surface-enhanced infrared spectroscopy using resonant metal nanoantennas, or short "resonant SEIRA", overcomes this limitation. Resonantly excited, such metal nanostructures feature collective oscillations of electrons (plasmons), providing huge electromagnetic fields on the nanometer scale. Infrared vibrations of molecules located in these fields are enhanced by orders of magnitude enabling a spectroscopic characterization with unprecedented sensitivity. In this Review, we introduce the concept of resonant SEIRA and discuss the underlying physics, particularly, the resonant coupling between molecular and antenna excitations as well as the spatial extent of the enhancement and its scaling with frequency. On the basis of these fundamentals, different routes to maximize the SEIRA enhancement are reviewed including the choice of nanostructures geometries, arrangements, and materials. Furthermore, first applications such as the detection of proteins, the monitoring of dynamic processes, and hyperspectral infrared chemical imaging are discussed, demonstrating the sensitivity and broad applicability of resonant SEIRA.
Collapse
Affiliation(s)
- Frank Neubrech
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, Stuttgart 70569, Germany.,Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Christian Huck
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Ksenia Weber
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, Stuttgart 70569, Germany
| | - Annemarie Pucci
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, Stuttgart 70569, Germany
| |
Collapse
|
28
|
Garoli D, Calandrini E, Bozzola A, Ortolani M, Cattarin S, Barison S, Toma A, De Angelis F. Boosting infrared energy transfer in 3D nanoporous gold antennas. NANOSCALE 2017; 9:915-922. [PMID: 28000833 DOI: 10.1039/c6nr08231a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm-1 through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.
Collapse
Affiliation(s)
- D Garoli
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| | - E Calandrini
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| | - A Bozzola
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| | - M Ortolani
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - S Cattarin
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (CNR-ICMATE), Corso Stati Uniti 4, I-35127 Padova, Italy
| | - S Barison
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (CNR-ICMATE), Corso Stati Uniti 4, I-35127 Padova, Italy
| | - A Toma
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| | - F De Angelis
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| |
Collapse
|
29
|
|
30
|
Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat Commun 2016; 7:12334. [PMID: 27460765 PMCID: PMC4974468 DOI: 10.1038/ncomms12334] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/22/2016] [Indexed: 01/20/2023] Open
Abstract
Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm−1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light–matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon–phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire molecular fingerprint region, which was previously unattainable. In addition, undisturbed and highly confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopies. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications. Despite being a powerful tool for molecular vibrational mode detection, infrared spectrosocpy is limited by weak sensitivity. Here, the authors demonstrate a platform for enhanced molecular fingerprint sensing based on a graphene/CaF2 nanofilm plasmonic structure.
Collapse
|
31
|
Shih WC, Santos GM, Zhao F, Zenasni O, Arnob MMP. Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks. NANO LETTERS 2016; 16:4641-7. [PMID: 27294888 DOI: 10.1021/acs.nanolett.6b01959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Near-infrared (NIR) absorption spectroscopy provides molecular and chemical information based on overtones and combination bands of the fundamental vibrational modes in the infrared wavelengths. However, the sensitivity of NIR absorption measurement is limited by the generally weak absorption and the relatively poor detector performance compared to other wavelength ranges. To overcome these barriers, we have developed a novel technique to simultaneously obtain chemical and refractive index sensing in 1-2.5 μm NIR wavelength range on nanoporous gold (NPG) disks, which feature high-density plasmonic hot-spots of localized electric field enhancement. For the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection. With a self-assembled monolayer (SAM) of octadecanethiol (ODT), an enhancement factor (EF) of up to ∼10(4) has been demonstrated for the first C-H combination band at 2400 nm using NPG disk with 600 nm diameter. Together with localized surface plasmon resonance (LSPR) extinction spectroscopy, simultaneous sensing of sample refractive index has been achieved for the first time. The performance of this technique has been evaluated using various hydrocarbon compounds and crude oil samples.
Collapse
Affiliation(s)
- Wei-Chuan Shih
- Department of Electrical and Computer Engineering, University of Houston , Houston, Texas 77204, United States
- Department of Biomedical Engineering, University of Houston , Houston, Texas 77204, United States
- Department of Chemistry, University of Houston , Houston, Texas 77204, United States
- Program of Materials Science and Engineering, University of Houston , Houston, Texas 77204, United States
| | - Greggy M Santos
- Department of Electrical and Computer Engineering, University of Houston , Houston, Texas 77204, United States
| | - Fusheng Zhao
- Department of Electrical and Computer Engineering, University of Houston , Houston, Texas 77204, United States
| | - Oussama Zenasni
- Department of Electrical and Computer Engineering, University of Houston , Houston, Texas 77204, United States
| | - Md Masud Parvez Arnob
- Department of Electrical and Computer Engineering, University of Houston , Houston, Texas 77204, United States
| |
Collapse
|
32
|
Barho FB, Gonzalez-Posada F, Milla-Rodrigo MJ, Bomers M, Cerutti L, Taliercio T. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range. OPTICS EXPRESS 2016; 24:16175-16190. [PMID: 27410884 DOI: 10.1364/oe.24.016175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose 1D periodic, highly doped InAsSb gratings on GaSb substrates as biosensing platforms applicable for surface plasmon resonance and surface enhanced infrared absorption spectroscopies. Based on finite-difference time-domain simulations, the electric field enhancement and the sensitivity on refractive index variations are investigated for different grating geometries. The proposed, optimized system achieves sensitivities of 900 nm RIU-1. A clear red shift of the plasmon resonance as well as the enhancement of an absorption line are presented for 2 nm thin adlayers in simulations. We experimentally confirm the high sensitivity of the InAsSb grating by measurements of the wavelength shift induced by a 200 nm thin polymethylmethacrylate layer and demonstrate an enhancement of vibrational signals. A comparison to a gold grating with equivalent optical properties in the mid-infrared is performed. Our simulations and experimental results underline the interest in the alternative plasmonic material InAsSb for highly sensitive biosensors for the mid-infrared spectral range.
Collapse
|
33
|
Metzger B, Gui L, Fuchs J, Floess D, Hentschel M, Giessen H. Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength. NANO LETTERS 2015; 15:3917-22. [PMID: 25867489 DOI: 10.1021/acs.nanolett.5b00747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We perform second harmonic spectroscopy of aluminum nanoantenna arrays that exhibit plasmonic resonances at the second harmonic wavelength between 450 and 570 nm by focusing sub-30 fs laser pulses tunable from 900 to 1140 nm onto the nanoantenna arrays. We find that a plasmonic resonance at the second harmonic wavelength boosts the overall nonlinear process by more than an order of magnitude. In particular, in the measurement the resonant second harmonic polarization component is a factor of about 70 stronger when compared to the perpendicular off-resonant second harmonic polarization. Furthermore, the maximum of the second harmonic conversion efficiency is found to be slightly blue-shifted with respect to the peak of the linear optical far-field spectrum. This fact can be understood from a simple model that accounts for the almost off-resonant absorption at the fundamental wavelength and the resonant emission process at the second harmonic.
Collapse
Affiliation(s)
- Bernd Metzger
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Lili Gui
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jaco Fuchs
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Dominik Floess
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|